blob: ee8c68f8ac4b7887ff5f6d678b86807b22293139 [file] [log] [blame]
//===- Verifier.cpp - MLIR Verifier Implementation ------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the verify() methods on the various IR types, performing
// (potentially expensive) checks on the holistic structure of the code. This
// can be used for detecting bugs in compiler transformations and hand written
// .mlir files.
//
// The checks in this file are only for things that can occur as part of IR
// transformations: e.g. violation of dominance information, malformed operation
// attributes, etc. MLIR supports transformations moving IR through locally
// invalid states (e.g. unlinking an instruction from an instruction before
// re-inserting it in a new place), but each transformation must complete with
// the IR in a valid form.
//
// This should not check for things that are always wrong by construction (e.g.
// affine maps or other immutable structures that are incorrect), because those
// are not mutable and can be checked at time of construction.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/CFGFunction.h"
#include "mlir/IR/MLFunction.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OperationSet.h"
#include "mlir/IR/Statements.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
namespace {
/// Base class for the verifiers in this file. It is a pervasive truth that
/// this file treats "true" as an error that needs to be recovered from, and
/// "false" as success.
///
class Verifier {
public:
template <typename T>
static void failure(const Twine &message, const T &value, raw_ostream &os) {
// Print the error message and flush the stream in case printing the value
// causes a crash.
os << "MLIR verification failure: " + message + "\n";
os.flush();
value.print(os);
}
template <typename T>
bool failure(const Twine &message, const T &value) {
// If the caller isn't trying to collect failure information, just print
// the result and abort.
if (!errorResult) {
failure(message, value, llvm::errs());
abort();
}
// Otherwise, emit the error into the string and return true.
llvm::raw_string_ostream os(*errorResult);
failure(message, value, os);
os.flush();
return true;
}
bool opFailure(const Twine &message, const Operation &value) {
value.emitError(message);
return true;
}
protected:
explicit Verifier(std::string *errorResult) : errorResult(errorResult) {}
private:
std::string *errorResult;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// CFG Functions
//===----------------------------------------------------------------------===//
namespace {
class CFGFuncVerifier : public Verifier {
public:
const CFGFunction &fn;
OperationSet &operationSet;
CFGFuncVerifier(const CFGFunction &fn, std::string *errorResult)
: Verifier(errorResult), fn(fn),
operationSet(OperationSet::get(fn.getContext())) {}
bool verify();
bool verifyBlock(const BasicBlock &block);
bool verifyOperation(const OperationInst &inst);
bool verifyTerminator(const TerminatorInst &term);
bool verifyReturn(const ReturnInst &inst);
bool verifyBranch(const BranchInst &inst);
bool verifyCondBranch(const CondBranchInst &inst);
// Given a list of "operands" and "arguments" that are the same length, verify
// that the types of operands pointwise match argument types. The iterator
// types must expose the "getType()" function when dereferenced twice; that
// is, the iterator's value_type must be equivalent to SSAValue*.
template <typename OperandIteratorTy, typename ArgumentIteratorTy>
bool verifyOperandsMatchArguments(OperandIteratorTy opBegin,
OperandIteratorTy opEnd,
ArgumentIteratorTy argBegin,
const Instruction &instContext);
};
} // end anonymous namespace
bool CFGFuncVerifier::verify() {
llvm::PrettyStackTraceFormat fmt("MLIR Verifier: cfgfunc @%s",
fn.getName().c_str());
// TODO: Lots to be done here, including verifying dominance information when
// we have uses and defs.
// TODO: Verify the first block has no predecessors.
if (fn.empty())
return failure("cfgfunc must have at least one basic block", fn);
// Verify that the argument list of the function and the arg list of the first
// block line up.
