| //===- AffineOps.cpp - MLIR Affine Operations -----------------------------===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| |
| #include "mlir/AffineOps/AffineOps.h" |
| #include "mlir/IR/Block.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/IntegerSet.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/OpImplementation.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/StandardOps/Ops.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/Support/Debug.h" |
| using namespace mlir; |
| using llvm::dbgs; |
| |
| #define DEBUG_TYPE "affine-analysis" |
| |
| //===----------------------------------------------------------------------===// |
| // AffineOpsDialect |
| //===----------------------------------------------------------------------===// |
| |
| AffineOpsDialect::AffineOpsDialect(MLIRContext *context) |
| : Dialect(/*namePrefix=*/"", context) { |
| addOperations<AffineApplyOp, AffineForOp, AffineIfOp>(); |
| } |
| |
| /// A utility function to check if a value is defined at the top level of a |
| /// function. A value defined at the top level is always a valid symbol. |
| bool mlir::isTopLevelSymbol(const Value *value) { |
| if (auto *arg = dyn_cast<BlockArgument>(value)) |
| return arg->getOwner()->getParent()->getContainingFunction(); |
| return value->getDefiningInst()->getParentInst() == nullptr; |
| } |
| |
| // Value can be used as a dimension id if it is valid as a symbol, or |
| // it is an induction variable, or it is a result of affine apply operation |
| // with dimension id arguments. |
| bool mlir::isValidDim(const Value *value) { |
| // The value must be an index type. |
| if (!value->getType().isIndex()) |
| return false; |
| |
| if (auto *inst = value->getDefiningInst()) { |
| // Top level instruction or constant operation is ok. |
| if (inst->getParentInst() == nullptr || inst->isa<ConstantOp>()) |
| return true; |
| // Affine apply operation is ok if all of its operands are ok. |
| if (auto op = inst->dyn_cast<AffineApplyOp>()) |
| return op->isValidDim(); |
| // The dim op is okay if its operand memref/tensor is defined at the top |
| // level. |
| if (auto dimOp = inst->dyn_cast<DimOp>()) |
| return isTopLevelSymbol(dimOp->getOperand()); |
| return false; |
| } |
| // This value is a block argument (which also includes 'for' loop IVs). |
| return true; |
| } |
| |
| // Value can be used as a symbol if it is a constant, or it is defined at |
| // the top level, or it is a result of affine apply operation with symbol |
| // arguments. |
| bool mlir::isValidSymbol(const Value *value) { |
| // The value must be an index type. |
| if (!value->getType().isIndex()) |
| return false; |
| |
| if (auto *inst = value->getDefiningInst()) { |
| // Top level instruction or constant operation is ok. |
| if (inst->getParentInst() == nullptr || inst->isa<ConstantOp>()) |
| return true; |
| // Affine apply operation is ok if all of its operands are ok. |
| if (auto op = inst->dyn_cast<AffineApplyOp>()) |
| return op->isValidSymbol(); |
| // The dim op is okay if its operand memref/tensor is defined at the top |
| // level. |
| if (auto dimOp = inst->dyn_cast<DimOp>()) |
| return isTopLevelSymbol(dimOp->getOperand()); |
| return false; |
| } |
| // Otherwise, the only valid symbol is a top level block argument. |
| auto *arg = cast<BlockArgument>(value); |
| return arg->getOwner()->getParent()->getContainingFunction(); |
| } |
| |
| /// Utility function to verify that a set of operands are valid dimension and |
| /// symbol identifiers. The operands should be layed out such that the dimension |
| /// operands are before the symbol operands. This function returns true if there |
| /// was an invalid operand. An operation is provided to emit any necessary |
| /// errors. |
| template <typename OpTy> |
| static bool |
| verifyDimAndSymbolIdentifiers(const OpTy &op, |
| Instruction::const_operand_range operands, |
| unsigned numDims) { |
| unsigned opIt = 0; |
| for (auto *operand : operands) { |
| if (opIt++ < numDims) { |
| if (!isValidDim(operand)) |
| return op.emitOpError("operand cannot be used as a dimension id"); |
| } else if (!isValidSymbol(operand)) { |
| return op.emitOpError("operand cannot be used as a symbol"); |
