blob: 9535dc7d903af203c1ce7939b67c917e24c889ca [file] [log] [blame]
//===- ConvertControlFlowToCFG.cpp - ControlFlow to CFG conversion --------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to convert loop.for, loop.if and loop.terminator
// ops into standard CFG ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ControlFlowToCFG/ConvertControlFlowToCFG.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
using namespace mlir;
using namespace mlir::loop;
namespace {
struct ControlFlowToCFGPass : public FunctionPass<ControlFlowToCFGPass> {
void runOnFunction() override;
};
// Create a CFG subgraph for the loop around its body blocks (if the body
// contained other loops, they have been already lowered to a flow of blocks).
// Maintain the invariants that a CFG subgraph created for any loop has a single
// entry and a single exit, and that the entry/exit blocks are respectively
// first/last blocks in the parent region. The original loop operation is
// replaced by the initialization operations that set up the initial value of
// the loop induction variable (%iv) and computes the loop bounds that are loop-
// invariant for affine loops. The operations following the original loop.for
// are split out into a separate continuation (exit) block. A condition block is
// created before the continuation block. It checks the exit condition of the
// loop and branches either to the continuation block, or to the first block of
// the body. Induction variable modification is appended to the last block of
// the body (which is the exit block from the body subgraph thanks to the
// invariant we maintain) along with a branch that loops back to the condition
// block.
//
// +---------------------------------+
// | <code before the ForOp> |
// | <compute initial %iv value> |
// | br cond(%iv) |
// +---------------------------------+
// |
// -------| |
// | v v
// | +--------------------------------+
// | | cond(%iv): |
// | | <compare %iv to upper bound> |
// | | cond_br %r, body, end |
// | +--------------------------------+
// | | |
// | | -------------|
// | v |
// | +--------------------------------+ |
// | | body-first: | |
// | | <body contents> | |
// | +--------------------------------+ |
// | | |
// | ... |
// | | |
// | +--------------------------------+ |
// | | body-last: | |
// | | <body contents> | |
// | | %new_iv =<add step to %iv> | |
// | | br cond(%new_iv) | |
// | +--------------------------------+ |
// | | |
// |----------- |--------------------
// v
// +--------------------------------+
// | end: |
// | <code after the ForOp> |
// +--------------------------------+
//
struct ForLowering : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override;
};
// Create a CFG subgraph for the loop.if operation (including its "then" and
// optional "else" operation blocks). We maintain the invariants that the
// subgraph has a single entry and a single exit point, and that the entry/exit
// blocks are respectively the first/last block of the enclosing region. The
// operations following the loop.if are split into a continuation (subgraph
// exit) block. The condition is lowered to a chain of blocks that implement the
// short-circuit scheme. Condition blocks are created by splitting out an empty
// block from the block that contains the loop.if operation. They
// conditionally branch to either the first block of the "then" region, or to
// the first block of the "else" region. If the latter is absent, they branch
// to the continuation block instead. The last blocks of "then" and "else"
// regions (which are known to be exit blocks thanks to the invariant we
// maintain).
//
// +--------------------------------+
// | <code before the IfOp> |
// | cond_br %cond, %then, %else |
// +--------------------------------+
// | |
// | --------------|
// v |
// +--------------------------------+ |
// | then: | |
// | <then contents> | |
// | br continue | |
// +--------------------------------+ |
// | |
// |---------- |-------------
// | V
// | +--------------------------------+
// | | else: |
// | | <else contents> |
// | | br continue |
// | +--------------------------------+
// | |
// ------| |
// v v
// +--------------------------------+
// | continue: |
// | <code after the IfOp> |
// +--------------------------------+
//
struct IfLowering : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(IfOp ifOp,
PatternRewriter &rewriter) const override;
};
struct TerminatorLowering : public OpRewritePattern<TerminatorOp> {
using OpRewritePattern<TerminatorOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(TerminatorOp op,
PatternRewriter &rewriter) const override {
rewriter.replaceOp(op, {});
return matchSuccess();
}
};
} // namespace
PatternMatchResult
ForLowering::matchAndRewrite(ForOp forOp, PatternRewriter &rewriter) const {
Location loc = forOp.getLoc();
// Start by splitting the block containing the 'loop.for' into two parts.
