blob: bcf3c54c4f016edfb15bfc9ca61d7d0db77c7a44 [file] [log] [blame]
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/xla/service/gpu/gpu_compiler.h"
#include <stdlib.h>
#include <atomic>
#include <functional>
#include <mutex> // NOLINT(build/c++11): only using std::call_once, not mutex.
#include <utility>
#include "absl/memory/memory.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "tensorflow/compiler/xla/protobuf_util.h"
#include "tensorflow/compiler/xla/service/algebraic_simplifier.h"
#include "tensorflow/compiler/xla/service/batchnorm_expander.h"
#include "tensorflow/compiler/xla/service/buffer_assignment.h"
#include "tensorflow/compiler/xla/service/call_inliner.h"
#include "tensorflow/compiler/xla/service/conditional_simplifier.h"
#include "tensorflow/compiler/xla/service/convolution_group_converter.h"
#include "tensorflow/compiler/xla/service/dot_decomposer.h"
#include "tensorflow/compiler/xla/service/dump.h"
#include "tensorflow/compiler/xla/service/dynamic_index_splitter.h"
#include "tensorflow/compiler/xla/service/flatten_call_graph.h"
#include "tensorflow/compiler/xla/service/gpu/cudnn_batchnorm_rewriter.h"
#include "tensorflow/compiler/xla/service/gpu/fusion_merger.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_constants.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_copy_insertion.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_executable.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_hlo_schedule.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_hlo_support_checker.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_layout_assignment.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_sanitize_constant_names.h"
#include "tensorflow/compiler/xla/service/gpu/gpu_scatter_expander.h"
#include "tensorflow/compiler/xla/service/gpu/instruction_fusion.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emission_utils.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emitter_context.h"
#include "tensorflow/compiler/xla/service/gpu/ir_emitter_unnested.h"
#include "tensorflow/compiler/xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.h"
#include "tensorflow/compiler/xla/service/gpu/multi_output_fusion.h"
#include "tensorflow/compiler/xla/service/gpu/partition_assignment.h"
#include "tensorflow/compiler/xla/service/gpu/stream_assignment.h"
#include "tensorflow/compiler/xla/service/gpu/stream_executor_util.h"
#include "tensorflow/compiler/xla/service/gpu/target_constants.h"
#include "tensorflow/compiler/xla/service/gpu/thunk_schedule.h"
#include "tensorflow/compiler/xla/service/gpu/variadic_op_splitter.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_constant_folding.h"
#include "tensorflow/compiler/xla/service/hlo_cse.h"
#include "tensorflow/compiler/xla/service/hlo_dataflow_analysis.h"
#include "tensorflow/compiler/xla/service/hlo_dce.h"
#include "tensorflow/compiler/xla/service/hlo_element_type_converter.h"
#include "tensorflow/compiler/xla/service/hlo_get_dimension_size_rewriter.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_pass_fix.h"
#include "tensorflow/compiler/xla/service/hlo_pass_pipeline.h"
#include "tensorflow/compiler/xla/service/hlo_proto_util.h"
#include "tensorflow/compiler/xla/service/hlo_subcomputation_unification.h"
#include "tensorflow/compiler/xla/service/hlo_verifier.h"
#include "tensorflow/compiler/xla/service/llvm_ir/llvm_util.h"
#include "tensorflow/compiler/xla/service/mem_wasted_on_passthrough_params.h"
#include "tensorflow/compiler/xla/service/reduce_precision_insertion.h"
#include "tensorflow/compiler/xla/service/reshape_mover.h"
#include "tensorflow/compiler/xla/service/rng_expander.h"
#include "tensorflow/compiler/xla/service/slice_sinker.h"
#include "tensorflow/compiler/xla/service/slow_operation_alarm.h"
#include "tensorflow/compiler/xla/service/sort_simplifier.h"
#include "tensorflow/compiler/xla/service/stable_sort_expander.h"
#include "tensorflow/compiler/xla/service/transpose_folding.h"
#include "tensorflow/compiler/xla/service/tuple_simplifier.h"
#include "tensorflow/compiler/xla/service/while_loop_constant_sinking.h"
#include "tensorflow/compiler/xla/service/while_loop_simplifier.h"
#include "tensorflow/compiler/xla/service/while_loop_trip_count_annotator.h"
#include "tensorflow/compiler/xla/service/zero_sized_hlo_elimination.h"
#include "tensorflow/compiler/xla/status_macros.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/gtl/cleanup.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/regexp.h"
#include "tensorflow/core/platform/stream_executor_no_cuda.h"
#include "tensorflow/core/platform/subprocess.h"
#include "tensorflow/core/platform/tracing.h"
#include "tensorflow/core/profiler/lib/traceme.h"
namespace xla {
namespace gpu {
GpuCompiler::GpuCompiler(se::Platform::Id platform_id,
const char* target_triple, const char* data_layout)
: platform_id_(platform_id),
target_triple_(target_triple),
data_layout_(data_layout),
pointer_size_(llvm::DataLayout(data_layout)
.getPointerSize(0 /* default address space */)) {}
// Runs optimization passes on the given HLO module.
