blob: 2a0238cbd9692431abc6e57bb245684d6ff8fb6c [file] [log] [blame]
//===- GreedyPatternRewriteDriver.cpp - A greedy rewriter -----------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements mlir::applyPatternsGreedily.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Builders.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/StandardOps/Ops.h"
#include "llvm/ADT/DenseMap.h"
using namespace mlir;
namespace {
/// This is a worklist-driven driver for the PatternMatcher, which repeatedly
/// applies the locally optimal patterns in a roughly "bottom up" way.
class GreedyPatternRewriteDriver : public PatternRewriter {
public:
explicit GreedyPatternRewriteDriver(Function *fn,
OwningRewritePatternList &&patterns)
: PatternRewriter(fn->getContext()), matcher(std::move(patterns)),
builder(fn) {
worklist.reserve(64);
// Add all operations to the worklist.
fn->walk([&](Instruction *inst) { addToWorklist(inst); });
}
/// Perform the rewrites.
void simplifyFunction();
void addToWorklist(Instruction *op) {
// Check to see if the worklist already contains this op.
if (worklistMap.count(op))
return;
worklistMap[op] = worklist.size();
worklist.push_back(op);
}
Instruction *popFromWorklist() {
auto *op = worklist.back();
worklist.pop_back();
// This operation is no longer in the worklist, keep worklistMap up to date.
if (op)
worklistMap.erase(op);
return op;
}
/// If the specified operation is in the worklist, remove it. If not, this is
/// a no-op.
void removeFromWorklist(Instruction *op) {
auto it = worklistMap.find(op);
if (it != worklistMap.end()) {
assert(worklist[it->second] == op && "malformed worklist data structure");
worklist[it->second] = nullptr;
}
}
// These are hooks implemented for PatternRewriter.
protected:
// Implement the hook for creating operations, and make sure that newly
// created ops are added to the worklist for processing.
Instruction *createOperation(const OperationState &state) override {
auto *result = builder.createOperation(state);
addToWorklist(result);
return result;
}
// If an operation is about to be removed, make sure it is not in our
// worklist anymore because we'd get dangling references to it.
void notifyOperationRemoved(Instruction *op) override {
addToWorklist(op->getOperands());
removeFromWorklist(op);
}
// When the root of a pattern is about to be replaced, it can trigger
// simplifications to its users - make sure to add them to the worklist
// before the root is changed.
void notifyRootReplaced(Instruction *op) override {
for (auto *result : op->getResults())
// TODO: Add a result->getUsers() iterator.
for (auto &user : result->getUses())
addToWorklist(user.getOwner());
}
private:
// Look over the provided operands for any defining instructions that should
// be re-added to the worklist. This function should be called when an
// operation is modified or removed, as it may trigger further
// simplifications.
template <typename Operands> void addToWorklist(Operands &&operands) {
for (Value *operand : operands) {
// If the use count of this operand is now < 2, we re-add the defining
// instruction to the worklist.
// TODO(riverriddle) This is based on the fact that zero use instructions
// may be deleted, and that single use values often have more
// canonicalization opportunities.
if (!operand->use_empty() &&
std::next(operand->use_begin()) != operand->use_end())
continue;
if (auto *defInst = operand->getDefiningInst())
addToWorklist(defInst);
}
}
/// The low-level pattern matcher.
PatternMatcher matcher;
/// This builder is used to create new operations.
FuncBuilder builder;
/// The worklist for this transformation keeps track of the operations that
/// need to be revisited, plus their index in the worklist. This allows us to
/// efficiently remove operations from the worklist when they are erased from
/// the function, even if they aren't the root of a pattern.
std::vector<Instruction *> worklist;
DenseMap<Instruction *, unsigned> worklistMap;
/// As part of canonicalization, we move constants to the top of the entry
/// block of the current function and de-duplicate them. This keeps track of
/// constants we have done this for.
DenseMap<std::pair<Attribute, Type>, Instruction *> uniquedConstants;
};
}; // end anonymous namespace
/// Perform the rewrites.
void GreedyPatternRewriteDriver::simplifyFunction() {
// These are scratch vectors used in the constant folding loop below.
