| # Copyright 2017 The TensorFlow Authors. All Rights Reserved. | 
 | # | 
 | # Licensed under the Apache License, Version 2.0 (the "License"); | 
 | # you may not use this file except in compliance with the License. | 
 | # You may obtain a copy of the License at | 
 | # | 
 | #     http://www.apache.org/licenses/LICENSE-2.0 | 
 | # | 
 | # Unless required by applicable law or agreed to in writing, software | 
 | # distributed under the License is distributed on an "AS IS" BASIS, | 
 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | # See the License for the specific language governing permissions and | 
 | # limitations under the License. | 
 | # ============================================================================== | 
 | """configure script to get build parameters from user.""" | 
 |  | 
 | from __future__ import absolute_import | 
 | from __future__ import division | 
 | from __future__ import print_function | 
 |  | 
 | import argparse | 
 | import errno | 
 | import os | 
 | import platform | 
 | import re | 
 | import subprocess | 
 | import sys | 
 |  | 
 | # pylint: disable=g-import-not-at-top | 
 | try: | 
 |   from shutil import which | 
 | except ImportError: | 
 |   from distutils.spawn import find_executable as which | 
 | # pylint: enable=g-import-not-at-top | 
 |  | 
 | _DEFAULT_CUDA_VERSION = '10' | 
 | _DEFAULT_CUDNN_VERSION = '7' | 
 | _DEFAULT_TENSORRT_VERSION = '6' | 
 | _DEFAULT_CUDA_COMPUTE_CAPABILITIES = '3.5,7.0' | 
 |  | 
 | _SUPPORTED_ANDROID_NDK_VERSIONS = [10, 11, 12, 13, 14, 15, 16, 17, 18] | 
 |  | 
 | _DEFAULT_PROMPT_ASK_ATTEMPTS = 10 | 
 |  | 
 | _TF_BAZELRC_FILENAME = '.tf_configure.bazelrc' | 
 | _TF_WORKSPACE_ROOT = '' | 
 | _TF_BAZELRC = '' | 
 | _TF_CURRENT_BAZEL_VERSION = None | 
 | _TF_MIN_BAZEL_VERSION = '3.1.0' | 
 | _TF_MAX_BAZEL_VERSION = '3.99.0' | 
 |  | 
 | NCCL_LIB_PATHS = [ | 
 |     'lib64/', 'lib/powerpc64le-linux-gnu/', 'lib/x86_64-linux-gnu/', '' | 
 | ] | 
 |  | 
 | # List of files to configure when building Bazel on Apple platforms. | 
 | APPLE_BAZEL_FILES = [ | 
 |     'tensorflow/lite/experimental/ios/BUILD', | 
 |     'tensorflow/lite/experimental/objc/BUILD', | 
 |     'tensorflow/lite/experimental/swift/BUILD', | 
 |     'tensorflow/lite/tools/benchmark/experimental/ios/BUILD' | 
 | ] | 
 |  | 
 | # List of files to move when building for iOS. | 
 | IOS_FILES = [ | 
 |     'tensorflow/lite/experimental/objc/TensorFlowLiteObjC.podspec', | 
 |     'tensorflow/lite/experimental/swift/TensorFlowLiteSwift.podspec', | 
 | ] | 
 |  | 
 |  | 
 | class UserInputError(Exception): | 
 |   pass | 
 |  | 
 |  | 
 | def is_windows(): | 
 |   return platform.system() == 'Windows' | 
 |  | 
 |  | 
 | def is_linux(): | 
 |   return platform.system() == 'Linux' | 
 |  | 
 |  | 
 | def is_macos(): | 
 |   return platform.system() == 'Darwin' | 
 |  | 
 |  | 
 | def is_ppc64le(): | 
 |   return platform.machine() == 'ppc64le' | 
 |  | 
 |  | 
 | def is_cygwin(): | 
 |   return platform.system().startswith('CYGWIN_NT') | 
 |  | 
 |  | 
 | def get_input(question): | 
 |   try: | 
 |     try: | 
 |       answer = raw_input(question) | 
 |     except NameError: | 
 |       answer = input(question)  # pylint: disable=bad-builtin | 
 |   except EOFError: | 
 |     answer = '' | 
 |   return answer | 
 |  | 
 |  | 
 | def symlink_force(target, link_name): | 
 |   """Force symlink, equivalent of 'ln -sf'. | 
 |  | 
 |   Args: | 
 |     target: items to link to. | 
 |     link_name: name of the link. | 
 |   """ | 
 |   try: | 
 |     os.symlink(target, link_name) | 
 |   except OSError as e: | 
 |     if e.errno == errno.EEXIST: | 
 |       os.remove(link_name) | 
 |       os.symlink(target, link_name) | 
 |     else: | 
 |       raise e | 
 |  | 
 |  | 
 | def sed_in_place(filename, old, new): | 
 |   """Replace old string with new string in file. | 
 |  | 
 |   Args: | 
 |     filename: string for filename. | 
 |     old: string to replace. | 
 |     new: new string to replace to. | 
 |   """ | 
 |   with open(filename, 'r') as f: | 
 |     filedata = f.read() | 
 |   newdata = filedata.replace(old, new) | 
 |   with open(filename, 'w') as f: | 
 |     f.write(newdata) | 
 |  | 
 |  | 
 | def write_to_bazelrc(line): | 
 |   with open(_TF_BAZELRC, 'a') as f: | 
 |     f.write(line + '\n') | 
 |  | 
 |  | 
 | def write_action_env_to_bazelrc(var_name, var): | 
 |   write_to_bazelrc('build --action_env {}="{}"'.format(var_name, str(var))) | 
 |  | 
 |  | 
 | def run_shell(cmd, allow_non_zero=False, stderr=None): | 
 |   if stderr is None: | 
 |     stderr = sys.stdout | 
 |   if allow_non_zero: | 
 |     try: | 
 |       output = subprocess.check_output(cmd, stderr=stderr) | 
 |     except subprocess.CalledProcessError as e: | 
 |       output = e.output | 
 |   else: | 
 |     output = subprocess.check_output(cmd, stderr=stderr) | 
 |   return output.decode('UTF-8').strip() | 
 |  | 
 |  | 
 | def cygpath(path): | 
 |   """Convert path from posix to windows.""" | 
 |   return os.path.abspath(path).replace('\\', '/') | 
 |  | 
 |  | 
 | def get_python_path(environ_cp, python_bin_path): | 
 |   """Get the python site package paths.""" | 
 |   python_paths = [] | 
 |   if environ_cp.get('PYTHONPATH'): | 
 |     python_paths = environ_cp.get('PYTHONPATH').split(':') | 
 |   try: | 
 |     stderr = open(os.devnull, 'wb') | 
 |     library_paths = run_shell([ | 
 |         python_bin_path, '-c', | 
 |         'import site; print("\\n".join(site.getsitepackages()))' | 
 |     ], | 
 |                               stderr=stderr).split('\n') | 
 |   except subprocess.CalledProcessError: | 
 |     library_paths = [ | 
 |         run_shell([ | 
 |             python_bin_path, '-c', | 
 |             'from distutils.sysconfig import get_python_lib;' | 
 |             'print(get_python_lib())' | 
 |         ]) | 
 |     ] | 
 |  | 
 |   all_paths = set(python_paths + library_paths) | 
 |  | 
 |   paths = [] | 
 |   for path in all_paths: | 
 |     if os.path.isdir(path): | 
 |       paths.append(path) | 
 |   return paths | 
 |  | 
 |  | 
 | def get_python_major_version(python_bin_path): | 
 |   """Get the python major version.""" | 
 |   return run_shell([python_bin_path, '-c', 'import sys; print(sys.version[0])']) | 
 |  | 
 |  | 
 | def setup_python(environ_cp): | 
 |   """Setup python related env variables.""" | 
 |   # Get PYTHON_BIN_PATH, default is the current running python. | 
 |   default_python_bin_path = sys.executable | 
 |   ask_python_bin_path = ('Please specify the location of python. [Default is ' | 
 |                          '{}]: ').format(default_python_bin_path) | 
 |   while True: | 
 |     python_bin_path = get_from_env_or_user_or_default(environ_cp, | 
 |                                                       'PYTHON_BIN_PATH', | 
 |                                                       ask_python_bin_path, | 
 |                                                       default_python_bin_path) | 
 |     # Check if the path is valid | 
 |     if os.path.isfile(python_bin_path) and os.access(python_bin_path, os.X_OK): | 
 |       break | 
 |     elif not os.path.exists(python_bin_path): | 
 |       print('Invalid python path: {} cannot be found.'.format(python_bin_path)) | 
 |     else: | 
 |       print('{} is not executable.  Is it the python binary?'.format( | 
 |           python_bin_path)) | 
 |     environ_cp['PYTHON_BIN_PATH'] = '' | 
 |  | 
 |   # Convert python path to Windows style before checking lib and version | 
 |   if is_windows() or is_cygwin(): | 
 |     python_bin_path = cygpath(python_bin_path) | 
 |  | 
 |   # Get PYTHON_LIB_PATH | 
 |   python_lib_path = environ_cp.get('PYTHON_LIB_PATH') | 
 |   if not python_lib_path: | 
 |     python_lib_paths = get_python_path(environ_cp, python_bin_path) | 
 |     if environ_cp.get('USE_DEFAULT_PYTHON_LIB_PATH') == '1': | 
 |       python_lib_path = python_lib_paths[0] | 
 |     else: | 