Status GpuCompiler::OptimizeHloModule(
HloModule* hlo_module, se::StreamExecutor* stream_exec,
se::DeviceMemoryAllocator* device_allocator) {
{
HloPassPipeline pipeline("optimization");
pipeline.AddInvariantChecker<HloVerifier>(/*layout_sensitive=*/false,
/*allow_mixed_precision=*/false);
// Expand random number generation.
pipeline.AddPass<RngExpander>();
// Remove zero-sized HLO from the input so that other passes don't have to
// handle it.
pipeline.AddPass<ZeroSizedHloElimination>();
pipeline.AddPass<GpuScatterExpander>();
pipeline.AddPass<DynamicIndexSplitter>();
pipeline.AddPass<GpuHloSupportChecker>();
ReducePrecisionInsertion::AddPasses(
&pipeline, hlo_module->config().debug_options(),
ReducePrecisionInsertion::PassTiming::BEFORE_OPTIMIZATION);
// TODO(b/64094172): make Call work on GPU instead of inlining.
pipeline.AddPass<CallInliner>();
auto cost_model = [](HloInstruction* conv) {
// We need a cost model for GPUs. Currently, do nothing.
return false;
};
pipeline.AddPass<DotDecomposer>();
pipeline.AddPass<ConvolutionGroupConverter>(
cost_model,
/*convert_batch_groups_only=*/true);
// Expand the sort op to support stable sorting if required.
pipeline.AddPass<StableSortExpander>();
// Convert BF16 operations to F32 operations so that the GPU backend can
// support BF16 operations without directly implementing a BF16 lowering for
// most ops.
pipeline.AddPass<HloElementTypeConverter>(BF16, F32);
{
auto& pass =
pipeline.AddPass<HloPassFix<HloPassPipeline>>("simplification");
pass.AddInvariantChecker<HloVerifier>(/*layout_sensitive=*/false,
/*allow_mixed_precision=*/false);
// If cudnn batchnorms are enabled, rewrite batchnorm HLOs to cudnn calls
// where possible. Not every batchnorm op can be implemented as a call to
// cudnn, so decompose any remaining batchnorm ops into a soup of HLOs.
if (hlo_module->config().debug_options().xla_gpu_use_cudnn_batchnorm()) {
pass.AddPass<CudnnBatchNormRewriter>();
}
pass.AddPass<BatchNormExpander>(
/*rewrite_training_op=*/true,
/*rewrite_inference_op=*/true,
/*rewrite_grad_op=*/true);
pipeline.AddPass<HloGetDimensionSizeRewriter>();
// BatchNormExpander can create zero-sized ops, so zero-sized HLO
// elimination has to come after that pass.
pipeline.AddPass<ZeroSizedHloElimination>();
AlgebraicSimplifierOptions options;
pass.AddPass<AlgebraicSimplifier>(options);
pass.AddPass<SortSimplifier>();
pass.AddPass<TupleSimplifier>();
pass.AddPass<WhileLoopConstantSinking>();
pass.AddPass<WhileLoopSimplifier>();
// TODO(b/134075051): Re-enable after b/134075051 is fixed.
