blob: 435e1030e3664b6822367a4c0adfbd30f45dd583 [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operators corresponding to Python builtin functions.
List of built-in functions: https://docs.python.org/3/library/functions.html
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import inspect
import six
from tensorflow.python.autograph.utils import py_func
from tensorflow.python.autograph.utils import tensors
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_parsing_ops
from tensorflow.python.ops import gen_string_ops
from tensorflow.python.ops import list_ops
from tensorflow.python.ops import math_ops
UNSPECIFIED = object()
def overload_of(f):
if f in SUPPORTED_BUILTINS:
return BUILTIN_FUINCTIONS_MAP[f.__name__]
return f
def _find_originating_frame(caller_fn_scope, innermost=True):
"""Locates the frame in which `caller_fn_scope` was defined."""
ctx_frame = inspect.currentframe()
result = None
while ctx_frame is not None:
# Note it should not be normally possible to get false positives this way
# because the function scope object is not accessible to user code (barring
# call stack introspection).
if ctx_frame.f_locals.get(caller_fn_scope.name, None) is caller_fn_scope:
result = ctx_frame
if innermost:
break
ctx_frame = ctx_frame.f_back
assert result is not None, (
'the conversion process should ensure the caller_fn_scope is always'
' found somewhere on the call stack')
return result
def eval_in_original_context(f, args, caller_fn_scope):
"""Executes the eval function in the context of a specified function."""
# When control flow is rewritten using functions, eval should use the
# variables found in the same block where it was called. That is equivalent
# to the innermost function call.
ctx_frame = _find_originating_frame(caller_fn_scope, innermost=True)
args = (
args[0],
ctx_frame.f_globals if len(args) < 2 else args[1],
ctx_frame.f_locals if len(args) < 3 else args[2],
)
return f(*args)
def super_in_original_context(f, args, caller_fn_scope):
"""Executes the super function in the context of a specified function.
See https://docs.python.org/3/library/functions.html#super for the exact
details
Args:
f: Callable, typically the super builtin
args: List[Any], the original call arguments
caller_fn_scope: Optional[function_wrappers.FunctionScope], the function
scope of the converted function in which this call was originally made
Returns:
The result of calling `f` as if it was called in the frame indicated by
`caller_fn_scope`.
"""
# Python 2 doesn't support implicit argument super variants.
if six.PY2:
return f(*args)
# Only the no-arg call is desugared.
if args:
return f(*args)
# Inner functions seem to include their closure in f_locals, so we need
# to find the outermost frame.
ctx_frame = _find_originating_frame(caller_fn_scope, innermost=False)
# When super(..) is called without arguments, it looks for __class__ cell
# variable and the first argument passed in the enclosing function according
# to the spec https://www.python.org/dev/peps/pep-3135/ .
#
# We couldn't verify if `inspect.currentframe().f_code.co_varnames[0]` is
# guaranteed to be the first argument from an official doc or PEP, however,
# it's fairly stable and well established:
# - An unofficial community doc mentions it.
# https://python-reference.readthedocs.io/en/latest/docs/code/varnames.html
# - CPython has tests checking that order, which was merged in 2008, and
# unchanged since then.
# https://github.com/python/cpython/blame/2f224a077a83ac9de8a12bb7dcc516642b8176d8/Lib/lib2to3/tests/data/py2_test_grammar.py#L157
# https://github.com/python/cpython/blame/2f224a077a83ac9de8a12bb7dcc516642b8176d8/Lib/lib2to3/tests/data/py3_test_grammar.py#L192
#
# Note: the name can be more reliably obtained by inspecting the calling
# function's argspec.
#
# Even though methods can be declared using *args (def method(*args)),
# that pattern is disallowed by super() -- it raises super() no arguments.
# Method definitions using **kwargs are not allowed at all.
# In other words, we can always assume that self is on the first positional
# argument (for correct code).
#
# TODO(mdan): Consider additional checks in case the input code is incorrect.
# For example, the error might be cryptic compared to what super() regularly
# raises.
type_arg = ctx_frame.f_locals['__class__']
self_arg_name = ctx_frame.f_code.co_varnames[0]
self_arg = ctx_frame.f_locals[self_arg_name]
return f(type_arg, self_arg)
def abs_(x):
if tensor_util.is_tensor(x):
return _tf_abs(x)
return _py_abs(x)
def _tf_abs(x):
return math_ops.abs(x)
def _py_abs(x):
return abs(x)
def float_(x=0):
if tensor_util.is_tensor(x):
return _tf_float(x)
return _py_float(x)
def _tf_float(x):
# TODO(mdan): We shouldn't assume float32.
if x.dtype == dtypes.string:
return gen_parsing_ops.string_to_number(x, out_type=dtypes.float32)
return math_ops.cast(x, dtype=dtypes.float32)
def _py_float(x):
return float(x)
def int_(x=0, base=UNSPECIFIED):
if tensor_util.is_tensor(x):
return _tf_int(x, base)
return _py_int(x, base)
def _tf_int(x, base):
if base not in (10, UNSPECIFIED):
raise NotImplementedError('base {} not supported for int'.format(base))
# TODO(mdan): We shouldn't assume int32.
if x.dtype == dtypes.string:
return gen_parsing_ops.string_to_number(x, out_type=dtypes.int32)
return math_ops.cast(x, dtype=dtypes.int32)
def _py_int(x, base):
if base is UNSPECIFIED:
return int(x)
return int(x, base)
def len_(s):
if tensors.is_tensor_array(s):
return _tf_tensor_array_len(s)
elif tensors.is_tensor_list(s):
return _tf_tensor_list_len(s)
elif tensor_util.is_tensor(s):
return _tf_tensor_len(s)
return _py_len(s)
def _tf_tensor_array_len(s):
return s.size()
def _tf_tensor_list_len(s):
return list_ops.tensor_list_length(s)
def _tf_tensor_len(s):
"""Overload of len_ for Tensor arguments."""