 |       print('Found possible Python library paths:\n  %s' % | 
 |             '\n  '.join(python_lib_paths)) | 
 |       default_python_lib_path = python_lib_paths[0] | 
 |       python_lib_path = get_input( | 
 |           'Please input the desired Python library path to use.  ' | 
 |           'Default is [{}]\n'.format(python_lib_paths[0])) | 
 |       if not python_lib_path: | 
 |         python_lib_path = default_python_lib_path | 
 |     environ_cp['PYTHON_LIB_PATH'] = python_lib_path | 
 |  | 
 |   python_major_version = get_python_major_version(python_bin_path) | 
 |   if python_major_version == '2': | 
 |     write_to_bazelrc('build --host_force_python=PY2') | 
 |  | 
 |   # Convert python path to Windows style before writing into bazel.rc | 
 |   if is_windows() or is_cygwin(): | 
 |     python_lib_path = cygpath(python_lib_path) | 
 |  | 
 |   # Set-up env variables used by python_configure.bzl | 
 |   write_action_env_to_bazelrc('PYTHON_BIN_PATH', python_bin_path) | 
 |   write_action_env_to_bazelrc('PYTHON_LIB_PATH', python_lib_path) | 
 |   write_to_bazelrc('build --python_path=\"{}"'.format(python_bin_path)) | 
 |   environ_cp['PYTHON_BIN_PATH'] = python_bin_path | 
 |  | 
 |   # If choosen python_lib_path is from a path specified in the PYTHONPATH | 
 |   # variable, need to tell bazel to include PYTHONPATH | 
 |   if environ_cp.get('PYTHONPATH'): | 
 |     python_paths = environ_cp.get('PYTHONPATH').split(':') | 
 |     if python_lib_path in python_paths: | 
 |       write_action_env_to_bazelrc('PYTHONPATH', environ_cp.get('PYTHONPATH')) | 
 |  | 
 |   # Write tools/python_bin_path.sh | 
 |   with open( | 
 |       os.path.join(_TF_WORKSPACE_ROOT, 'tools', 'python_bin_path.sh'), | 
 |       'w') as f: | 
 |     f.write('export PYTHON_BIN_PATH="{}"'.format(python_bin_path)) | 
 |  | 
 |  | 
 | def reset_tf_configure_bazelrc(): | 
 |   """Reset file that contains customized config settings.""" | 
 |   open(_TF_BAZELRC, 'w').close() | 
 |  | 
 |  | 
 | def cleanup_makefile(): | 
 |   """Delete any leftover BUILD files from the Makefile build. | 
 |  | 
 |   These files could interfere with Bazel parsing. | 
 |   """ | 
 |   makefile_download_dir = os.path.join(_TF_WORKSPACE_ROOT, 'tensorflow', | 
 |                                        'contrib', 'makefile', 'downloads') | 
 |   if os.path.isdir(makefile_download_dir): | 
 |     for root, _, filenames in os.walk(makefile_download_dir): | 
 |       for f in filenames: | 
 |         if f.endswith('BUILD'): | 
 |           os.remove(os.path.join(root, f)) | 
 |  | 
 |  | 
 | def get_var(environ_cp, | 
 |             var_name, | 
 |             query_item, | 
 |             enabled_by_default, | 
 |             question=None, | 
 |             yes_reply=None, | 
 |             no_reply=None): | 
 |   """Get boolean input from user. | 
 |  | 
 |   If var_name is not set in env, ask user to enable query_item or not. If the | 
 |   response is empty, use the default. | 
 |  | 
 |   Args: | 
 |     environ_cp: copy of the os.environ. | 
 |     var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". | 
 |     query_item: string for feature related to the variable, e.g. "CUDA for | 
 |       Nvidia GPUs". | 
 |     enabled_by_default: boolean for default behavior. | 
 |     question: optional string for how to ask for user input. | 
 |     yes_reply: optional string for reply when feature is enabled. | 
 |     no_reply: optional string for reply when feature is disabled. | 
 |  | 
 |   Returns: | 
 |     boolean value of the variable. | 
 |  | 
 |   Raises: | 
 |     UserInputError: if an environment variable is set, but it cannot be | 
 |       interpreted as a boolean indicator, assume that the user has made a | 
 |       scripting error, and will continue to provide invalid input. | 
 |       Raise the error to avoid infinitely looping. | 
 |   """ | 
 |   if not question: | 
 |     question = 'Do you wish to build TensorFlow with {} support?'.format( | 
 |         query_item) | 
 |   if not yes_reply: | 
 |     yes_reply = '{} support will be enabled for TensorFlow.'.format(query_item) | 
 |   if not no_reply: | 
 |     no_reply = 'No {}'.format(yes_reply) | 
 |  | 
 |   yes_reply += '\n' | 
 |   no_reply += '\n' | 
 |  | 
 |   if enabled_by_default: | 
 |     question += ' [Y/n]: ' | 
 |   else: | 
 |     question += ' [y/N]: ' | 
 |  | 
 |   var = environ_cp.get(var_name) | 
 |   if var is not None: | 
 |     var_content = var.strip().lower() | 
 |     true_strings = ('1', 't', 'true', 'y', 'yes') | 
 |     false_strings = ('0', 'f', 'false', 'n', 'no') | 
 |     if var_content in true_strings: | 
 |       var = True | 
 |     elif var_content in false_strings: | 
 |       var = False | 
 |     else: | 
 |       raise UserInputError( | 
 |           'Environment variable %s must be set as a boolean indicator.\n' | 
 |           'The following are accepted as TRUE : %s.\n' | 
 |           'The following are accepted as FALSE: %s.\n' | 
 |           'Current value is %s.' % | 
 |           (var_name, ', '.join(true_strings), ', '.join(false_strings), var)) | 
 |  | 
 |   while var is None: | 
 |     user_input_origin = get_input(question) | 
 |     user_input = user_input_origin.strip().lower() | 
 |     if user_input == 'y': | 
 |       print(yes_reply) | 
 |       var = True | 
 |     elif user_input == 'n': | 
 |       print(no_reply) | 
 |       var = False | 
 |     elif not user_input: | 
 |       if enabled_by_default: | 
 |         print(yes_reply) | 
 |         var = True | 
 |       else: | 
 |         print(no_reply) | 
 |         var = False | 
 |     else: | 
 |       print('Invalid selection: {}'.format(user_input_origin)) | 
 |   return var | 
 |  | 
 |  | 
 | def set_build_var(environ_cp, | 
 |                   var_name, | 
 |                   query_item, | 
 |                   option_name, | 
 |                   enabled_by_default, | 
 |                   bazel_config_name=None): | 
 |   """Set if query_item will be enabled for the build. | 
 |  | 
 |   Ask user if query_item will be enabled. Default is used if no input is given. | 
 |   Set subprocess environment variable and write to .bazelrc if enabled. | 
 |  | 
 |   Args: | 
 |     environ_cp: copy of the os.environ. | 
 |     var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". | 
 |     query_item: string for feature related to the variable, e.g. "CUDA for | 
 |       Nvidia GPUs". | 
 |     option_name: string for option to define in .bazelrc. | 
 |     enabled_by_default: boolean for default behavior. | 
 |     bazel_config_name: Name for Bazel --config argument to enable build feature. | 
 |   """ | 
 |  | 
 |   var = str(int(get_var(environ_cp, var_name, query_item, enabled_by_default))) | 
 |   environ_cp[var_name] = var | 
 |   if var == '1': | 
 |     write_to_bazelrc('build:%s --define %s=true' % | 
 |                      (bazel_config_name, option_name)) | 
 |     write_to_bazelrc('build --config=%s' % bazel_config_name) | 
 |   elif bazel_config_name is not None: | 
 |     # TODO(mikecase): Migrate all users of configure.py to use --config Bazel | 
 |     # options and not to set build configs through environment variables. | 
 |     write_to_bazelrc('build:%s --define %s=true' % | 
 |                      (bazel_config_name, option_name)) | 
 |  | 
 |  | 
 | def set_action_env_var(environ_cp, | 
 |                        var_name, | 
 |                        query_item, | 
 |                        enabled_by_default, | 
 |                        question=None, | 
 |                        yes_reply=None, | 
 |                        no_reply=None, | 
 |                        bazel_config_name=None): | 
 |   """Set boolean action_env variable. | 
 |  | 
 |   Ask user if query_item will be enabled. Default is used if no input is given. | 
 |   Set environment variable and write to .bazelrc. | 
 |  | 
 |   Args: | 