// pass.AddPass<SliceSinker>();
pass.AddPass<HloDCE>();
pass.AddPass<ReshapeMover>();
pass.AddPass<HloConstantFolding>();
pass.AddPass<ConditionalSimplifier>();
}
pipeline.AddPass<TransposeFolding>(
[](const HloInstruction& dot,
const TransposeFolding::OperandIndices& candidate_operands) {
return IsMatrixMultiplication(dot)
? candidate_operands
: TransposeFolding::OperandIndices{};
},
TransposeFolding::NeverFoldTranspose);
pipeline.AddPass<HloCSE>(/*is_layout_sensitive=*/false);
pipeline.AddPass<HloDCE>();
// Run WhileLoopTripCountAnnotator at the end of the simplification
// pipeline, before layout assignment and fusion. This pass does some
// pattern-matching on while bodies/conditions, and this is where the HLO is
// "nicest".
//
// It's important that we don't make semantic changes (e.g. unrolling) to
// any `while` loops after this point, because otherwise the trip-count
// annotations added by this pass may not be correct after the
// modifications.
pipeline.AddPass<WhileLoopTripCountAnnotator>();
TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status());
}
// Run target-specific HLO optimization passes for convolution
// canonicalization.
TF_RETURN_IF_ERROR(OptimizeHloConvolutionCanonicalization(
hlo_module, stream_exec, device_allocator));
{
// Run layout assignment in a separate pipeline from
// "post-layout-assignment" because we want everything after layout
// assignment to have a layout-sensitive invariant-checker, but
// HloPassPipeline also runs its invariant checker before any passes are
// run, meaning, the pipeline that contains layout assignment cannot contain
// a layout-sensitive verifier!
HloPassPipeline pipeline("layout assignment");
pipeline.AddPass<GpuLayoutAssignment>(
hlo_module->mutable_entry_computation_layout(),
LayoutAssignment::InstructionCanChangeLayout, stream_exec);
TF_RETURN_IF_ERROR(pipeline.Run(hlo_module).status());
}
// Run target-specific HLO optimization passes after layout assignment.
TF_RETURN_IF_ERROR(OptimizeHloPostLayoutAssignment(hlo_module, stream_exec,
device_allocator));
{
HloPassFix<HloPassPipeline> fusion("fusion");
// We try to split variadic ops with many parameters into several such ops
// to avoid exceeding the parameter space.
fusion.AddPass<VariadicOpSplitter>();
/* TODO(b/117531509): Use LayoutAssignment::InstructionCanChangeLayout after
* fixing the ticket. */
fusion.AddInvariantChecker<HloVerifier>(
/*layout_sensitive=*/true,
/*allow_mixed_precision=*/false,
LayoutAssignment::InstructionCanChangeLayout);
fusion.AddPass<GpuInstructionFusion>(/*may_duplicate=*/false);
fusion.AddPass<GpuInstructionFusion>(/*may_duplicate=*/true);
fusion.AddPass<FusionMerger>();
fusion.AddPass<GpuMultiOutputFusion>();
fusion.AddPass<HloCSE>(/*is_layout_sensitive=*/true,
/*only_fusion_computations=*/true);
fusion.AddPass<HloDCE>();
TF_RETURN_IF_ERROR(fusion.Run(hlo_module).status());
HloPassPipeline reduce_pipeline("reduce-precision");
/* TODO(b/117531509): Use LayoutAssignment::InstructionCanChangeLayout after
* fixing the ticket. */
reduce_pipeline.AddInvariantChecker<HloVerifier>(
/*is_layout_sensitive=*/true, /*allow_mixed_precision=*/false,
LayoutAssignment::InstructionCanChangeLayout);
ReducePrecisionInsertion::AddPasses(
&reduce_pipeline, hlo_module->config().debug_options(),
ReducePrecisionInsertion::PassTiming::AFTER_FUSION);
StatusOr<bool> reduce_result = reduce_pipeline.Run(hlo_module);
TF_RETURN_IF_ERROR(reduce_result.status());
if (reduce_result.ValueOrDie()) {
// Do another fusion pass, with the expectation that we may be able to
// fuse the new ReducePrecision operations.
TF_RETURN_IF_ERROR(fusion.Run(hlo_module).status());
}
}
return Status::OK();
}
// Modifies the given HLO module so that it will be accepted by IrEmitter.
// Unlike optimization passes, the passes are necessary for correctness.
Status GpuCompiler::PrepareHloModuleForIrEmitting(HloModule* hlo_module) {
// In some cases, we have to place the result of an instruction in a temporary
// buffer. For instance, the buffer that holds an external parameter is
// assumed immutable at this point, and should not be reused for output
// (b/27180329). Therefore, in that case, we set the output to be a copy of
// the parameter.