auto *firstBB = &fn.front();
auto fnInputTypes = fn.getType()->getInputs();
if (fnInputTypes.size() != firstBB->getNumArguments())
return failure("first block of cfgfunc must have " +
Twine(fnInputTypes.size()) +
" arguments to match function signature",
fn);
for (unsigned i = 0, e = firstBB->getNumArguments(); i != e; ++i)
if (fnInputTypes[i] != firstBB->getArgument(i)->getType())
return failure(
"type of argument #" + Twine(i) +
" must match corresponding argument in function signature",
fn);
for (auto &block : fn) {
if (verifyBlock(block))
return true;
}
return false;
}
bool CFGFuncVerifier::verifyBlock(const BasicBlock &block) {
if (!block.getTerminator())
return failure("basic block with no terminator", block);
if (verifyTerminator(*block.getTerminator()))
return true;
for (auto *arg : block.getArguments()) {
if (arg->getOwner() != &block)
return failure("basic block argument not owned by block", block);
}
for (auto &inst : block) {
if (verifyOperation(inst))
return true;
}
return false;
}
bool CFGFuncVerifier::verifyTerminator(const TerminatorInst &term) {
if (term.getFunction() != &fn)
return failure("terminator in the wrong function", term);
// TODO: Check that operands are structurally ok.
// TODO: Check that successors are in the right function.
if (auto *ret = dyn_cast<ReturnInst>(&term))
return verifyReturn(*ret);
if (auto *br = dyn_cast<BranchInst>(&term))
return verifyBranch(*br);
if (auto *br = dyn_cast<CondBranchInst>(&term))
return verifyCondBranch(*br);
return false;
}
bool CFGFuncVerifier::verifyReturn(const ReturnInst &inst) {
// Verify that the return operands match the results of the function.
auto results = fn.getType()->getResults();
if (inst.getNumOperands() != results.size())
return failure("return has " + Twine(inst.getNumOperands()) +
" operands, but enclosing function returns " +
Twine(results.size()),
inst);
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (inst.getOperand(i)->getType() != results[i])
return failure("type of return operand " + Twine(i) +
" doesn't match result function result type",
inst);
return false;
}
bool CFGFuncVerifier::verifyBranch(const BranchInst &inst) {
// Verify that the number of operands lines up with the number of BB arguments
// in the successor.
auto dest = inst.getDest();
if (inst.getNumOperands() != dest->getNumArguments())
return failure("branch has " + Twine(inst.getNumOperands()) +
" operands, but target block has " +
Twine(dest->getNumArguments()),
inst);
for (unsigned i = 0, e = inst.getNumOperands(); i != e; ++i)
if (inst.getOperand(i)->getType() != dest->getArgument(i)->getType())
return failure("type of branch operand " + Twine(i) +
" doesn't match target bb argument type",
inst);
return false;
}
template <typename OperandIteratorTy, typename ArgumentIteratorTy>
bool CFGFuncVerifier::verifyOperandsMatchArguments(
OperandIteratorTy opBegin, OperandIteratorTy opEnd,
ArgumentIteratorTy argBegin, const Instruction &instContext) {
OperandIteratorTy opIt = opBegin;
ArgumentIteratorTy argIt = argBegin;
for (; opIt != opEnd; ++opIt, ++argIt) {
if ((*opIt)->getType() != (*argIt)->getType())
return failure("type of operand " + Twine(std::distance(opBegin, opIt)) +
" doesn't match argument type",
instContext);
}
return false;
}
bool CFGFuncVerifier::verifyCondBranch(const CondBranchInst &inst) {
// Verify that the number of operands lines up with the number of BB arguments
// in the true successor.
auto trueDest = inst.getTrueDest();
if (inst.getNumTrueOperands() != trueDest->getNumArguments())
return failure("branch has " + Twine(inst.getNumTrueOperands()) +
" true operands, but true target block has " +
Twine(trueDest->getNumArguments()),
inst);
if (verifyOperandsMatchArguments(inst.true_operand_begin(),
inst.true_operand_end(),
trueDest->args_begin(), inst))
return true;
// And the false successor.
auto falseDest = inst.getFalseDest();
if (inst.getNumFalseOperands() != falseDest->getNumArguments())
return failure("branch has " + Twine(inst.getNumFalseOperands()) +
" false operands, but false target block has " +
Twine(falseDest->getNumArguments()),
inst);
if (verifyOperandsMatchArguments(inst.false_operand_begin(),
inst.false_operand_end(),
falseDest->args_begin(), inst))
return true;
if (inst.getCondition()->getType() != Type::getInteger(1, fn.getContext()))
return failure("type of condition is not boolean (i1)", inst);
return false;
}
bool CFGFuncVerifier::verifyOperation(const OperationInst &inst) {
if (inst.getFunction() != &fn)
return opFailure("operation in the wrong function", inst);
// TODO: Check that operands are structurally ok.