 |     environ_cp: copy of the os.environ. | 
 |     var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". | 
 |     query_item: string for feature related to the variable, e.g. "CUDA for | 
 |       Nvidia GPUs". | 
 |     enabled_by_default: boolean for default behavior. | 
 |     question: optional string for how to ask for user input. | 
 |     yes_reply: optional string for reply when feature is enabled. | 
 |     no_reply: optional string for reply when feature is disabled. | 
 |     bazel_config_name: adding config to .bazelrc instead of action_env. | 
 |   """ | 
 |   var = int( | 
 |       get_var(environ_cp, var_name, query_item, enabled_by_default, question, | 
 |               yes_reply, no_reply)) | 
 |  | 
 |   if not bazel_config_name: | 
 |     write_action_env_to_bazelrc(var_name, var) | 
 |   elif var: | 
 |     write_to_bazelrc('build --config=%s' % bazel_config_name) | 
 |   environ_cp[var_name] = str(var) | 
 |  | 
 |  | 
 | def convert_version_to_int(version): | 
 |   """Convert a version number to a integer that can be used to compare. | 
 |  | 
 |   Version strings of the form X.YZ and X.Y.Z-xxxxx are supported. The | 
 |   'xxxxx' part, for instance 'homebrew' on OS/X, is ignored. | 
 |  | 
 |   Args: | 
 |     version: a version to be converted | 
 |  | 
 |   Returns: | 
 |     An integer if converted successfully, otherwise return None. | 
 |   """ | 
 |   version = version.split('-')[0] | 
 |   version_segments = version.split('.') | 
 |   # Treat "0.24" as "0.24.0" | 
 |   if len(version_segments) == 2: | 
 |     version_segments.append('0') | 
 |   for seg in version_segments: | 
 |     if not seg.isdigit(): | 
 |       return None | 
 |  | 
 |   version_str = ''.join(['%03d' % int(seg) for seg in version_segments]) | 
 |   return int(version_str) | 
 |  | 
 |  | 
 | def check_bazel_version(min_version, max_version): | 
 |   """Check installed bazel version is between min_version and max_version. | 
 |  | 
 |   Args: | 
 |     min_version: string for minimum bazel version (must exist!). | 
 |     max_version: string for maximum bazel version (must exist!). | 
 |  | 
 |   Returns: | 
 |     The bazel version detected. | 
 |   """ | 
 |   if which('bazel') is None: | 
 |     print('Cannot find bazel. Please install bazel.') | 
 |     sys.exit(1) | 
 |  | 
 |   stderr = open(os.devnull, 'wb') | 
 |   curr_version = run_shell(['bazel', '--version'], | 
 |                            allow_non_zero=True, | 
 |                            stderr=stderr) | 
 |   if curr_version.startswith('bazel '): | 
 |     curr_version = curr_version.split('bazel ')[1] | 
 |  | 
 |   min_version_int = convert_version_to_int(min_version) | 
 |   curr_version_int = convert_version_to_int(curr_version) | 
 |   max_version_int = convert_version_to_int(max_version) | 
 |  | 
 |   # Check if current bazel version can be detected properly. | 
 |   if not curr_version_int: | 
 |     print('WARNING: current bazel installation is not a release version.') | 
 |     print('Make sure you are running at least bazel %s' % min_version) | 
 |     return curr_version | 
 |  | 
 |   print('You have bazel %s installed.' % curr_version) | 
 |  | 
 |   if curr_version_int < min_version_int: | 
 |     print('Please upgrade your bazel installation to version %s or higher to ' | 
 |           'build TensorFlow!' % min_version) | 
 |     sys.exit(1) | 
 |   if (curr_version_int > max_version_int and | 
 |       'TF_IGNORE_MAX_BAZEL_VERSION' not in os.environ): | 
 |     print('Please downgrade your bazel installation to version %s or lower to ' | 
 |           'build TensorFlow! To downgrade: download the installer for the old ' | 
 |           'version (from https://github.com/bazelbuild/bazel/releases) then ' | 
 |           'run the installer.' % max_version) | 
 |     sys.exit(1) | 
 |   return curr_version | 
 |  | 
 |  | 
 | def set_cc_opt_flags(environ_cp): | 
 |   """Set up architecture-dependent optimization flags. | 
 |  | 
 |   Also append CC optimization flags to bazel.rc.. | 
 |  | 
 |   Args: | 
 |     environ_cp: copy of the os.environ. | 
 |   """ | 
 |   if is_ppc64le(): | 
 |     # gcc on ppc64le does not support -march, use mcpu instead | 
 |     default_cc_opt_flags = '-mcpu=native' | 
 |   elif is_windows(): | 
 |     default_cc_opt_flags = '/arch:AVX' | 
 |   else: | 
 |     default_cc_opt_flags = '-march=native -Wno-sign-compare' | 
 |   question = ('Please specify optimization flags to use during compilation when' | 
 |               ' bazel option "--config=opt" is specified [Default is %s]: ' | 
 |              ) % default_cc_opt_flags | 
 |   cc_opt_flags = get_from_env_or_user_or_default(environ_cp, 'CC_OPT_FLAGS', | 
 |                                                  question, default_cc_opt_flags) | 
 |   for opt in cc_opt_flags.split(): | 
 |     write_to_bazelrc('build:opt --copt=%s' % opt) | 
 |   # It should be safe on the same build host. | 
 |   if not is_ppc64le() and not is_windows(): | 
 |     write_to_bazelrc('build:opt --host_copt=-march=native') | 
 |   write_to_bazelrc('build:opt --define with_default_optimizations=true') | 
 |  | 
 |  | 
 | def set_tf_cuda_clang(environ_cp): | 
 |   """set TF_CUDA_CLANG action_env. | 
 |  | 
 |   Args: | 
 |     environ_cp: copy of the os.environ. | 
 |   """ | 
 |   question = 'Do you want to use clang as CUDA compiler?' | 
 |   yes_reply = 'Clang will be used as CUDA compiler.' | 
 |   no_reply = 'nvcc will be used as CUDA compiler.' | 
 |   set_action_env_var( | 
 |       environ_cp, | 
 |       'TF_CUDA_CLANG', | 
 |       None, | 
 |       False, | 
 |       question=question, | 
 |       yes_reply=yes_reply, | 
 |       no_reply=no_reply, | 
 |       bazel_config_name='cuda_clang') | 
 |  | 
 |  | 
 | def set_tf_download_clang(environ_cp): | 
 |   """Set TF_DOWNLOAD_CLANG action_env.""" | 
 |   question = 'Do you wish to download a fresh release of clang? (Experimental)' | 
 |   yes_reply = 'Clang will be downloaded and used to compile tensorflow.' | 
 |   no_reply = 'Clang will not be downloaded.' | 
 |   set_action_env_var( | 
 |       environ_cp, | 
 |       'TF_DOWNLOAD_CLANG', | 
 |       None, | 
 |       False, | 
 |       question=question, | 
 |       yes_reply=yes_reply, | 
 |       no_reply=no_reply, | 
 |       bazel_config_name='download_clang') | 
 |  | 
 |  | 
 | def get_from_env_or_user_or_default(environ_cp, var_name, ask_for_var, | 
 |                                     var_default): | 
 |   """Get var_name either from env, or user or default. | 
 |  | 
 |   If var_name has been set as environment variable, use the preset value, else | 
 |   ask for user input. If no input is provided, the default is used. | 
 |  | 
 |   Args: | 
 |     environ_cp: copy of the os.environ. | 
 |     var_name: string for name of environment variable, e.g. "TF_NEED_CUDA". | 
 |     ask_for_var: string for how to ask for user input. | 
 |     var_default: default value string. | 
 |  | 
 |   Returns: | 
 |     string value for var_name | 
 |   """ | 
 |   var = environ_cp.get(var_name) | 
 |   if not var: | 
 |     var = get_input(ask_for_var) | 
 |     print('\n') | 
 |   if not var: | 
 |     var = var_default | 
 |   return var | 
 |  | 
 |  | 
 | def set_clang_cuda_compiler_path(environ_cp): | 
 |   """Set CLANG_CUDA_COMPILER_PATH.""" | 
 |   default_clang_path = which('clang') or '' | 
 |   ask_clang_path = ('Please specify which clang should be used as device and ' | 
 |                     'host compiler. [Default is %s]: ') % default_clang_path | 
 |  | 
 |   while True: | 
 |     clang_cuda_compiler_path = get_from_env_or_user_or_default( | 
 |         environ_cp, 'CLANG_CUDA_COMPILER_PATH', ask_clang_path, | 
 |         default_clang_path) | 
 |     if os.path.exists(clang_cuda_compiler_path): | 
 |       break | 
 |  | 
 |     # Reset and retry | 
 |     print('Invalid clang path: %s cannot be found.' % clang_cuda_compiler_path) | 