| } |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AffineApplyOp |
| //===----------------------------------------------------------------------===// |
| |
| void AffineApplyOp::build(Builder *builder, OperationState *result, |
| AffineMap map, ArrayRef<Value *> operands) { |
| result->addOperands(operands); |
| result->types.append(map.getNumResults(), builder->getIndexType()); |
| result->addAttribute("map", builder->getAffineMapAttr(map)); |
| } |
| |
| bool AffineApplyOp::parse(OpAsmParser *parser, OperationState *result) { |
| auto &builder = parser->getBuilder(); |
| auto affineIntTy = builder.getIndexType(); |
| |
| AffineMapAttr mapAttr; |
| unsigned numDims; |
| if (parser->parseAttribute(mapAttr, "map", result->attributes) || |
| parseDimAndSymbolList(parser, result->operands, numDims) || |
| parser->parseOptionalAttributeDict(result->attributes)) |
| return true; |
| auto map = mapAttr.getValue(); |
| |
| if (map.getNumDims() != numDims || |
| numDims + map.getNumSymbols() != result->operands.size()) { |
| return parser->emitError(parser->getNameLoc(), |
| "dimension or symbol index mismatch"); |
| } |
| |
| result->types.append(map.getNumResults(), affineIntTy); |
| return false; |
| } |
| |
| void AffineApplyOp::print(OpAsmPrinter *p) { |
| auto map = getAffineMap(); |
| *p << "affine.apply " << map; |
| printDimAndSymbolList(operand_begin(), operand_end(), map.getNumDims(), p); |
| p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{"map"}); |
| } |
| |
| bool AffineApplyOp::verify() { |
| // Check that affine map attribute was specified. |
| auto affineMapAttr = getAttrOfType<AffineMapAttr>("map"); |
| if (!affineMapAttr) |
| return emitOpError("requires an affine map"); |
| |
| // Check input and output dimensions match. |
| auto map = affineMapAttr.getValue(); |
| |
| // Verify that operand count matches affine map dimension and symbol count. |
| if (getNumOperands() != map.getNumDims() + map.getNumSymbols()) |
| return emitOpError( |
| "operand count and affine map dimension and symbol count must match"); |
| |
| // Verify that the operands are valid dimension and symbol identifiers. |
| if (verifyDimAndSymbolIdentifiers(*this, getOperands(), map.getNumDims())) |
| return true; |
| |
| // Verify that the map only produces one result. |
| if (map.getNumResults() != 1) |
| return emitOpError("mapping must produce one value"); |
| |
| return false; |
| } |
| |
| // The result of the affine apply operation can be used as a dimension id if it |
| // is a CFG value or if it is an Value, and all the operands are valid |
| // dimension ids. |
| bool AffineApplyOp::isValidDim() const { |
| return llvm::all_of(getOperands(), |
| [](const Value *op) { return mlir::isValidDim(op); }); |
| } |
| |
| // The result of the affine apply operation can be used as a symbol if it is |
| // a CFG value or if it is an Value, and all the operands are symbols. |
| bool AffineApplyOp::isValidSymbol() const { |
| return llvm::all_of(getOperands(), |
| [](const Value *op) { return mlir::isValidSymbol(op); }); |
| } |
| |
| Attribute AffineApplyOp::constantFold(ArrayRef<Attribute> operands, |
| MLIRContext *context) { |
| auto map = getAffineMap(); |
| SmallVector<Attribute, 1> result; |
| if (failed(map.constantFold(operands, result))) |
| return Attribute(); |
| return result[0]; |
| } |
| |
| namespace { |
| /// SimplifyAffineApply operations. |
| /// |
| struct SimplifyAffineApply : public RewritePattern { |
| SimplifyAffineApply(MLIRContext *context) |
| : RewritePattern(AffineApplyOp::getOperationName(), 1, context) {} |
| |
| PatternMatchResult match(Instruction *op) const override; |
| void rewrite(Instruction *op, std::unique_ptr<PatternState> state, |
| PatternRewriter &rewriter) const override; |
| }; |
| } // end anonymous namespace. |
| |
| namespace { |
| /// An `AffineApplyNormalizer` is a helper class that is not visible to the user |
| /// and supports renumbering operands of AffineApplyOp. This acts as a |
| /// reindexing map of Value* to positional dims or symbols and allows |
| /// simplifications such as: |
| /// |
| /// ```mlir |
| /// %1 = affine.apply (d0, d1) -> (d0 - d1) (%0, %0) |
| /// ``` |
| /// |
| /// into: |
