blob: d202a37c52b8034052e0cf7ae4eeab3471a00493 [file] [log] [blame]
//===- GreedyPatternRewriteDriver.cpp - A greedy rewriter -----------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements mlir::applyPatternsGreedily.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Builders.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
#define DEBUG_TYPE "pattern-matcher"
static llvm::cl::opt<unsigned> maxPatternMatchIterations(
"mlir-max-pattern-match-iterations",
llvm::cl::desc("Max number of iterations scanning for pattern match"),
llvm::cl::init(10));
namespace {
/// This is a worklist-driven driver for the PatternMatcher, which repeatedly
/// applies the locally optimal patterns in a roughly "bottom up" way.
class GreedyPatternRewriteDriver : public PatternRewriter {
public:
explicit GreedyPatternRewriteDriver(MLIRContext *ctx,
OwningRewritePatternList &patterns)
: PatternRewriter(ctx), matcher(patterns) {
worklist.reserve(64);
}
/// Perform the rewrites. Return true if the rewrite converges in
/// `maxIterations`.
bool simplify(Operation *op, int maxIterations);
void addToWorklist(Operation *op) {
// Check to see if the worklist already contains this op.
if (worklistMap.count(op))
return;
worklistMap[op] = worklist.size();
worklist.push_back(op);
}
Operation *popFromWorklist() {
auto *op = worklist.back();
worklist.pop_back();
// This operation is no longer in the worklist, keep worklistMap up to date.
if (op)
worklistMap.erase(op);
return op;
}
/// If the specified operation is in the worklist, remove it. If not, this is
/// a no-op.
void removeFromWorklist(Operation *op) {
auto it = worklistMap.find(op);
if (it != worklistMap.end()) {
assert(worklist[it->second] == op && "malformed worklist data structure");
worklist[it->second] = nullptr;
}
}
// These are hooks implemented for PatternRewriter.
protected:
// Implement the hook for creating operations, and make sure that newly
// created ops are added to the worklist for processing.
Operation *createOperation(const OperationState &state) override {
auto *result = OpBuilder::createOperation(state);
addToWorklist(result);
return result;
}
// If an operation is about to be removed, make sure it is not in our
// worklist anymore because we'd get dangling references to it.
void notifyOperationRemoved(Operation *op) override {
addToWorklist(op->getOperands());
removeFromWorklist(op);
folder.notifyRemoval(op);
op->walk([this](Operation *operation) {
removeFromWorklist(operation);
folder.notifyRemoval(operation);
});
}
// When the root of a pattern is about to be replaced, it can trigger
// simplifications to its users - make sure to add them to the worklist
// before the root is changed.
void notifyRootReplaced(Operation *op) override {
for (auto *result : op->getResults())
for (auto *user : result->getUsers())
addToWorklist(user);
}
private:
// Look over the provided operands for any defining operations that should
// be re-added to the worklist. This function should be called when an
// operation is modified or removed, as it may trigger further
// simplifications.
template <typename Operands> void addToWorklist(Operands &&operands) {
for (Value *operand : operands) {
// If the use count of this operand is now < 2, we re-add the defining
// operation to the worklist.
// TODO(riverriddle) This is based on the fact that zero use operations
// may be deleted, and that single use values often have more
// canonicalization opportunities.
if (!operand->use_empty() && !operand->hasOneUse())
continue;
if (auto *defInst = operand->getDefiningOp())
addToWorklist(defInst);
}
}
/// The low-level pattern matcher.
RewritePatternMatcher matcher;
/// The worklist for this transformation keeps track of the operations that
/// need to be revisited, plus their index in the worklist. This allows us to
/// efficiently remove operations from the worklist when they are erased, even
/// if they aren't the root of a pattern.
std::vector<Operation *> worklist;
DenseMap<Operation *, unsigned> worklistMap;
/// Non-pattern based folder for operations.
OperationFolder folder;
};
} // end anonymous namespace
/// Perform the rewrites.
bool GreedyPatternRewriteDriver::simplify(Operation *op, int maxIterations) {
// Add the given operation to the worklist.
auto collectOps = [this](Operation *op) { addToWorklist(op); };
bool changed = false;
int i = 0;
do {
// Add all nested operations to the worklist.
for (auto &region : op->getRegions())
region.walk(collectOps);
// These are scratch vectors used in the folding loop below.
SmallVector<Value *, 8> originalOperands, resultValues;
changed = false;
while (!worklist.empty()) {
auto *op = popFromWorklist();
// Nulls get added to the worklist when operations are removed, ignore
// them.
if (op == nullptr)
continue;
// If the operation has no side effects, and no users, then it is
// trivially dead - remove it.
if (op->hasNoSideEffect() && op->use_empty()) {
// Be careful to update bookkeeping in OperationFolder to keep
// consistency if this is a constant op.
folder.notifyRemoval(op);
op->erase();
continue;
}
// Collects all the operands and result uses of the given `op` into work
// list.
originalOperands.assign(op->operand_begin(), op->operand_end());
auto collectOperandsAndUses = [&](Operation *op) {
// Add the operands to the worklist for visitation.
addToWorklist(originalOperands);
// Add all the users of the result to the worklist so we make sure
// to revisit them.
for (auto *result : op->getResults())
for (auto *operand : result->getUsers())
addToWorklist(operand);
};
// Try to fold this op.
if (succeeded(folder.tryToFold(op, collectOps, collectOperandsAndUses))) {
changed |= true;
continue;
}
// Make sure that any new operations are inserted at this point.
setInsertionPoint(op);
// Try to match one of the canonicalization patterns. The rewriter is
// automatically notified of any necessary changes, so there is nothing
// else to do here.
changed |= matcher.matchAndRewrite(op, *this);
}
} while (changed && ++i < maxIterations);
// Whether the rewrite converges, i.e. wasn't changed in the last iteration.
return !changed;
}
/// Rewrite the regions of the specified operation, which must be isolated from
/// above, by repeatedly applying the highest benefit patterns in a greedy
/// work-list driven manner. Return true if no more patterns can be matched in
/// the result operation regions.
/// Note: This does not apply patterns to the top-level operation itself.
///
bool mlir::applyPatternsGreedily(Operation *op,
OwningRewritePatternList &patterns) {
// The top-level operation must be known to be isolated from above to
// prevent performing canonicalizations on operations defined at or above
// the region containing 'op'.
if (!op->isKnownIsolatedFromAbove())
return false;
GreedyPatternRewriteDriver driver(op->getContext(), patterns);
bool converged = driver.simplify(op, maxPatternMatchIterations);
LLVM_DEBUG(if (!converged) {
llvm::dbgs() << "The pattern rewrite doesn't converge after scanning "
<< maxPatternMatchIterations << " times";
});
return converged;
}