 |     environ_cp['CLANG_CUDA_COMPILER_PATH'] = '' | 
 |  | 
 |   # Set CLANG_CUDA_COMPILER_PATH | 
 |   environ_cp['CLANG_CUDA_COMPILER_PATH'] = clang_cuda_compiler_path | 
 |   write_action_env_to_bazelrc('CLANG_CUDA_COMPILER_PATH', | 
 |                               clang_cuda_compiler_path) | 
 |  | 
 |  | 
 | def prompt_loop_or_load_from_env(environ_cp, | 
 |                                  var_name, | 
 |                                  var_default, | 
 |                                  ask_for_var, | 
 |                                  check_success, | 
 |                                  error_msg, | 
 |                                  suppress_default_error=False, | 
 |                                  resolve_symlinks=False, | 
 |                                  n_ask_attempts=_DEFAULT_PROMPT_ASK_ATTEMPTS): | 
 |   """Loop over user prompts for an ENV param until receiving a valid response. | 
 |  | 
 |   For the env param var_name, read from the environment or verify user input | 
 |   until receiving valid input. When done, set var_name in the environ_cp to its | 
 |   new value. | 
 |  | 
 |   Args: | 
 |     environ_cp: (Dict) copy of the os.environ. | 
 |     var_name: (String) string for name of environment variable, e.g. "TF_MYVAR". | 
 |     var_default: (String) default value string. | 
 |     ask_for_var: (String) string for how to ask for user input. | 
 |     check_success: (Function) function that takes one argument and returns a | 
 |       boolean. Should return True if the value provided is considered valid. May | 
 |       contain a complex error message if error_msg does not provide enough | 
 |       information. In that case, set suppress_default_error to True. | 
 |     error_msg: (String) String with one and only one '%s'. Formatted with each | 
 |       invalid response upon check_success(input) failure. | 
 |     suppress_default_error: (Bool) Suppress the above error message in favor of | 
 |       one from the check_success function. | 
 |     resolve_symlinks: (Bool) Translate symbolic links into the real filepath. | 
 |     n_ask_attempts: (Integer) Number of times to query for valid input before | 
 |       raising an error and quitting. | 
 |  | 
 |   Returns: | 
 |     [String] The value of var_name after querying for input. | 
 |  | 
 |   Raises: | 
 |     UserInputError: if a query has been attempted n_ask_attempts times without | 
 |       success, assume that the user has made a scripting error, and will | 
 |       continue to provide invalid input. Raise the error to avoid infinitely | 
 |       looping. | 
 |   """ | 
 |   default = environ_cp.get(var_name) or var_default | 
 |   full_query = '%s [Default is %s]: ' % ( | 
 |       ask_for_var, | 
 |       default, | 
 |   ) | 
 |  | 
 |   for _ in range(n_ask_attempts): | 
 |     val = get_from_env_or_user_or_default(environ_cp, var_name, full_query, | 
 |                                           default) | 
 |     if check_success(val): | 
 |       break | 
 |     if not suppress_default_error: | 
 |       print(error_msg % val) | 
 |     environ_cp[var_name] = '' | 
 |   else: | 
 |     raise UserInputError('Invalid %s setting was provided %d times in a row. ' | 
 |                          'Assuming to be a scripting mistake.' % | 
 |                          (var_name, n_ask_attempts)) | 
 |  | 
 |   if resolve_symlinks and os.path.islink(val): | 
 |     val = os.path.realpath(val) | 
 |   environ_cp[var_name] = val | 
 |   return val | 
 |  | 
 |  | 
 | def create_android_ndk_rule(environ_cp): | 
 |   """Set ANDROID_NDK_HOME and write Android NDK WORKSPACE rule.""" | 
 |   if is_windows() or is_cygwin(): | 
 |     default_ndk_path = cygpath('%s/Android/Sdk/ndk-bundle' % | 
 |                                environ_cp['APPDATA']) | 
 |   elif is_macos(): | 
 |     default_ndk_path = '%s/library/Android/Sdk/ndk-bundle' % environ_cp['HOME'] | 
 |   else: | 
 |     default_ndk_path = '%s/Android/Sdk/ndk-bundle' % environ_cp['HOME'] | 
 |  | 
 |   def valid_ndk_path(path): | 
 |     return (os.path.exists(path) and | 
 |             os.path.exists(os.path.join(path, 'source.properties'))) | 
 |  | 
 |   android_ndk_home_path = prompt_loop_or_load_from_env( | 
 |       environ_cp, | 
 |       var_name='ANDROID_NDK_HOME', | 
 |       var_default=default_ndk_path, | 
 |       ask_for_var='Please specify the home path of the Android NDK to use.', | 
 |       check_success=valid_ndk_path, | 
 |       error_msg=('The path %s or its child file "source.properties" ' | 
 |                  'does not exist.')) | 
 |   write_action_env_to_bazelrc('ANDROID_NDK_HOME', android_ndk_home_path) | 
 |   write_action_env_to_bazelrc( | 
 |       'ANDROID_NDK_API_LEVEL', | 
 |       get_ndk_api_level(environ_cp, android_ndk_home_path)) | 
 |  | 
 |  | 
 | def create_android_sdk_rule(environ_cp): | 
 |   """Set Android variables and write Android SDK WORKSPACE rule.""" | 
 |   if is_windows() or is_cygwin(): | 
 |     default_sdk_path = cygpath('%s/Android/Sdk' % environ_cp['APPDATA']) | 
 |   elif is_macos(): | 
 |     default_sdk_path = '%s/library/Android/Sdk' % environ_cp['HOME'] | 
 |   else: | 
 |     default_sdk_path = '%s/Android/Sdk' % environ_cp['HOME'] | 
 |  | 
 |   def valid_sdk_path(path): | 
 |     return (os.path.exists(path) and | 
 |             os.path.exists(os.path.join(path, 'platforms')) and | 
 |             os.path.exists(os.path.join(path, 'build-tools'))) | 
 |  | 
 |   android_sdk_home_path = prompt_loop_or_load_from_env( | 
 |       environ_cp, | 
 |       var_name='ANDROID_SDK_HOME', | 
 |       var_default=default_sdk_path, | 
 |       ask_for_var='Please specify the home path of the Android SDK to use.', | 
 |       check_success=valid_sdk_path, | 
 |       error_msg=('Either %s does not exist, or it does not contain the ' | 
 |                  'subdirectories "platforms" and "build-tools".')) | 
 |  | 
 |   platforms = os.path.join(android_sdk_home_path, 'platforms') | 
 |   api_levels = sorted(os.listdir(platforms)) | 
 |   api_levels = [x.replace('android-', '') for x in api_levels] | 
 |  | 
 |   def valid_api_level(api_level): | 
 |     return os.path.exists( | 
 |         os.path.join(android_sdk_home_path, 'platforms', | 
 |                      'android-' + api_level)) | 
 |  | 
 |   android_api_level = prompt_loop_or_load_from_env( | 
 |       environ_cp, | 
 |       var_name='ANDROID_API_LEVEL', | 
 |       var_default=api_levels[-1], | 
 |       ask_for_var=('Please specify the Android SDK API level to use. ' | 
 |                    '[Available levels: %s]') % api_levels, | 
 |       check_success=valid_api_level, | 
 |       error_msg='Android-%s is not present in the SDK path.') | 
 |  | 
 |   build_tools = os.path.join(android_sdk_home_path, 'build-tools') | 
 |   versions = sorted(os.listdir(build_tools)) | 
 |  | 
 |   def valid_build_tools(version): | 
 |     return os.path.exists( | 
 |         os.path.join(android_sdk_home_path, 'build-tools', version)) | 
 |  | 
 |   android_build_tools_version = prompt_loop_or_load_from_env( | 
 |       environ_cp, | 
 |       var_name='ANDROID_BUILD_TOOLS_VERSION', | 
 |       var_default=versions[-1], | 
 |       ask_for_var=('Please specify an Android build tools version to use. ' | 
 |                    '[Available versions: %s]') % versions, | 
 |       check_success=valid_build_tools, | 
 |       error_msg=('The selected SDK does not have build-tools version %s ' | 
 |                  'available.')) | 
 |  | 
 |   write_action_env_to_bazelrc('ANDROID_BUILD_TOOLS_VERSION', | 
 |                               android_build_tools_version) | 
 |   write_action_env_to_bazelrc('ANDROID_SDK_API_LEVEL', android_api_level) | 
 |   write_action_env_to_bazelrc('ANDROID_SDK_HOME', android_sdk_home_path) | 
 |  | 
 |  | 
 | def get_ndk_api_level(environ_cp, android_ndk_home_path): | 
 |   """Gets the appropriate NDK API level to use for the provided Android NDK path.""" | 