HloPassPipeline pipeline("GPU-ir-emit-prepare");
/* TODO(b/117531509): Use LayoutAssignment::InstructionCanChangeLayout after
* fixing the ticket. */
pipeline.AddInvariantChecker<HloVerifier>(
/*layout_sensitive=*/true,
/*allow_mixed_precision=*/false,
LayoutAssignment::InstructionCanChangeLayout);
// Copy insertion should be performed immediately before IR emission to avoid
// inserting unnecessary copies (later pass adds an instruction which
// materializes the value) or missing a necessary copy (later pass removes an
// instruction which materializes a value). DCE must be run immediately before
// (and sometime after) copy insertion, to avoid dead code from interfering
// with the rewrites.
pipeline.AddPass<HloDCE>();
pipeline.AddPass<FlattenCallGraph>();
// The following pass LOGs memory waste. Add it when VLOGing is enabled only.
if (VLOG_IS_ON(2)) {
pipeline.AddPass<MemWastedOnPassthroughParams>();
}
pipeline.AddPass<GpuCopyInsertion>(GetCanShareBuffer());
pipeline.AddPass<GpuSanitizeConstantNames>();
return pipeline.Run(hlo_module).status();
}
StatusOr<std::unique_ptr<HloModule>> GpuCompiler::RunHloPasses(
std::unique_ptr<HloModule> module, se::StreamExecutor* stream_exec,
se::DeviceMemoryAllocator* device_allocator) {
// We dump the post-optimization HLO in RunBackend so no need to dump it here.
XLA_SCOPED_LOGGING_TIMER("GpuCompiler::RunHloPasses");
tensorflow::profiler::TraceMe activity(
[&] { return absl::StrCat("HLO Transforms:", module->name()); },
tensorflow::profiler::TraceMeLevel::kInfo);
TF_RETURN_IF_ERROR(
OptimizeHloModule(module.get(), stream_exec, device_allocator));
TF_RETURN_IF_ERROR(PrepareHloModuleForIrEmitting(module.get()));
return std::move(module);
}
StatusOr<std::unique_ptr<Executable>> GpuCompiler::RunBackend(
std::unique_ptr<HloModule> module, se::StreamExecutor* stream_exec,
se::DeviceMemoryAllocator* device_allocator) {
XLA_SCOPED_LOGGING_TIMER("GpuCompiler::RunBackend");
auto slow_compile_alarm = SlowCompilationAlarm();
TF_RET_CHECK(stream_exec != nullptr);
llvm::LLVMContext llvm_context;
std::string buffer;
llvm::raw_string_ostream error(buffer);
llvm::DiagnosticPrinterRawOStream printer(error);
auto DiagnosticHandler = [](const llvm::DiagnosticInfo& diag_info,
void* Context) {
auto printer = static_cast<llvm::DiagnosticPrinterRawOStream*>(Context);
diag_info.print(*printer);
};
llvm_context.setDiagnosticHandlerCallBack(DiagnosticHandler, &printer);
llvm::Module llvm_module(module->name().c_str(), llvm_context);
// Set the target triple and the data layout.
llvm_module.setTargetTriple(target_triple_);
llvm_module.setDataLayout(data_layout_);
// Determine the HLO schedule, which is an ordering of HLO instructions. This
// is used by buffer assignment to enable buffer reuse, and the same ordering
// must also be used to determine the thunk launch schedule.
std::unique_ptr<StreamAssignment> stream_assignment = AssignStreams(*module);
TF_ASSIGN_OR_RETURN(
std::unique_ptr<GpuHloSchedule> hlo_schedule,
GpuHloSchedule::Build(*module, *stream_assignment, pointer_size_));
// Run buffer analysis on the HLO graph. This analysis figures out which
// temporary buffers are required to run the computation.