| /// |
| /// ```mlir |
| /// %1 = affine.apply () -> (0) |
| /// ``` |
| struct AffineApplyNormalizer { |
| AffineApplyNormalizer(AffineMap map, ArrayRef<Value *> operands); |
| |
| /// Returns the AffineMap resulting from normalization. |
| AffineMap getAffineMap() { return affineMap; } |
| |
| SmallVector<Value *, 8> getOperands() { |
| SmallVector<Value *, 8> res(reorderedDims); |
| res.append(concatenatedSymbols.begin(), concatenatedSymbols.end()); |
| return res; |
| } |
| |
| private: |
| /// Helper function to insert `v` into the coordinate system of the current |
| /// AffineApplyNormalizer. Returns the AffineDimExpr with the corresponding |
| /// renumbered position. |
| AffineDimExpr renumberOneDim(Value *v); |
| |
| /// Given an `other` normalizer, this rewrites `other.affineMap` in the |
| /// coordinate system of the current AffineApplyNormalizer. |
| /// Returns the rewritten AffineMap and updates the dims and symbols of |
| /// `this`. |
| AffineMap renumber(const AffineApplyNormalizer &other); |
| |
| /// Maps of Value* to position in `affineMap`. |
| DenseMap<Value *, unsigned> dimValueToPosition; |
| |
| /// Ordered dims and symbols matching positional dims and symbols in |
| /// `affineMap`. |
| SmallVector<Value *, 8> reorderedDims; |
| SmallVector<Value *, 8> concatenatedSymbols; |
| |
| AffineMap affineMap; |
| |
| /// Used with RAII to control the depth at which AffineApply are composed |
| /// recursively. Only accepts depth 1 for now to allow a behavior where a |
| /// newly composed AffineApplyOp does not increase the length of the chain of |
| /// AffineApplyOps. Full composition is implemented iteratively on top of |
| /// this behavior. |
| static unsigned &affineApplyDepth() { |
| static thread_local unsigned depth = 0; |
| return depth; |
| } |
| static constexpr unsigned kMaxAffineApplyDepth = 1; |
| |
| AffineApplyNormalizer() { affineApplyDepth()++; } |
| |
| public: |
| ~AffineApplyNormalizer() { affineApplyDepth()--; } |
| }; |
| |
| /// FIXME: this is massive overkill for simple obviously always matching |
| /// canonicalizations. Fix the pattern rewriter to make this easy. |
| struct SimplifyAffineApplyState : public PatternState { |
| AffineMap map; |
| SmallVector<Value *, 8> operands; |
| |
| SimplifyAffineApplyState(AffineMap map, |
| const SmallVector<Value *, 8> &operands) |
| : map(map), operands(operands) {} |
| }; |
| |
| } // end anonymous namespace. |
| |
| AffineDimExpr AffineApplyNormalizer::renumberOneDim(Value *v) { |
| DenseMap<Value *, unsigned>::iterator iterPos; |
| bool inserted = false; |
| std::tie(iterPos, inserted) = |
| dimValueToPosition.insert(std::make_pair(v, dimValueToPosition.size())); |
| if (inserted) { |
| reorderedDims.push_back(v); |
| } |
| return getAffineDimExpr(iterPos->second, v->getFunction()->getContext()) |
| .cast<AffineDimExpr>(); |
| } |
| |
| AffineMap AffineApplyNormalizer::renumber(const AffineApplyNormalizer &other) { |
| SmallVector<AffineExpr, 8> dimRemapping; |
| for (auto *v : other.reorderedDims) { |
| auto kvp = other.dimValueToPosition.find(v); |
| if (dimRemapping.size() <= kvp->second) |
| dimRemapping.resize(kvp->second + 1); |
| dimRemapping[kvp->second] = renumberOneDim(kvp->first); |
| } |
| unsigned numSymbols = concatenatedSymbols.size(); |
| unsigned numOtherSymbols = other.concatenatedSymbols.size(); |
| SmallVector<AffineExpr, 8> symRemapping(numOtherSymbols); |
| for (unsigned idx = 0; idx < numOtherSymbols; ++idx) { |
| symRemapping[idx] = |
| getAffineSymbolExpr(idx + numSymbols, other.affineMap.getContext()); |
| } |
| concatenatedSymbols.insert(concatenatedSymbols.end(), |
| other.concatenatedSymbols.begin(), |
| other.concatenatedSymbols.end()); |
| auto map = other.affineMap; |
| return map.replaceDimsAndSymbols(dimRemapping, symRemapping, |
| dimRemapping.size(), symRemapping.size()); |
| } |
| |
| // Gather the positions of the operands that are produced by an AffineApplyOp. |
| static llvm::SetVector<unsigned> |
| indicesFromAffineApplyOp(ArrayRef<Value *> operands) { |
| llvm::SetVector<unsigned> res; |
| for (auto en : llvm::enumerate(operands)) { |
| auto *t = en.value(); |
| if (t->getDefiningInst() && t->getDefiningInst()->isa<AffineApplyOp>()) { |