 |  | 
 |   # First check to see if we're using a blessed version of the NDK. | 
 |   properties_path = '%s/source.properties' % android_ndk_home_path | 
 |   if is_windows() or is_cygwin(): | 
 |     properties_path = cygpath(properties_path) | 
 |   with open(properties_path, 'r') as f: | 
 |     filedata = f.read() | 
 |  | 
 |   revision = re.search(r'Pkg.Revision = (\d+)', filedata) | 
 |   if revision: | 
 |     ndk_version = revision.group(1) | 
 |   else: | 
 |     raise Exception('Unable to parse NDK revision.') | 
 |   if int(ndk_version) not in _SUPPORTED_ANDROID_NDK_VERSIONS: | 
 |     print('WARNING: The NDK version in %s is %s, which is not ' | 
 |           'supported by Bazel (officially supported versions: %s). Please use ' | 
 |           'another version. Compiling Android targets may result in confusing ' | 
 |           'errors.\n' % | 
 |           (android_ndk_home_path, ndk_version, _SUPPORTED_ANDROID_NDK_VERSIONS)) | 
 |  | 
 |   # Now grab the NDK API level to use. Note that this is different from the | 
 |   # SDK API level, as the NDK API level is effectively the *min* target SDK | 
 |   # version. | 
 |   platforms = os.path.join(android_ndk_home_path, 'platforms') | 
 |   api_levels = sorted(os.listdir(platforms)) | 
 |   api_levels = [ | 
 |       x.replace('android-', '') for x in api_levels if 'android-' in x | 
 |   ] | 
 |  | 
 |   def valid_api_level(api_level): | 
 |     return os.path.exists( | 
 |         os.path.join(android_ndk_home_path, 'platforms', | 
 |                      'android-' + api_level)) | 
 |  | 
 |   android_ndk_api_level = prompt_loop_or_load_from_env( | 
 |       environ_cp, | 
 |       var_name='ANDROID_NDK_API_LEVEL', | 
 |       var_default='21',  # 21 is required for ARM64 support. | 
 |       ask_for_var=('Please specify the (min) Android NDK API level to use. ' | 
 |                    '[Available levels: %s]') % api_levels, | 
 |       check_success=valid_api_level, | 
 |       error_msg='Android-%s is not present in the NDK path.') | 
 |  | 
 |   return android_ndk_api_level | 
 |  | 
 |  | 
 | def set_gcc_host_compiler_path(environ_cp): | 
 |   """Set GCC_HOST_COMPILER_PATH.""" | 
 |   default_gcc_host_compiler_path = which('gcc') or '' | 
 |   cuda_bin_symlink = '%s/bin/gcc' % environ_cp.get('CUDA_TOOLKIT_PATH') | 
 |  | 
 |   if os.path.islink(cuda_bin_symlink): | 
 |     # os.readlink is only available in linux | 
 |     default_gcc_host_compiler_path = os.path.realpath(cuda_bin_symlink) | 
 |  | 
 |   gcc_host_compiler_path = prompt_loop_or_load_from_env( | 
 |       environ_cp, | 
 |       var_name='GCC_HOST_COMPILER_PATH', | 
 |       var_default=default_gcc_host_compiler_path, | 
 |       ask_for_var='Please specify which gcc should be used by nvcc as the host compiler.', | 
 |       check_success=os.path.exists, | 
 |       resolve_symlinks=True, | 
 |       error_msg='Invalid gcc path. %s cannot be found.', | 
 |   ) | 
 |  | 
 |   write_action_env_to_bazelrc('GCC_HOST_COMPILER_PATH', gcc_host_compiler_path) | 
 |  | 
 |  | 
 | def reformat_version_sequence(version_str, sequence_count): | 
 |   """Reformat the version string to have the given number of sequences. | 
 |  | 
 |   For example: | 
 |   Given (7, 2) -> 7.0 | 
 |         (7.0.1, 2) -> 7.0 | 
 |         (5, 1) -> 5 | 
 |         (5.0.3.2, 1) -> 5 | 
 |  | 
 |   Args: | 
 |       version_str: String, the version string. | 
 |       sequence_count: int, an integer. | 
 |  | 
 |   Returns: | 
 |       string, reformatted version string. | 
 |   """ | 
 |   v = version_str.split('.') | 
 |   if len(v) < sequence_count: | 
 |     v = v + (['0'] * (sequence_count - len(v))) | 
 |  | 
 |   return '.'.join(v[:sequence_count]) | 
 |  | 
 |  | 
 | def set_tf_cuda_paths(environ_cp): | 
 |   """Set TF_CUDA_PATHS.""" | 
 |   ask_cuda_paths = ( | 
 |       'Please specify the comma-separated list of base paths to look for CUDA ' | 
 |       'libraries and headers. [Leave empty to use the default]: ') | 
 |   tf_cuda_paths = get_from_env_or_user_or_default(environ_cp, 'TF_CUDA_PATHS', | 
 |                                                   ask_cuda_paths, '') | 
 |   if tf_cuda_paths: | 
 |     environ_cp['TF_CUDA_PATHS'] = tf_cuda_paths | 
 |  | 
 |  | 
 | def set_tf_cuda_version(environ_cp): | 
 |   """Set TF_CUDA_VERSION.""" | 
 |   ask_cuda_version = ( | 
 |       'Please specify the CUDA SDK version you want to use. ' | 
 |       '[Leave empty to default to CUDA %s]: ') % _DEFAULT_CUDA_VERSION | 
 |   tf_cuda_version = get_from_env_or_user_or_default(environ_cp, | 
 |                                                     'TF_CUDA_VERSION', | 
 |                                                     ask_cuda_version, | 
 |                                                     _DEFAULT_CUDA_VERSION) | 
 |   environ_cp['TF_CUDA_VERSION'] = tf_cuda_version | 
 |  | 
 |  | 
 | def set_tf_cudnn_version(environ_cp): | 
 |   """Set TF_CUDNN_VERSION.""" | 
 |   ask_cudnn_version = ( | 
 |       'Please specify the cuDNN version you want to use. ' | 
 |       '[Leave empty to default to cuDNN %s]: ') % _DEFAULT_CUDNN_VERSION | 
 |   tf_cudnn_version = get_from_env_or_user_or_default(environ_cp, | 
 |                                                      'TF_CUDNN_VERSION', | 
 |                                                      ask_cudnn_version, | 
 |                                                      _DEFAULT_CUDNN_VERSION) | 
 |   environ_cp['TF_CUDNN_VERSION'] = tf_cudnn_version | 
 |  | 
 |  | 
 | def is_cuda_compatible(lib, cuda_ver, cudnn_ver): | 
 |   """Check compatibility between given library and cudnn/cudart libraries.""" | 
 |   ldd_bin = which('ldd') or '/usr/bin/ldd' | 
 |   ldd_out = run_shell([ldd_bin, lib], True) | 
 |   ldd_out = ldd_out.split(os.linesep) | 
 |   cudnn_pattern = re.compile('.*libcudnn.so\\.?(.*) =>.*$') | 
 |   cuda_pattern = re.compile('.*libcudart.so\\.?(.*) =>.*$') | 
 |   cudnn = None | 
 |   cudart = None | 
 |   cudnn_ok = True  # assume no cudnn dependency by default | 
 |   cuda_ok = True  # assume no cuda dependency by default | 
 |   for line in ldd_out: | 
 |     if 'libcudnn.so' in line: | 
 |       cudnn = cudnn_pattern.search(line) | 
 |       cudnn_ok = False | 
 |     elif 'libcudart.so' in line: | 
 |       cudart = cuda_pattern.search(line) | 
 |       cuda_ok = False | 
 |   if cudnn and len(cudnn.group(1)): | 
 |     cudnn = convert_version_to_int(cudnn.group(1)) | 
 |   if cudart and len(cudart.group(1)): | 
 |     cudart = convert_version_to_int(cudart.group(1)) | 
 |   if cudnn is not None: | 
 |     cudnn_ok = (cudnn == cudnn_ver) | 
 |   if cudart is not None: | 
 |     cuda_ok = (cudart == cuda_ver) | 
 |   return cudnn_ok and cuda_ok | 
 |  | 
 |  | 
 | def set_tf_tensorrt_version(environ_cp): | 
 |   """Set TF_TENSORRT_VERSION.""" | 
 |   if not is_linux(): | 
 |     raise ValueError('Currently TensorRT is only supported on Linux platform.') | 
 |  | 
 |   if not int(environ_cp.get('TF_NEED_TENSORRT', False)): | 
 |     return | 
 |  | 
 |   ask_tensorrt_version = ( | 
 |       'Please specify the TensorRT version you want to use. ' | 
 |       '[Leave empty to default to TensorRT %s]: ') % _DEFAULT_TENSORRT_VERSION | 
 |   tf_tensorrt_version = get_from_env_or_user_or_default( | 
 |       environ_cp, 'TF_TENSORRT_VERSION', ask_tensorrt_version, | 
 |       _DEFAULT_TENSORRT_VERSION) | 
 |   environ_cp['TF_TENSORRT_VERSION'] = tf_tensorrt_version | 
 |  | 
 |  | 
 | def set_tf_nccl_version(environ_cp): | 
 |   """Set TF_NCCL_VERSION.""" | 
 |   if not is_linux(): | 
 |     raise ValueError('Currently NCCL is only supported on Linux platform.') | 
 |  | 
 |   if 'TF_NCCL_VERSION' in environ_cp: | 
 |     return | 
 |  | 
 |   ask_nccl_version = ( | 
 |       'Please specify the locally installed NCCL version you want to use. ' | 
 |       '[Leave empty to use http://github.com/nvidia/nccl]: ') | 