TF_ASSIGN_OR_RETURN(
std::unique_ptr<BufferAssignment> buffer_assignment,
BufferAssigner::Run(
module.get(), hlo_schedule->ConsumeHloOrdering(),
BufferSizeBytesFunction(),
/*color_alignment=*/
[](LogicalBuffer::Color) { return kXlaAllocatedBufferAlignBytes; },
/*allocate_buffers_for_constants=*/true,
/*colorer=*/BufferAssigner::DefaultColorer(),
/*must_not_live_out=*/{}, GetCanShareBuffer()));
DumpHloModuleIfEnabled(*module, *buffer_assignment, "after_optimizations");
IrEmitterContext ir_emitter_context(
module.get(), buffer_assignment.get(), stream_exec->platform(),
&stream_exec->GetDeviceDescription(), &llvm_module);
HloComputation* entry_computation = module->entry_computation();
IrEmitterUnnested ir_emitter(module->config(), entry_computation,
&ir_emitter_context);
TF_RETURN_IF_ERROR(ir_emitter.EmitConstantGlobals());
{
XLA_SCOPED_LOGGING_TIMER("GpuCompiler::RunBackend - IR emission");
TF_RETURN_IF_ERROR(entry_computation->Accept(&ir_emitter));
}
if (user_pre_optimization_hook_) {
user_pre_optimization_hook_(llvm_module);
}
string ir_module_string_before_opt;
const bool embed_ir_in_executable =
module->config().debug_options().xla_embed_ir_in_executable();
if (embed_ir_in_executable) {
ir_module_string_before_opt = llvm_ir::DumpModuleToString(llvm_module);
}
llvm_ir::DumpIrIfEnabled(*module, llvm_module, /*optimized=*/false);
{
XLA_SCOPED_LOGGING_TIMER("GpuCompiler::RunBackend - Running LLVM verifier");
std::string err;
llvm::raw_string_ostream err_stream(err);
// verifyModule() returns true if the module is broken.
TF_RET_CHECK(!llvm::verifyModule(llvm_module, &err_stream))
<< "Invalid LLVM IR before optimizations:\n"
<< err_stream.str()
<< "\nThis probably indicates a bug in the HLO -> LLVM IR lowering. "
"Rerun with --xla_dump_to to get the IR. ";
}
GpuVersion gpu_version = GetGpuVersion(stream_exec);
using BackendCompileResult = std::pair<std::string, std::vector<uint8>>;
TF_ASSIGN_OR_RETURN(BackendCompileResult backend_result,
CompileTargetBinary(module.get(), &llvm_module,
gpu_version, stream_exec));
auto thunk_schedule = absl::make_unique<ThunkSchedule>(
ir_emitter.ConsumeThunkSequence(), std::move(stream_assignment),
hlo_schedule->ThunkLaunchOrder());
if (DumpingEnabledForHloModule(*module)) {
DumpToFileInDirOrStdout(*module, "thunk_schedule",
thunk_schedule->ToString());
}
std::unique_ptr<HloProfileIndexMap> profile_index_map;
std::unique_ptr<HloProfilePrinterData> profile_printer;
if (module->config().hlo_profiling_enabled() || VLOG_IS_ON(1)) {
HloCostAnalysis cost_analysis(ShapeSizeBytesFunction());
cost_analysis.set_bytes_per_second(
stream_exec->GetDeviceDescription().memory_bandwidth());
TF_RETURN_IF_ERROR(module->entry_computation()->Accept(&cost_analysis));
VLOG(1) << "HLO memory read+written: "
<< tensorflow::strings::HumanReadableNumBytes(
cost_analysis.bytes_accessed());
if (module->config().hlo_profiling_enabled()) {
profile_index_map = absl::make_unique<HloProfileIndexMap>(*module);
profile_printer = CreateHloProfilePrinterData(
*profile_index_map, cost_analysis, entry_computation->name());
}
}
auto* gpu_executable = new GpuExecutable(
backend_result.first, backend_result.second, gpu_version,
std::move(thunk_schedule), std::move(module),
std::move(buffer_assignment), std::move(profile_printer),
std::move(profile_index_map));
if (embed_ir_in_executable) {
DCHECK_NE("", ir_module_string_before_opt);
gpu_executable->set_ir_module_string(ir_module_string_before_opt);
}
return std::unique_ptr<Executable>(gpu_executable);
}
StatusOr<std::vector<std::unique_ptr<AotCompilationResult>>>
GpuCompiler::CompileAheadOfTime(std::unique_ptr<HloModuleGroup> module_group,
const AotCompilationOptions& options) {
return Unimplemented("not yet implemented: GpuCompiler::CompileAheadOfTime");
}
} // namespace gpu
} // namespace xla