| res.insert(en.index()); |
| } |
| } |
| return res; |
| } |
| |
| // Support the special case of a symbol coming from an AffineApplyOp that needs |
| // to be composed into the current AffineApplyOp. |
| // This case is handled by rewriting all such symbols into dims for the purpose |
| // of allowing mathematical AffineMap composition. |
| // Returns an AffineMap where symbols that come from an AffineApplyOp have been |
| // rewritten as dims and are ordered after the original dims. |
| // TODO(andydavis,ntv): This promotion makes AffineMap lose track of which |
| // symbols are represented as dims. This loss is static but can still be |
| // recovered dynamically (with `isValidSymbol`). Still this is annoying for the |
| // semi-affine map case. A dynamic canonicalization of all dims that are valid |
| // symbols (a.k.a `canonicalizePromotedSymbols`) into symbols helps and even |
| // results in better simplifications and foldings. But we should evaluate |
| // whether this behavior is what we really want after using more. |
| static AffineMap promoteComposedSymbolsAsDims(AffineMap map, |
| ArrayRef<Value *> symbols) { |
| if (symbols.empty()) { |
| return map; |
| } |
| |
| // Sanity check on symbols. |
| for (auto *sym : symbols) { |
| assert(isValidSymbol(sym) && "Expected only valid symbols"); |
| (void)sym; |
| } |
| |
| // Extract the symbol positions that come from an AffineApplyOp and |
| // needs to be rewritten as dims. |
| auto symPositions = indicesFromAffineApplyOp(symbols); |
| if (symPositions.empty()) { |
| return map; |
| } |
| |
| // Create the new map by replacing each symbol at pos by the next new dim. |
| unsigned numDims = map.getNumDims(); |
| unsigned numSymbols = map.getNumSymbols(); |
| unsigned numNewDims = 0; |
| unsigned numNewSymbols = 0; |
| SmallVector<AffineExpr, 8> symReplacements(numSymbols); |
| for (unsigned i = 0; i < numSymbols; ++i) { |
| symReplacements[i] = |
| symPositions.count(i) > 0 |
| ? getAffineDimExpr(numDims + numNewDims++, map.getContext()) |
| : getAffineSymbolExpr(numNewSymbols++, map.getContext()); |
| } |
| assert(numSymbols >= numNewDims); |
| AffineMap newMap = map.replaceDimsAndSymbols( |
| {}, symReplacements, numDims + numNewDims, numNewSymbols); |
| |
| return newMap; |
| } |
| |
| /// The AffineNormalizer composes AffineApplyOp recursively. Its purpose is to |
| /// keep a correspondence between the mathematical `map` and the `operands` of |
| /// a given AffineApplyOp. This correspondence is maintained by iterating over |
| /// the operands and forming an `auxiliaryMap` that can be composed |
| /// mathematically with `map`. To keep this correspondence in cases where |
| /// symbols are produced by affine.apply operations, we perform a local rewrite |
| /// of symbols as dims. |
| /// |
| /// Rationale for locally rewriting symbols as dims: |
| /// ================================================ |
| /// The mathematical composition of AffineMap must always concatenate symbols |
| /// because it does not have enough information to do otherwise. For example, |
| /// composing `(d0)[s0] -> (d0 + s0)` with itself must produce |
| /// `(d0)[s0, s1] -> (d0 + s0 + s1)`. |
| /// |
| /// The result is only equivalent to `(d0)[s0] -> (d0 + 2 * s0)` when |
| /// applied to the same mlir::Value* for both s0 and s1. |
| /// As a consequence mathematical composition of AffineMap always concatenates |
| /// symbols. |
| /// |
| /// When AffineMaps are used in AffineApplyOp however, they may specify |
| /// composition via symbols, which is ambiguous mathematically. This corner case |
| /// is handled by locally rewriting such symbols that come from AffineApplyOp |
| /// into dims and composing through dims. |
| /// TODO(andydavis, ntv): Composition via symbols comes at a significant code |
| /// complexity. Alternatively we should investigate whether we want to |
| /// explicitly disallow symbols coming from affine.apply and instead force the |
| /// user to compose symbols beforehand. The annoyances may be small (i.e. 1 or 2 |
| /// extra API calls for such uses, which haven't popped up until now) and the |
| /// benefit potentially big: simpler and more maintainable code for a |