 |   tf_nccl_version = get_from_env_or_user_or_default(environ_cp, | 
 |                                                     'TF_NCCL_VERSION', | 
 |                                                     ask_nccl_version, '') | 
 |   environ_cp['TF_NCCL_VERSION'] = tf_nccl_version | 
 |  | 
 |  | 
 | def get_native_cuda_compute_capabilities(environ_cp): | 
 |   """Get native cuda compute capabilities. | 
 |  | 
 |   Args: | 
 |     environ_cp: copy of the os.environ. | 
 |  | 
 |   Returns: | 
 |     string of native cuda compute capabilities, separated by comma. | 
 |   """ | 
 |   device_query_bin = os.path.join( | 
 |       environ_cp.get('CUDA_TOOLKIT_PATH'), 'extras/demo_suite/deviceQuery') | 
 |   if os.path.isfile(device_query_bin) and os.access(device_query_bin, os.X_OK): | 
 |     try: | 
 |       output = run_shell(device_query_bin).split('\n') | 
 |       pattern = re.compile('[0-9]*\\.[0-9]*') | 
 |       output = [pattern.search(x) for x in output if 'Capability' in x] | 
 |       output = ','.join(x.group() for x in output if x is not None) | 
 |     except subprocess.CalledProcessError: | 
 |       output = '' | 
 |   else: | 
 |     output = '' | 
 |   return output | 
 |  | 
 |  | 
 | def set_tf_cuda_compute_capabilities(environ_cp): | 
 |   """Set TF_CUDA_COMPUTE_CAPABILITIES.""" | 
 |   while True: | 
 |     native_cuda_compute_capabilities = get_native_cuda_compute_capabilities( | 
 |         environ_cp) | 
 |     if not native_cuda_compute_capabilities: | 
 |       default_cuda_compute_capabilities = _DEFAULT_CUDA_COMPUTE_CAPABILITIES | 
 |     else: | 
 |       default_cuda_compute_capabilities = native_cuda_compute_capabilities | 
 |  | 
 |     ask_cuda_compute_capabilities = ( | 
 |         'Please specify a list of comma-separated CUDA compute capabilities ' | 
 |         'you want to build with.\nYou can find the compute capability of your ' | 
 |         'device at: https://developer.nvidia.com/cuda-gpus. Each capability ' | 
 |         'can be specified as "x.y" or "compute_xy" to include both virtual and' | 
 |         ' binary GPU code, or as "sm_xy" to only include the binary ' | 
 |         'code.\nPlease note that each additional compute capability ' | 
 |         'significantly increases your build time and binary size, and that ' | 
 |         'TensorFlow only supports compute capabilities >= 3.5 [Default is: ' | 
 |         '%s]: ' % default_cuda_compute_capabilities) | 
 |     tf_cuda_compute_capabilities = get_from_env_or_user_or_default( | 
 |         environ_cp, 'TF_CUDA_COMPUTE_CAPABILITIES', | 
 |         ask_cuda_compute_capabilities, default_cuda_compute_capabilities) | 
 |     # Check whether all capabilities from the input is valid | 
 |     all_valid = True | 
 |     # Remove all whitespace characters before splitting the string | 
 |     # that users may insert by accident, as this will result in error | 
 |     tf_cuda_compute_capabilities = ''.join(tf_cuda_compute_capabilities.split()) | 
 |     for compute_capability in tf_cuda_compute_capabilities.split(','): | 
 |       m = re.match('[0-9]+.[0-9]+', compute_capability) | 
 |       if not m: | 
 |         # We now support sm_35,sm_50,sm_60,compute_70. | 
 |         sm_compute_match = re.match('(sm|compute)_?([0-9]+[0-9]+)', | 
 |                                     compute_capability) | 
 |         if not sm_compute_match: | 
 |           print('Invalid compute capability: %s' % compute_capability) | 
 |           all_valid = False | 
 |         else: | 
 |           ver = int(sm_compute_match.group(2)) | 
 |           if ver < 30: | 
 |             print( | 
 |                 'ERROR: TensorFlow only supports small CUDA compute' | 
 |                 ' capabilities of sm_30 and higher. Please re-specify the list' | 
 |                 ' of compute capabilities excluding version %s.' % ver) | 
 |             all_valid = False | 
 |           if ver < 35: | 
 |             print('WARNING: XLA does not support CUDA compute capabilities ' | 
 |                   'lower than sm_35. Disable XLA when running on older GPUs.') | 
 |       else: | 
 |         ver = float(m.group(0)) | 
 |         if ver < 3.0: | 
 |           print('ERROR: TensorFlow only supports CUDA compute capabilities 3.0 ' | 
 |                 'and higher. Please re-specify the list of compute ' | 
 |                 'capabilities excluding version %s.' % ver) | 
 |           all_valid = False | 
 |         if ver < 3.5: | 
 |           print('WARNING: XLA does not support CUDA compute capabilities ' | 
 |                 'lower than 3.5. Disable XLA when running on older GPUs.') | 
 |  | 
 |     if all_valid: | 
 |       break | 
 |  | 
 |     # Reset and Retry | 
 |     environ_cp['TF_CUDA_COMPUTE_CAPABILITIES'] = '' | 
 |  | 
 |   # Set TF_CUDA_COMPUTE_CAPABILITIES | 
 |   environ_cp['TF_CUDA_COMPUTE_CAPABILITIES'] = tf_cuda_compute_capabilities | 
 |   write_action_env_to_bazelrc('TF_CUDA_COMPUTE_CAPABILITIES', | 
 |                               tf_cuda_compute_capabilities) | 
 |  | 
 |  | 
 | def set_other_cuda_vars(environ_cp): | 
 |   """Set other CUDA related variables.""" | 
 |   # If CUDA is enabled, always use GPU during build and test. | 
 |   if environ_cp.get('TF_CUDA_CLANG') == '1': | 
 |     write_to_bazelrc('build --config=cuda_clang') | 
 |   else: | 
 |     write_to_bazelrc('build --config=cuda') | 
 |  | 
 |  | 
 | def set_host_cxx_compiler(environ_cp): | 
 |   """Set HOST_CXX_COMPILER.""" | 
 |   default_cxx_host_compiler = which('g++') or '' | 
 |  | 
 |   host_cxx_compiler = prompt_loop_or_load_from_env( | 
 |       environ_cp, | 
 |       var_name='HOST_CXX_COMPILER', | 
 |       var_default=default_cxx_host_compiler, | 
 |       ask_for_var=('Please specify which C++ compiler should be used as the ' | 
 |                    'host C++ compiler.'), | 
 |       check_success=os.path.exists, | 
 |       error_msg='Invalid C++ compiler path. %s cannot be found.', | 
 |   ) | 
 |  | 
 |   write_action_env_to_bazelrc('HOST_CXX_COMPILER', host_cxx_compiler) | 
 |  | 
 |  | 
 | def set_host_c_compiler(environ_cp): | 
 |   """Set HOST_C_COMPILER.""" | 
 |   default_c_host_compiler = which('gcc') or '' | 
 |  | 
 |   host_c_compiler = prompt_loop_or_load_from_env( | 
 |       environ_cp, | 
 |       var_name='HOST_C_COMPILER', | 
 |       var_default=default_c_host_compiler, | 
 |       ask_for_var=('Please specify which C compiler should be used as the host ' | 
 |                    'C compiler.'), | 
 |       check_success=os.path.exists, | 
 |       error_msg='Invalid C compiler path. %s cannot be found.', | 
 |   ) | 
 |  | 
 |   write_action_env_to_bazelrc('HOST_C_COMPILER', host_c_compiler) | 
 |  | 
 |  | 
 | def system_specific_test_config(environ_cp): | 
 |   """Add default build and test flags required for TF tests to bazelrc.""" | 
 |   write_to_bazelrc('test --flaky_test_attempts=3') | 
 |   write_to_bazelrc('test --test_size_filters=small,medium') | 
 |  | 
 |   # Each instance of --test_tag_filters or --build_tag_filters overrides all | 
 |   # previous instances, so we need to build up a complete list and write a | 
 |   # single list of filters for the .bazelrc file. | 
 |  | 
 |   # Filters to use with both --test_tag_filters and --build_tag_filters | 
 |   test_and_build_filters = ['-benchmark-test', '-no_oss'] | 
 |   # Additional filters for --test_tag_filters beyond those in | 
 |   # test_and_build_filters | 
 |   test_only_filters = ['-oss_serial'] | 
 |   if is_windows(): | 
 |     test_and_build_filters.append('-no_windows') | 
 |     if ((environ_cp.get('TF_NEED_CUDA', None) == '1') or | 
 |         (environ_cp.get('TF_NEED_ROCM', None) == '1')): | 
 |       test_and_build_filters += ['-no_windows_gpu', '-no_gpu'] | 
 |     else: | 
 |       test_and_build_filters.append('-gpu') | 
 |   elif is_macos(): | 
 |     test_and_build_filters += ['-gpu', '-nomac', '-no_mac'] | 