# Statically shaped tensors: length is known ahead of time.
if s.shape.ndims and s.shape.dims[0].value is not None:
return s.shape.dims[0].value
# Static shape of unknown dimensions: use dynamic shape but statically
# check that it's a scalar.
shape = array_ops.shape(s)
assert shape.shape, 'shape tensor of zero size? {}'.format(shape)
if shape.shape[0] == 0:
raise ValueError(
'len requires a non-scalar tensor, got one of shape {}'.format(shape))
if shape.shape.dims[0].value is not None:
return array_ops.shape(s)[0]
# Fully dynamic shape: use ops.
rank = array_ops.rank(s)
def raise_zero_rank_error():
msg = gen_string_ops.string_join(
['len requires non-zero rank, got ',
gen_string_ops.as_string(rank)])
with ops.control_dependencies([control_flow_ops.Assert(False, [msg])]):
return constant_op.constant(0, dtype=dtypes.int32)
return control_flow_ops.cond(rank > 0, lambda: array_ops.shape(s)[0],
raise_zero_rank_error)
def _py_len(s):
return len(s)
def print_(*objects, **kwargs):
"""Overload of the print builtin."""
# Note: Python 2.6 doesn't support explicit keywords after starargs.
unknown_kwargs = tuple(
set(kwargs.keys()) - set(('sep', 'end', 'file', 'flush')))
if unknown_kwargs:
raise ValueError('invalid keyword arguments: {}'.format(unknown_kwargs))
# TODO(mdan): Use next.flatten(objects) instead?
if any(tensor_util.is_tensor(o) for o in objects):
# TODO(mdan): use tf.print instead.
return _tf_py_func_print(objects, kwargs)
else:
_py_print(*objects, **kwargs)
def _py_print(*objects, **kwargs):
print(*objects, **kwargs)
def _tf_py_func_print(objects, kwargs):
"""Overload of print_ as a py_func implementation."""
override_kwargs = {k: v for k, v in kwargs.items() if v is not UNSPECIFIED}
if 'flush' not in override_kwargs:
# Defaulting to flushing the console in graph mode, which helps reduce
# garbled output in IPython.
override_kwargs['flush'] = True
def print_wrapper(*vals):
vals = tuple(v.numpy() if tensor_util.is_tensor(v) else v for v in vals)
if six.PY3:
# TensorFlow doesn't seem to generate Unicode when passing strings to
# py_func. This causes the print to add a "b'" wrapper to the output,
# which is probably never what you want.
vals = tuple(
v.decode('utf-8') if isinstance(v, bytes) else v for v in vals)
six.print_(*vals, **override_kwargs)
return py_func.wrap_py_func(
print_wrapper, None, objects, use_dummy_return=True)
def range_(start_or_stop, stop=UNSPECIFIED, step=UNSPECIFIED):
if any(tensor_util.is_tensor(s) for s in (start_or_stop, stop, step)):
return _tf_range(start_or_stop, stop, step)
return _py_range(start_or_stop, stop, step)
def _tf_range(start_or_stop, stop, step):
"""Overload of range_ that generates a TF range tensor."""
# Note: for static inputs (e.g. constants), tf.range errors out at graph
# construction time, instead of returning an empty tensor. Preventing the
# graph construction error aligns the semantics with Python.
# TODO(mdan): We should optimize this when a full tensor is not required.
if step is not UNSPECIFIED:
# TODO(mdan): Add argument coercion similar to other cases.
return math_ops.range(start_or_stop, stop, step)
if stop is not UNSPECIFIED:
stop = math_ops.maximum(start_or_stop, stop)
return math_ops.range(start_or_stop, stop)
start_or_stop = math_ops.maximum(start_or_stop, 0)
return math_ops.range(start_or_stop)
def _py_range(start_or_stop, stop, step):
if step is not UNSPECIFIED:
return range(start_or_stop, stop, step)
if stop is not UNSPECIFIED:
return range(start_or_stop, stop)
return range(start_or_stop)
def enumerate_(s, start=0):
if isinstance(s, dataset_ops.DatasetV2):
return _tf_dataset_enumerate(s, start)
return _py_enumerate(s, start)
def _tf_dataset_enumerate(s, start=0):
return s.enumerate(start)
def _py_enumerate(s, start=0):
return enumerate(s, start)
SUPPORTED_BUILTINS = (abs, float, int, len, print, range, enumerate)
if six.PY2:
SUPPORTED_BUILTINS += (xrange,)
BUILTIN_FUINCTIONS_MAP = {
'abs': abs_,
'float': float_,
'int': int_,
'len': len_,
'print': print_,
'range': range_,
# TODO(mdan): This might make more sense as tf.data.range.
'xrange': range_,
'enumerate': enumerate_,
}