| /// non-trivial, recursive, procedure. |
| AffineApplyNormalizer::AffineApplyNormalizer(AffineMap map, |
| ArrayRef<Value *> operands) |
| : AffineApplyNormalizer() { |
| static_assert(kMaxAffineApplyDepth > 0, "kMaxAffineApplyDepth must be > 0"); |
| assert(map.getRangeSizes().empty() && "Unbounded map expected"); |
| assert(map.getNumInputs() == operands.size() && |
| "number of operands does not match the number of map inputs"); |
| |
| LLVM_DEBUG(map.print(dbgs() << "\nInput map: ")); |
| |
| // Promote symbols that come from an AffineApplyOp to dims by rewriting the |
| // map to always refer to: |
| // (dims, symbols coming from AffineApplyOp, other symbols). |
| // The order of operands can remain unchanged. |
| // This is a simplification that relies on 2 ordering properties: |
| // 1. rewritten symbols always appear after the original dims in the map; |
| // 2. operands are traversed in order and either dispatched to: |
| // a. auxiliaryExprs (dims and symbols rewritten as dims); |
| // b. concatenatedSymbols (all other symbols) |
| // This allows operand order to remain unchanged. |
| unsigned numDimsBeforeRewrite = map.getNumDims(); |
| map = promoteComposedSymbolsAsDims(map, |
| operands.take_back(map.getNumSymbols())); |
| |
| LLVM_DEBUG(map.print(dbgs() << "\nRewritten map: ")); |
| |
| SmallVector<AffineExpr, 8> auxiliaryExprs; |
| bool furtherCompose = (affineApplyDepth() <= kMaxAffineApplyDepth); |
| // We fully spell out the 2 cases below. In this particular instance a little |
| // code duplication greatly improves readability. |
| // Note that the first branch would disappear if we only supported full |
| // composition (i.e. infinite kMaxAffineApplyDepth). |
| if (!furtherCompose) { |
| // 1. Only dispatch dims or symbols. |
| for (auto en : llvm::enumerate(operands)) { |
| auto *t = en.value(); |
| assert(t->getType().isIndex()); |
| bool isDim = (en.index() < map.getNumDims()); |
| if (isDim) { |
| // a. The mathematical composition of AffineMap composes dims. |
| auxiliaryExprs.push_back(renumberOneDim(t)); |
| } else { |
| // b. The mathematical composition of AffineMap concatenates symbols. |
| // We do the same for symbol operands. |
| concatenatedSymbols.push_back(t); |
| } |
| } |
| } else { |
| assert(numDimsBeforeRewrite <= operands.size()); |
| // 2. Compose AffineApplyOps and dispatch dims or symbols. |
| for (unsigned i = 0, e = operands.size(); i < e; ++i) { |
| auto *t = operands[i]; |
| auto affineApply = t->getDefiningInst() |
| ? t->getDefiningInst()->dyn_cast<AffineApplyOp>() |
| : OpPointer<AffineApplyOp>(); |
| if (affineApply) { |
| // a. Compose affine.apply instructions. |
| LLVM_DEBUG(affineApply->getInstruction()->print( |
| dbgs() << "\nCompose AffineApplyOp recursively: ")); |
| AffineMap affineApplyMap = affineApply->getAffineMap(); |
| SmallVector<Value *, 8> affineApplyOperands( |
| affineApply->getOperands().begin(), |
| affineApply->getOperands().end()); |
| AffineApplyNormalizer normalizer(affineApplyMap, affineApplyOperands); |
| |
| LLVM_DEBUG(normalizer.affineMap.print( |
| dbgs() << "\nRenumber into current normalizer: ")); |
| |
| auto renumberedMap = renumber(normalizer); |
| |
| LLVM_DEBUG( |
| renumberedMap.print(dbgs() << "\nRecursive composition yields: ")); |
| |
| auxiliaryExprs.push_back(renumberedMap.getResult(0)); |
| } else { |
| if (i < numDimsBeforeRewrite) { |
| // b. The mathematical composition of AffineMap composes dims. |
| auxiliaryExprs.push_back(renumberOneDim(t)); |
| } else { |
| // c. The mathematical composition of AffineMap concatenates symbols. |
| // We do the same for symbol operands. |
| concatenatedSymbols.push_back(t); |
| } |
| } |
| } |
| } |
| |
| // Early exit if `map` is already composed. |
| if (auxiliaryExprs.empty()) { |
| affineMap = map; |
| return; |
| } |
| |
| assert(concatenatedSymbols.size() >= map.getNumSymbols() && |
| "Unexpected number of concatenated symbols"); |
| auto numDims = dimValueToPosition.size(); |
| auto numSymbols = concatenatedSymbols.size() - map.getNumSymbols(); |
| auto auxiliaryMap = AffineMap::get(numDims, numSymbols, auxiliaryExprs, {}); |
| |
| LLVM_DEBUG(map.print(dbgs() << "\nCompose map: ")); |