 |   elif is_linux(): | 
 |     if ((environ_cp.get('TF_NEED_CUDA', None) == '1') or | 
 |         (environ_cp.get('TF_NEED_ROCM', None) == '1')): | 
 |       test_and_build_filters.append('-no_gpu') | 
 |       write_to_bazelrc('test --test_env=LD_LIBRARY_PATH') | 
 |     else: | 
 |       test_and_build_filters.append('-gpu') | 
 |  | 
 |   # Disable tests with "v1only" tag in "v2" Bazel config, but not in "v1" config | 
 |   write_to_bazelrc('test:v1 --test_tag_filters=%s' % | 
 |                    ','.join(test_and_build_filters + test_only_filters)) | 
 |   write_to_bazelrc('test:v1 --build_tag_filters=%s' % | 
 |                    ','.join(test_and_build_filters)) | 
 |   write_to_bazelrc( | 
 |       'test:v2 --test_tag_filters=%s' % | 
 |       ','.join(test_and_build_filters + test_only_filters + ['-v1only'])) | 
 |   write_to_bazelrc('test:v2 --build_tag_filters=%s' % | 
 |                    ','.join(test_and_build_filters + ['-v1only'])) | 
 |  | 
 |  | 
 | def set_system_libs_flag(environ_cp): | 
 |   syslibs = environ_cp.get('TF_SYSTEM_LIBS', '') | 
 |   if syslibs: | 
 |     if ',' in syslibs: | 
 |       syslibs = ','.join(sorted(syslibs.split(','))) | 
 |     else: | 
 |       syslibs = ','.join(sorted(syslibs.split())) | 
 |     write_action_env_to_bazelrc('TF_SYSTEM_LIBS', syslibs) | 
 |  | 
 |   if 'PREFIX' in environ_cp: | 
 |     write_to_bazelrc('build --define=PREFIX=%s' % environ_cp['PREFIX']) | 
 |   if 'LIBDIR' in environ_cp: | 
 |     write_to_bazelrc('build --define=LIBDIR=%s' % environ_cp['LIBDIR']) | 
 |   if 'INCLUDEDIR' in environ_cp: | 
 |     write_to_bazelrc('build --define=INCLUDEDIR=%s' % environ_cp['INCLUDEDIR']) | 
 |  | 
 |  | 
 | def is_reduced_optimize_huge_functions_available(environ_cp): | 
 |   """Check to see if the system supports /d2ReducedOptimizeHugeFunctions. | 
 |  | 
 |   The above compiler flag is a new compiler flag introduced to the Visual Studio | 
 |   compiler in version 16.4 (available in Visual Studio 2019, Preview edition | 
 |   only, as of 2019-11-19). TensorFlow needs this flag to massively reduce | 
 |   compile times, but until 16.4 is officially released, we can't depend on it. | 
 |  | 
 |   See also | 
 |   https://groups.google.com/a/tensorflow.org/d/topic/build/SsW98Eo7l3o/discussion | 
 |  | 
 |   Because it's very annoying to check this manually (to check the MSVC installed | 
 |   versions, you need to use the registry, and it's not clear if Bazel will be | 
 |   using that install version anyway), we expect enviroments who know they may | 
 |   use this flag to export TF_VC_VERSION=16.4 | 
 |  | 
 |   TODO(angerson, gunan): Remove this function when TensorFlow's minimum VS | 
 |   version is upgraded to 16.4. | 
 |  | 
 |   Arguments: | 
 |     environ_cp: Environment of the current execution | 
 |  | 
 |   Returns: | 
 |     boolean, whether or not /d2ReducedOptimizeHugeFunctions is available on this | 
 |     machine. | 
 |   """ | 
 |   return float(environ_cp.get('TF_VC_VERSION', '0')) >= 16.4 | 
 |  | 
 |  | 
 | def set_windows_build_flags(environ_cp): | 
 |   """Set Windows specific build options.""" | 
 |   if is_reduced_optimize_huge_functions_available(environ_cp): | 
 |     write_to_bazelrc( | 
 |         'build --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions' | 
 |     ) | 
 |  | 
 |   if get_var( | 
 |       environ_cp, 'TF_OVERRIDE_EIGEN_STRONG_INLINE', 'Eigen strong inline', | 
 |       True, ('Would you like to override eigen strong inline for some C++ ' | 
 |              'compilation to reduce the compilation time?'), | 
 |       'Eigen strong inline overridden.', 'Not overriding eigen strong inline, ' | 
 |       'some compilations could take more than 20 mins.'): | 
 |     # Due to a known MSVC compiler issue | 
 |     # https://github.com/tensorflow/tensorflow/issues/10521 | 
 |     # Overriding eigen strong inline speeds up the compiling of | 
 |     # conv_grad_ops_3d.cc and conv_ops_3d.cc by 20 minutes, | 
 |     # but this also hurts the performance. Let users decide what they want. | 
 |     write_to_bazelrc('build --define=override_eigen_strong_inline=true') | 
 |  | 
 |  | 
 | def config_info_line(name, help_text): | 
 |   """Helper function to print formatted help text for Bazel config options.""" | 
 |   print('\t--config=%-12s\t# %s' % (name, help_text)) | 
 |  | 
 |  | 
 | def configure_ios(): | 
 |   """Configures TensorFlow for iOS builds. | 
 |  | 
 |   This function will only be executed if `is_macos()` is true. | 
 |   """ | 
 |   if not is_macos(): | 
 |     return | 
 |   for filepath in APPLE_BAZEL_FILES: | 
 |     existing_filepath = os.path.join(_TF_WORKSPACE_ROOT, filepath + '.apple') | 
 |     renamed_filepath = os.path.join(_TF_WORKSPACE_ROOT, filepath) | 
 |     symlink_force(existing_filepath, renamed_filepath) | 
 |   for filepath in IOS_FILES: | 
 |     filename = os.path.basename(filepath) | 
 |     new_filepath = os.path.join(_TF_WORKSPACE_ROOT, filename) | 
 |     symlink_force(filepath, new_filepath) | 
 |  | 
 |  | 
 | def validate_cuda_config(environ_cp): | 
 |   """Run find_cuda_config.py and return cuda_toolkit_path, or None.""" | 
 |  | 
 |   def maybe_encode_env(env): | 
 |     """Encodes unicode in env to str on Windows python 2.x.""" | 
 |     if not is_windows() or sys.version_info[0] != 2: | 
 |       return env | 
 |     for k, v in env.items(): | 
 |       if isinstance(k, unicode): | 
 |         k = k.encode('ascii') | 
 |       if isinstance(v, unicode): | 
 |         v = v.encode('ascii') | 
 |       env[k] = v | 
 |     return env | 
 |  | 
 |   cuda_libraries = ['cuda', 'cudnn'] | 
 |   if is_linux(): | 
 |     if int(environ_cp.get('TF_NEED_TENSORRT', False)): | 
 |       cuda_libraries.append('tensorrt') | 
 |     if environ_cp.get('TF_NCCL_VERSION', None): | 
 |       cuda_libraries.append('nccl') | 
 |  | 
 |   proc = subprocess.Popen( | 
 |       [environ_cp['PYTHON_BIN_PATH'], 'third_party/gpus/find_cuda_config.py'] + | 
 |       cuda_libraries, | 
 |       stdout=subprocess.PIPE, | 
 |       env=maybe_encode_env(environ_cp)) | 
 |  | 
 |   if proc.wait(): | 
 |     # Errors from find_cuda_config.py were sent to stderr. | 
 |     print('Asking for detailed CUDA configuration...\n') | 
 |     return False | 
 |  | 
 |   config = dict( | 
 |       tuple(line.decode('ascii').rstrip().split(': ')) for line in proc.stdout) | 
 |  | 
 |   print('Found CUDA %s in:' % config['cuda_version']) | 
 |   print('    %s' % config['cuda_library_dir']) | 
 |   print('    %s' % config['cuda_include_dir']) | 
 |  | 
 |   print('Found cuDNN %s in:' % config['cudnn_version']) | 
 |   print('    %s' % config['cudnn_library_dir']) | 
 |   print('    %s' % config['cudnn_include_dir']) | 
 |  | 
 |   if 'tensorrt_version' in config: | 
 |     print('Found TensorRT %s in:' % config['tensorrt_version']) | 
 |     print('    %s' % config['tensorrt_library_dir']) | 
 |     print('    %s' % config['tensorrt_include_dir']) | 
 |  | 
 |   if config.get('nccl_version', None): | 
 |     print('Found NCCL %s in:' % config['nccl_version']) | 
 |     print('    %s' % config['nccl_library_dir']) | 
 |     print('    %s' % config['nccl_include_dir']) | 
 |  | 
 |   print('\n') | 
 |  | 
 |   environ_cp['CUDA_TOOLKIT_PATH'] = config['cuda_toolkit_path'] | 
 |   return True | 
 |  | 
 |  | 
 | def main(): | 
 |   global _TF_WORKSPACE_ROOT | 
 |   global _TF_BAZELRC | 
 |   global _TF_CURRENT_BAZEL_VERSION | 
 |  | 
 |   parser = argparse.ArgumentParser() | 
 |   parser.add_argument( | 
 |       '--workspace', | 
 |       type=str, | 
 |       default=os.path.abspath(os.path.dirname(__file__)), | 
 |       help='The absolute path to your active Bazel workspace.') | 
 |   args = parser.parse_args() | 
 |  | 
 |   _TF_WORKSPACE_ROOT = args.workspace | 
 |   _TF_BAZELRC = os.path.join(_TF_WORKSPACE_ROOT, _TF_BAZELRC_FILENAME) | 
 |  | 