SmallVector<Attribute, 8> operandConstants, resultConstants;
SmallVector<Value *, 8> originalOperands, resultValues;
while (!worklist.empty()) {
auto *op = popFromWorklist();
// Nulls get added to the worklist when operations are removed, ignore them.
if (op == nullptr)
continue;
// If we have a constant op, unique it into the entry block.
if (auto constant = op->dyn_cast<ConstantOp>()) {
// If this constant is dead, remove it, being careful to keep
// uniquedConstants up to date.
if (constant->use_empty()) {
auto it =
uniquedConstants.find({constant->getValue(), constant->getType()});
if (it != uniquedConstants.end() && it->second == op)
uniquedConstants.erase(it);
constant->erase();
continue;
}
// Check to see if we already have a constant with this type and value:
auto &entry = uniquedConstants[std::make_pair(constant->getValue(),
constant->getType())];
if (entry) {
// If this constant is already our uniqued one, then leave it alone.
if (entry == op)
continue;
// Otherwise replace this redundant constant with the uniqued one. We
// know this is safe because we move constants to the top of the
// function when they are uniqued, so we know they dominate all uses.
constant->replaceAllUsesWith(entry->getResult(0));
constant->erase();
continue;
}
// If we have no entry, then we should unique this constant as the
// canonical version. To ensure safe dominance, move the operation to the
// top of the function.
entry = op;
auto &entryBB = builder.getInsertionBlock()->getFunction()->front();
op->moveBefore(&entryBB, entryBB.begin());
continue;
}
// If the operation has no side effects, and no users, then it is trivially
// dead - remove it.
if (op->hasNoSideEffect() && op->use_empty()) {
op->erase();
continue;
}
// Check to see if any operands to the instruction is constant and whether
// the operation knows how to constant fold itself.
operandConstants.assign(op->getNumOperands(), Attribute());
for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i)
matchPattern(op->getOperand(i), m_Constant(&operandConstants[i]));
// If this is a commutative binary operation with a constant on the left
// side move it to the right side.
if (operandConstants.size() == 2 && operandConstants[0] &&
!operandConstants[1] && op->isCommutative()) {
std::swap(op->getInstOperand(0), op->getInstOperand(1));
std::swap(operandConstants[0], operandConstants[1]);
}
// If constant folding was successful, create the result constants, RAUW the
// operation and remove it.
resultConstants.clear();
if (succeeded(op->constantFold(operandConstants, resultConstants))) {
builder.setInsertionPoint(op);
// Add the operands to the worklist for visitation.
addToWorklist(op->getOperands());
for (unsigned i = 0, e = op->getNumResults(); i != e; ++i) {
auto *res = op->getResult(i);
if (res->use_empty()) // ignore dead uses.
continue;
// If we already have a canonicalized version of this constant, just
// reuse it. Otherwise create a new one.
Value *cstValue;
auto it = uniquedConstants.find({resultConstants[i], res->getType()});
if (it != uniquedConstants.end())
cstValue = it->second->getResult(0);
else
cstValue = create<ConstantOp>(op->getLoc(), res->getType(),
resultConstants[i]);
// Add all the users of the result to the worklist so we make sure to
// revisit them.
//
// TODO: Add a result->getUsers() iterator.
for (auto &operand : op->getResult(i)->getUses())
addToWorklist(operand.getOwner());
res->replaceAllUsesWith(cstValue);
}
assert(op->hasNoSideEffect() && "Constant folded op with side effects?");
op->erase();
continue;
}
// Otherwise see if we can use the generic folder API to simplify the
// operation.
originalOperands.assign(op->operand_begin(), op->operand_end());
resultValues.clear();
if (succeeded(op->fold(resultValues))) {
// If the result was an in-place simplification (e.g. max(x,x,y) ->
// max(x,y)) then add the original operands to the worklist so we can make
// sure to revisit them.
if (resultValues.empty()) {
// Add the operands back to the worklist as there may be more
// canonicalization opportunities now.
addToWorklist(originalOperands);
} else {
// Otherwise, the operation is simplified away completely.
assert(resultValues.size() == op->getNumResults());
// Notify that we are replacing this operation.
notifyRootReplaced(op);
// Replace the result values and erase the operation.
for (unsigned i = 0, e = resultValues.size(); i != e; ++i) {
auto *res = op->getResult(i);
if (!res->use_empty())
res->replaceAllUsesWith(resultValues[i]);
}
notifyOperationRemoved(op);
op->erase();
}
continue;
}
// Check to see if we have any patterns that match this node.
auto match = matcher.findMatch(op);
if (!match.first)
continue;
// Make sure that any new operations are inserted at this point.
builder.setInsertionPoint(op);
// We know that any pattern that matched is RewritePattern because we
// initialized the matcher with RewritePatterns.
auto *rewritePattern = static_cast<RewritePattern *>(match.first);
rewritePattern->rewrite(op, std::move(match.second), *this);
}
uniquedConstants.clear();
}
/// Rewrite the specified function by repeatedly applying the highest benefit
/// patterns in a greedy work-list driven manner.
///
void mlir::applyPatternsGreedily(Function *fn,
OwningRewritePatternList &&patterns) {
GreedyPatternRewriteDriver driver(fn, std::move(patterns));
driver.simplifyFunction();
}