| LLVM_DEBUG(auxiliaryMap.print(dbgs() << "\nWith map: ")); |
| LLVM_DEBUG(map.compose(auxiliaryMap).print(dbgs() << "\nResult: ")); |
| |
| // TODO(andydavis,ntv): Disabling simplification results in major speed gains. |
| // Another option is to cache the results as it is expected a lot of redundant |
| // work is performed in practice. |
| affineMap = simplifyAffineMap(map.compose(auxiliaryMap)); |
| |
| LLVM_DEBUG(affineMap.print(dbgs() << "\nSimplified result: ")); |
| LLVM_DEBUG(dbgs() << "\n"); |
| } |
| |
| /// Implements `map` and `operands` composition and simplification to support |
| /// `makeComposedAffineApply`. This can be called to achieve the same effects |
| /// on `map` and `operands` without creating an AffineApplyOp that needs to be |
| /// immediately deleted. |
| static void composeAffineMapAndOperands(AffineMap *map, |
| SmallVectorImpl<Value *> *operands) { |
| AffineApplyNormalizer normalizer(*map, *operands); |
| auto normalizedMap = normalizer.getAffineMap(); |
| auto normalizedOperands = normalizer.getOperands(); |
| canonicalizeMapAndOperands(&normalizedMap, &normalizedOperands); |
| *map = normalizedMap; |
| *operands = normalizedOperands; |
| assert(*map); |
| } |
| |
| void mlir::fullyComposeAffineMapAndOperands( |
| AffineMap *map, SmallVectorImpl<Value *> *operands) { |
| while (llvm::any_of(*operands, [](Value *v) { |
| return v->getDefiningInst() && v->getDefiningInst()->isa<AffineApplyOp>(); |
| })) { |
| composeAffineMapAndOperands(map, operands); |
| } |
| } |
| |
| OpPointer<AffineApplyOp> |
| mlir::makeComposedAffineApply(FuncBuilder *b, Location loc, AffineMap map, |
| ArrayRef<Value *> operands) { |
| AffineMap normalizedMap = map; |
| SmallVector<Value *, 8> normalizedOperands(operands.begin(), operands.end()); |
| composeAffineMapAndOperands(&normalizedMap, &normalizedOperands); |
| assert(normalizedMap); |
| return b->create<AffineApplyOp>(loc, normalizedMap, normalizedOperands); |
| } |
| |
| // A symbol may appear as a dim in affine.apply operations. This function |
| // canonicalizes dims that are valid symbols into actual symbols. |
| static void |
| canonicalizePromotedSymbols(AffineMap *map, |
| llvm::SmallVectorImpl<Value *> *operands) { |
| if (!map || operands->empty()) |
| return; |
| |
| assert(map->getNumInputs() == operands->size() && |
| "map inputs must match number of operands"); |
| |
| auto *context = map->getContext(); |
| SmallVector<Value *, 8> resultOperands; |
| resultOperands.reserve(operands->size()); |
| SmallVector<Value *, 8> remappedSymbols; |
| remappedSymbols.reserve(operands->size()); |
| unsigned nextDim = 0; |
| unsigned nextSym = 0; |
| unsigned oldNumSyms = map->getNumSymbols(); |
| SmallVector<AffineExpr, 8> dimRemapping(map->getNumDims()); |
| for (unsigned i = 0, e = map->getNumInputs(); i != e; ++i) { |
| if (i < map->getNumDims()) { |
| if (isValidSymbol((*operands)[i])) { |
| // This is a valid symbols that appears as a dim, canonicalize it. |
| dimRemapping[i] = getAffineSymbolExpr(oldNumSyms + nextSym++, context); |
| remappedSymbols.push_back((*operands)[i]); |
| } else { |
| dimRemapping[i] = getAffineDimExpr(nextDim++, context); |
| resultOperands.push_back((*operands)[i]); |
| } |
| } else { |
| resultOperands.push_back((*operands)[i]); |
| } |
| } |
| |
| resultOperands.append(remappedSymbols.begin(), remappedSymbols.end()); |
| *operands = resultOperands; |
| *map = map->replaceDimsAndSymbols(dimRemapping, {}, nextDim, |
| oldNumSyms + nextSym); |
| |
| assert(map->getNumInputs() == operands->size() && |
| "map inputs must match number of operands"); |
| } |
| |
| void mlir::canonicalizeMapAndOperands( |
| AffineMap *map, llvm::SmallVectorImpl<Value *> *operands) { |
| if (!map || operands->empty()) |
| return; |
| |
| assert(map->getNumInputs() == operands->size() && |
| "map inputs must match number of operands"); |
| |
| canonicalizePromotedSymbols(map, operands); |
| |
| // Check to see what dims are used. |
| llvm::SmallBitVector usedDims(map->getNumDims()); |
| llvm::SmallBitVector usedSyms(map->getNumSymbols()); |
| map->walkExprs([&](AffineExpr expr) { |
| if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) |
| usedDims[dimExpr.getPosition()] = true; |