 |   # Make a copy of os.environ to be clear when functions and getting and setting | 
 |   # environment variables. | 
 |   environ_cp = dict(os.environ) | 
 |  | 
 |   try: | 
 |     current_bazel_version = check_bazel_version(_TF_MIN_BAZEL_VERSION, | 
 |                                                 _TF_MAX_BAZEL_VERSION) | 
 |   except subprocess.CalledProcessError as e: | 
 |     print('Error checking bazel version: ', e.output.decode('UTF-8').strip()) | 
 |     raise e | 
 |  | 
 |   _TF_CURRENT_BAZEL_VERSION = convert_version_to_int(current_bazel_version) | 
 |  | 
 |   reset_tf_configure_bazelrc() | 
 |  | 
 |   cleanup_makefile() | 
 |   setup_python(environ_cp) | 
 |  | 
 |   if is_windows(): | 
 |     environ_cp['TF_NEED_OPENCL'] = '0' | 
 |     environ_cp['TF_CUDA_CLANG'] = '0' | 
 |     environ_cp['TF_NEED_TENSORRT'] = '0' | 
 |     # TODO(ibiryukov): Investigate using clang as a cpu or cuda compiler on | 
 |     # Windows. | 
 |     environ_cp['TF_DOWNLOAD_CLANG'] = '0' | 
 |     environ_cp['TF_NEED_MPI'] = '0' | 
 |  | 
 |   if is_macos(): | 
 |     environ_cp['TF_NEED_TENSORRT'] = '0' | 
 |   else: | 
 |     environ_cp['TF_CONFIGURE_IOS'] = '0' | 
 |  | 
 |   if environ_cp.get('TF_ENABLE_XLA', '1') == '1': | 
 |     write_to_bazelrc('build --config=xla') | 
 |  | 
 |   set_action_env_var( | 
 |       environ_cp, 'TF_NEED_ROCM', 'ROCm', False, bazel_config_name='rocm') | 
 |   if (environ_cp.get('TF_NEED_ROCM') == '1' and | 
 |       'LD_LIBRARY_PATH' in environ_cp and | 
 |       environ_cp.get('LD_LIBRARY_PATH') != '1'): | 
 |     write_action_env_to_bazelrc('LD_LIBRARY_PATH', | 
 |                                 environ_cp.get('LD_LIBRARY_PATH')) | 
 |  | 
 |   if (environ_cp.get('TF_NEED_ROCM') == '1' and environ_cp.get('ROCM_PATH')): | 
 |     write_action_env_to_bazelrc('ROCM_PATH', environ_cp.get('ROCM_PATH')) | 
 |     write_action_env_to_bazelrc('ROCM_ROOT', environ_cp.get('ROCM_PATH')) | 
 |  | 
 |   if ((environ_cp.get('TF_NEED_ROCM') == '1') and | 
 |       (environ_cp.get('TF_ENABLE_MLIR_GENERATED_GPU_KERNELS') == '1')): | 
 |     write_to_bazelrc( | 
 |         'build:rocm --define tensorflow_enable_mlir_generated_gpu_kernels=1') | 
 |  | 
 |   environ_cp['TF_NEED_CUDA'] = str( | 
 |       int(get_var(environ_cp, 'TF_NEED_CUDA', 'CUDA', False))) | 
 |   if (environ_cp.get('TF_NEED_CUDA') == '1' and | 
 |       'TF_CUDA_CONFIG_REPO' not in environ_cp): | 
 |  | 
 |     set_action_env_var( | 
 |         environ_cp, | 
 |         'TF_NEED_TENSORRT', | 
 |         'TensorRT', | 
 |         False, | 
 |         bazel_config_name='tensorrt') | 
 |  | 
 |     environ_save = dict(environ_cp) | 
 |     for _ in range(_DEFAULT_PROMPT_ASK_ATTEMPTS): | 
 |  | 
 |       if validate_cuda_config(environ_cp): | 
 |         cuda_env_names = [ | 
 |             'TF_CUDA_VERSION', | 
 |             'TF_CUBLAS_VERSION', | 
 |             'TF_CUDNN_VERSION', | 
 |             'TF_TENSORRT_VERSION', | 
 |             'TF_NCCL_VERSION', | 
 |             'TF_CUDA_PATHS', | 
 |             # Items below are for backwards compatibility when not using | 
 |             # TF_CUDA_PATHS. | 
 |             'CUDA_TOOLKIT_PATH', | 
 |             'CUDNN_INSTALL_PATH', | 
 |             'NCCL_INSTALL_PATH', | 
 |             'NCCL_HDR_PATH', | 
 |             'TENSORRT_INSTALL_PATH' | 
 |         ] | 
 |         # Note: set_action_env_var above already writes to bazelrc. | 
 |         for name in cuda_env_names: | 
 |           if name in environ_cp: | 
 |             write_action_env_to_bazelrc(name, environ_cp[name]) | 
 |         break | 
 |  | 
 |       # Restore settings changed below if CUDA config could not be validated. | 
 |       environ_cp = dict(environ_save) | 
 |  | 
 |       set_tf_cuda_version(environ_cp) | 
 |       set_tf_cudnn_version(environ_cp) | 
 |       if is_linux(): | 
 |         set_tf_tensorrt_version(environ_cp) | 
 |         set_tf_nccl_version(environ_cp) | 
 |  | 
 |       set_tf_cuda_paths(environ_cp) | 
 |  | 
 |     else: | 
 |       raise UserInputError( | 
 |           'Invalid CUDA setting were provided %d ' | 
 |           'times in a row. Assuming to be a scripting mistake.' % | 
 |           _DEFAULT_PROMPT_ASK_ATTEMPTS) | 
 |  | 
 |     set_tf_cuda_compute_capabilities(environ_cp) | 
 |     if 'LD_LIBRARY_PATH' in environ_cp and environ_cp.get( | 
 |         'LD_LIBRARY_PATH') != '1': | 
 |       write_action_env_to_bazelrc('LD_LIBRARY_PATH', | 
 |                                   environ_cp.get('LD_LIBRARY_PATH')) | 
 |  | 
 |     set_tf_cuda_clang(environ_cp) | 
 |     if environ_cp.get('TF_CUDA_CLANG') == '1': | 
 |       # Ask whether we should download the clang toolchain. | 
 |       set_tf_download_clang(environ_cp) | 
 |       if environ_cp.get('TF_DOWNLOAD_CLANG') != '1': | 
 |         # Set up which clang we should use as the cuda / host compiler. | 
 |         set_clang_cuda_compiler_path(environ_cp) | 
 |       else: | 
 |         # Use downloaded LLD for linking. | 
 |         write_to_bazelrc('build:cuda_clang --config=download_clang_use_lld') | 
 |     else: | 
 |       # Set up which gcc nvcc should use as the host compiler | 
 |       # No need to set this on Windows | 
 |       if not is_windows(): | 
 |         set_gcc_host_compiler_path(environ_cp) | 
 |     set_other_cuda_vars(environ_cp) | 
 |   else: | 
 |     # CUDA not required. Ask whether we should download the clang toolchain and | 
 |     # use it for the CPU build. | 
 |     set_tf_download_clang(environ_cp) | 
 |  | 
 |   # ROCm / CUDA are mutually exclusive. | 
 |   # At most 1 GPU platform can be configured. | 
 |   gpu_platform_count = 0 | 
 |   if environ_cp.get('TF_NEED_ROCM') == '1': | 
 |     gpu_platform_count += 1 | 
 |   if environ_cp.get('TF_NEED_CUDA') == '1': | 
 |     gpu_platform_count += 1 | 
 |   if gpu_platform_count >= 2: | 
 |     raise UserInputError('CUDA / ROCm are mututally exclusive. ' | 
 |                          'At most 1 GPU platform can be configured.') | 
 |  | 
 |   set_cc_opt_flags(environ_cp) | 
 |   set_system_libs_flag(environ_cp) | 
 |   if is_windows(): | 
 |     set_windows_build_flags(environ_cp) | 
 |  | 
 |   if get_var(environ_cp, 'TF_SET_ANDROID_WORKSPACE', 'android workspace', False, | 
 |              ('Would you like to interactively configure ./WORKSPACE for ' | 
 |               'Android builds?'), 'Searching for NDK and SDK installations.', | 
 |              'Not configuring the WORKSPACE for Android builds.'): | 
 |     create_android_ndk_rule(environ_cp) | 
 |     create_android_sdk_rule(environ_cp) | 
 |  | 
 |   system_specific_test_config(environ_cp) | 
 |  | 
 |   set_action_env_var(environ_cp, 'TF_CONFIGURE_IOS', 'iOS', False) | 
 |   if environ_cp.get('TF_CONFIGURE_IOS') == '1': | 
 |     configure_ios() | 
 |  | 
 |   print('Preconfigured Bazel build configs. You can use any of the below by ' | 
 |         'adding "--config=<>" to your build command. See .bazelrc for more ' | 
 |         'details.') | 
 |   config_info_line('mkl', 'Build with MKL support.') | 
 |   config_info_line('mkl_aarch64', 'Build with oneDNN support for Aarch64.') | 
 |   config_info_line('monolithic', 'Config for mostly static monolithic build.') | 
 |   config_info_line('ngraph', 'Build with Intel nGraph support.') | 
 |   config_info_line('numa', 'Build with NUMA support.') | 
 |   config_info_line( | 
 |       'dynamic_kernels', | 
 |       '(Experimental) Build kernels into separate shared objects.') | 
 |   config_info_line('v2', 'Build TensorFlow 2.x instead of 1.x.') | 
 |  | 
 |   print('Preconfigured Bazel build configs to DISABLE default on features:') | 
 |   config_info_line('noaws', 'Disable AWS S3 filesystem support.') | 
 |   config_info_line('nogcp', 'Disable GCP support.') | 
 |   config_info_line('nohdfs', 'Disable HDFS support.') | 
 |   config_info_line('nonccl', 'Disable NVIDIA NCCL support.') | 
 |  | 
 |  | 
 | if __name__ == '__main__': | 
 |   main() |