// The part before will get the init code, the part after will be the end
// point.
auto *initBlock = rewriter.getInsertionBlock();
auto initPosition = rewriter.getInsertionPoint();
auto *endBlock = rewriter.splitBlock(initBlock, initPosition);
// Use the first block of the loop body as the condition block since it is
// the block that has the induction variable as its argument. Split out
// all operations from the first block into a new block. Move all body
// blocks from the loop body region to the region containing the loop.
auto *conditionBlock = &forOp.region().front();
auto *firstBodyBlock =
rewriter.splitBlock(conditionBlock, conditionBlock->begin());
auto *lastBodyBlock = &forOp.region().back();
rewriter.inlineRegionBefore(forOp.region(), endBlock);
auto *iv = conditionBlock->getArgument(0);
// Append the induction variable stepping logic to the last body block and
// branch back to the condition block. Construct an expression f :
// (x -> x+step) and apply this expression to the induction variable.
rewriter.setInsertionPointToEnd(lastBodyBlock);
auto *step = forOp.step();
auto *stepped = rewriter.create<AddIOp>(loc, iv, step).getResult();
if (!stepped)
return matchFailure();
rewriter.create<BranchOp>(loc, conditionBlock, stepped);
// Compute loop bounds before branching to the condition.
rewriter.setInsertionPointToEnd(initBlock);
Value *lowerBound = forOp.lowerBound();
Value *upperBound = forOp.upperBound();
if (!lowerBound || !upperBound)
return matchFailure();
rewriter.create<BranchOp>(loc, conditionBlock, lowerBound);
// With the body block done, we can fill in the condition block.
rewriter.setInsertionPointToEnd(conditionBlock);
auto comparison =
rewriter.create<CmpIOp>(loc, CmpIPredicate::SLT, iv, upperBound);
rewriter.create<CondBranchOp>(loc, comparison, firstBodyBlock,
ArrayRef<Value *>(), endBlock,
ArrayRef<Value *>());
// Ok, we're done!
rewriter.replaceOp(forOp, {});
return matchSuccess();
}
PatternMatchResult
IfLowering::matchAndRewrite(IfOp ifOp, PatternRewriter &rewriter) const {
auto loc = ifOp.getLoc();
// Start by splitting the block containing the 'loop.if' into two parts.
// The part before will contain the condition, the part after will be the
// continuation point.
auto *condBlock = rewriter.getInsertionBlock();
auto opPosition = rewriter.getInsertionPoint();
auto *continueBlock = rewriter.splitBlock(condBlock, opPosition);
// Move blocks from the "then" region to the region containing 'loop.if',
// place it before the continuation block, and branch to it.
auto &thenRegion = ifOp.thenRegion();
auto *thenBlock = &thenRegion.front();
rewriter.setInsertionPointToEnd(&thenRegion.back());
rewriter.create<BranchOp>(loc, continueBlock);
rewriter.inlineRegionBefore(thenRegion, continueBlock);
// Move blocks from the "else" region (if present) to the region containing
// 'loop.if', place it before the continuation block and branch to it. It
// will be placed after the "then" regions.
auto *elseBlock = continueBlock;
auto &elseRegion = ifOp.elseRegion();
if (!elseRegion.empty()) {
elseBlock = &elseRegion.front();
rewriter.setInsertionPointToEnd(&elseRegion.back());
rewriter.create<BranchOp>(loc, continueBlock);
rewriter.inlineRegionBefore(elseRegion, continueBlock);
}
rewriter.setInsertionPointToEnd(condBlock);
rewriter.create<CondBranchOp>(loc, ifOp.condition(), thenBlock,
/*trueArgs=*/ArrayRef<Value *>(), elseBlock,
/*falseArgs=*/ArrayRef<Value *>());
// Ok, we're done!
rewriter.replaceOp(ifOp, {});
return matchSuccess();
}
void mlir::populateLoopToStdConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
patterns.insert<ForLowering, IfLowering, TerminatorLowering>(ctx);
}
void ControlFlowToCFGPass::runOnFunction() {
OwningRewritePatternList patterns;
populateLoopToStdConversionPatterns(patterns, &getContext());
ConversionTarget target(getContext());
target.addLegalDialect<StandardOpsDialect>();
if (failed(applyPartialConversion(getFunction(), target, patterns)))
signalPassFailure();
}
FunctionPassBase *mlir::createConvertToCFGPass() {
return new ControlFlowToCFGPass();
}
static PassRegistration<ControlFlowToCFGPass>
pass("lower-to-cfg", "Convert control flow operations to ");