| else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) |
| usedSyms[symExpr.getPosition()] = true; |
| }); |
| |
| auto *context = map->getContext(); |
| |
| SmallVector<Value *, 8> resultOperands; |
| resultOperands.reserve(operands->size()); |
| |
| llvm::SmallDenseMap<Value *, AffineExpr, 8> seenDims; |
| SmallVector<AffineExpr, 8> dimRemapping(map->getNumDims()); |
| unsigned nextDim = 0; |
| for (unsigned i = 0, e = map->getNumDims(); i != e; ++i) { |
| if (usedDims[i]) { |
| auto it = seenDims.find((*operands)[i]); |
| if (it == seenDims.end()) { |
| dimRemapping[i] = getAffineDimExpr(nextDim++, context); |
| resultOperands.push_back((*operands)[i]); |
| seenDims.insert(std::make_pair((*operands)[i], dimRemapping[i])); |
| } else { |
| dimRemapping[i] = it->second; |
| } |
| } |
| } |
| llvm::SmallDenseMap<Value *, AffineExpr, 8> seenSymbols; |
| SmallVector<AffineExpr, 8> symRemapping(map->getNumSymbols()); |
| unsigned nextSym = 0; |
| for (unsigned i = 0, e = map->getNumSymbols(); i != e; ++i) { |
| if (usedSyms[i]) { |
| auto it = seenSymbols.find((*operands)[i + map->getNumDims()]); |
| if (it == seenSymbols.end()) { |
| symRemapping[i] = getAffineSymbolExpr(nextSym++, context); |
| resultOperands.push_back((*operands)[i + map->getNumDims()]); |
| seenSymbols.insert(std::make_pair((*operands)[i + map->getNumDims()], |
| symRemapping[i])); |
| } else { |
| symRemapping[i] = it->second; |
| } |
| } |
| } |
| *map = |
| map->replaceDimsAndSymbols(dimRemapping, symRemapping, nextDim, nextSym); |
| *operands = resultOperands; |
| } |
| |
| PatternMatchResult SimplifyAffineApply::match(Instruction *op) const { |
| auto apply = op->cast<AffineApplyOp>(); |
| auto map = apply->getAffineMap(); |
| |
| AffineMap oldMap = map; |
| SmallVector<Value *, 8> resultOperands(apply->getOperands()); |
| composeAffineMapAndOperands(&map, &resultOperands); |
| if (map != oldMap) |
| return matchSuccess( |
| llvm::make_unique<SimplifyAffineApplyState>(map, resultOperands)); |
| |
| return matchFailure(); |
| } |
| |
| void SimplifyAffineApply::rewrite(Instruction *op, |
| std::unique_ptr<PatternState> state, |
| PatternRewriter &rewriter) const { |
| auto *applyState = static_cast<SimplifyAffineApplyState *>(state.get()); |
| rewriter.replaceOpWithNewOp<AffineApplyOp>(op, applyState->map, |
| applyState->operands); |
| } |
| |
| void AffineApplyOp::getCanonicalizationPatterns( |
| OwningRewritePatternList &results, MLIRContext *context) { |
| results.push_back(llvm::make_unique<SimplifyAffineApply>(context)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AffineForOp |
| //===----------------------------------------------------------------------===// |
| |
| void AffineForOp::build(Builder *builder, OperationState *result, |
| ArrayRef<Value *> lbOperands, AffineMap lbMap, |
| ArrayRef<Value *> ubOperands, AffineMap ubMap, |
| int64_t step) { |
| assert((!lbMap && lbOperands.empty()) || |
| lbOperands.size() == lbMap.getNumInputs() && |
| "lower bound operand count does not match the affine map"); |
| assert((!ubMap && ubOperands.empty()) || |
| ubOperands.size() == ubMap.getNumInputs() && |
| "upper bound operand count does not match the affine map"); |
| assert(step > 0 && "step has to be a positive integer constant"); |
| |
| // Add an attribute for the step. |
| result->addAttribute(getStepAttrName(), |
| builder->getIntegerAttr(builder->getIndexType(), step)); |
| |
| // Add the lower bound. |
| result->addAttribute(getLowerBoundAttrName(), |
| builder->getAffineMapAttr(lbMap)); |
| result->addOperands(lbOperands); |
| |
| // Add the upper bound. |
| result->addAttribute(getUpperBoundAttrName(), |
| builder->getAffineMapAttr(ubMap)); |
| result->addOperands(ubOperands); |
| |
| // Reserve a region for the body. |
| result->reserveRegions(/*numReserved=*/1); |
| |
| // Set the operands list as resizable so that we can freely modify the bounds. |
| result->setOperandListToResizable(); |
| } |
| |
| void AffineForOp::build(Builder *builder, OperationState *result, int64_t lb, |
| int64_t ub, int64_t step) { |
| auto lbMap = AffineMap::getConstantMap(lb, builder->getContext()); |
| auto ubMap = AffineMap::getConstantMap(ub, builder->getContext()); |