// See if we can get operation info for this.
if (auto *opInfo = inst.getAbstractOperation()) {
if (auto errorMessage = opInfo->verifyInvariants(&inst))
return opFailure(
Twine("'") + inst.getName().str() + "' op " + errorMessage, inst);
}
return false;
}
//===----------------------------------------------------------------------===//
// ML Functions
//===----------------------------------------------------------------------===//
namespace {
class MLFuncVerifier : public Verifier {
public:
const MLFunction &fn;
MLFuncVerifier(const MLFunction &fn, std::string *errorResult)
: Verifier(errorResult), fn(fn) {}
bool verify() {
llvm::PrettyStackTraceFormat fmt("MLIR Verifier: mlfunc @%s",
fn.getName().c_str());
// TODO: check basic structural properties.
return verifyDominance();
}
/// Walk all of the code in this MLFunc and verify that the operands of any
/// operations are properly dominated by their definitions.
bool verifyDominance();
};
} // end anonymous namespace
/// Walk all of the code in this MLFunc and verify that the operands of any
/// operations are properly dominated by their definitions.
bool MLFuncVerifier::verifyDominance() {
using HashTable = llvm::ScopedHashTable<const SSAValue *, bool>;
HashTable liveValues;
HashTable::ScopeTy topScope(liveValues);
// All of the arguments to the function are live for the whole function.
for (auto *arg : fn.getArguments())
liveValues.insert(arg, true);
// This recursive function walks the statement list pushing scopes onto the
// stack as it goes, and popping them to remove them from the table.
std::function<bool(const StmtBlock &block)> walkBlock;
walkBlock = [&](const StmtBlock &block) -> bool {
HashTable::ScopeTy blockScope(liveValues);
// The induction variable of a for statement is live within its body.
if (auto *forStmt = dyn_cast<ForStmt>(&block))
liveValues.insert(forStmt, true);
for (auto &stmt : block) {
// TODO: For and If will eventually have operands, we need to check them.
// When this happens, Statement should have a general getOperands() method
// we can use here first.
if (auto *opStmt = dyn_cast<OperationStmt>(&stmt)) {
// Verify that each of the operands are live.
unsigned operandNo = 0;
for (auto *opValue : opStmt->getOperands()) {
if (!liveValues.count(opValue)) {
opStmt->emitError("operand #" + Twine(operandNo) +
" does not dominate this use");
if (auto *useStmt = opValue->getDefiningStmt())
useStmt->emitNote("operand defined here");
return true;
}
++operandNo;
}
// Operations define values, add them to the hash table.
for (auto *result : opStmt->getResults())
liveValues.insert(result, true);
continue;
}
// If this is an if or for, recursively walk the block they contain.
if (auto *ifStmt = dyn_cast<IfStmt>(&stmt)) {
if (walkBlock(*ifStmt->getThenClause()))
return true;
if (auto *elseClause = ifStmt->getElseClause())
if (walkBlock(*elseClause))
return true;
}
if (auto *forStmt = dyn_cast<ForStmt>(&stmt))
if (walkBlock(*forStmt))
return true;
}
return false;
};
// Check the whole function out.
return walkBlock(fn);
}
//===----------------------------------------------------------------------===//
// Entrypoints
//===----------------------------------------------------------------------===//
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this fills in the string and return true,
/// or aborts if the string was not provided.
bool Function::verify(std::string *errorResult) const {
switch (getKind()) {
case Kind::ExtFunc:
// No body, nothing can be wrong here.
return false;
case Kind::CFGFunc:
return CFGFuncVerifier(*cast<CFGFunction>(this), errorResult).verify();
case Kind::MLFunc:
return MLFuncVerifier(*cast<MLFunction>(this), errorResult).verify();
}
}
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this fills in the string and return true,
/// or aborts if the string was not provided.
bool Module::verify(std::string *errorResult) const {
/// Check that each function is correct.
for (auto &fn : *this) {
if (fn.verify(errorResult))
return true;
}
// Make sure the error string is empty on success.
if (errorResult)
errorResult->clear();
return false;
}