| return build(builder, result, {}, lbMap, {}, ubMap, step); |
| } |
| |
| bool AffineForOp::verify() { |
| auto &bodyRegion = getInstruction()->getRegion(0); |
| |
| // The body region must contain a single basic block. |
| if (bodyRegion.empty() || std::next(bodyRegion.begin()) != bodyRegion.end()) |
| return emitOpError("expected body region to have a single block"); |
| |
| // Check that the body defines as single block argument for the induction |
| // variable. |
| auto *body = getBody(); |
| if (body->getNumArguments() != 1 || |
| !body->getArgument(0)->getType().isIndex()) |
| return emitOpError("expected body to have a single index argument for the " |
| "induction variable"); |
| |
| // Check that the body has no terminator. |
| if (!body->empty() && body->back().isKnownTerminator()) |
| return emitOpError("expects body block to not have a terminator"); |
| |
| // Verify that there are enough operands for the bounds. |
| AffineMap lowerBoundMap = getLowerBoundMap(), |
| upperBoundMap = getUpperBoundMap(); |
| if (getNumOperands() != |
| (lowerBoundMap.getNumInputs() + upperBoundMap.getNumInputs())) |
| return emitOpError( |
| "operand count must match with affine map dimension and symbol count"); |
| |
| // Verify that the bound operands are valid dimension/symbols. |
| /// Lower bound. |
| if (verifyDimAndSymbolIdentifiers(*this, getLowerBoundOperands(), |
| getLowerBoundMap().getNumDims())) |
| return true; |
| /// Upper bound. |
| if (verifyDimAndSymbolIdentifiers(*this, getUpperBoundOperands(), |
| getUpperBoundMap().getNumDims())) |
| return true; |
| return false; |
| } |
| |
| /// Parse a for operation loop bounds. |
| static bool parseBound(bool isLower, OperationState *result, OpAsmParser *p) { |
| // 'min' / 'max' prefixes are generally syntactic sugar, but are required if |
| // the map has multiple results. |
| bool failedToParsedMinMax = p->parseOptionalKeyword(isLower ? "max" : "min"); |
| |
| auto &builder = p->getBuilder(); |
| auto boundAttrName = isLower ? AffineForOp::getLowerBoundAttrName() |
| : AffineForOp::getUpperBoundAttrName(); |
| |
| // Parse ssa-id as identity map. |
| SmallVector<OpAsmParser::OperandType, 1> boundOpInfos; |
| if (p->parseOperandList(boundOpInfos)) |
| return true; |
| |
| if (!boundOpInfos.empty()) { |
| // Check that only one operand was parsed. |
| if (boundOpInfos.size() > 1) |
| return p->emitError(p->getNameLoc(), |
| "expected only one loop bound operand"); |
| |
| // TODO: improve error message when SSA value is not an affine integer. |
| // Currently it is 'use of value ... expects different type than prior uses' |
| if (p->resolveOperand(boundOpInfos.front(), builder.getIndexType(), |
| result->operands)) |
| return true; |
| |
| // Create an identity map using symbol id. This representation is optimized |
| // for storage. Analysis passes may expand it into a multi-dimensional map |
| // if desired. |
| AffineMap map = builder.getSymbolIdentityMap(); |
| result->addAttribute(boundAttrName, builder.getAffineMapAttr(map)); |
| return false; |
| } |
| |
| // Get the attribute location. |
| llvm::SMLoc attrLoc; |
| p->getCurrentLocation(&attrLoc); |
| |
| Attribute boundAttr; |
| if (p->parseAttribute(boundAttr, builder.getIndexType(), boundAttrName, |
| result->attributes)) |
| return true; |
| |
| // Parse full form - affine map followed by dim and symbol list. |
| if (auto affineMapAttr = boundAttr.dyn_cast<AffineMapAttr>()) { |
| unsigned currentNumOperands = result->operands.size(); |
| unsigned numDims; |
| if (parseDimAndSymbolList(p, result->operands, numDims)) |
| return true; |
| |
| auto map = affineMapAttr.getValue(); |
| if (map.getNumDims() != numDims) |
| return p->emitError( |
| p->getNameLoc(), |
| "dim operand count and integer set dim count must match"); |
| |
| unsigned numDimAndSymbolOperands = |
| result->operands.size() - currentNumOperands; |
| if (numDims + map.getNumSymbols() != numDimAndSymbolOperands) |
| return p->emitError( |
| p->getNameLoc(), |
| "symbol operand count and integer set symbol count must match"); |
| |
| // If the map has multiple results, make sure that we parsed the min/max |
| // prefix. |
| if (map.getNumResults() > 1 && failedToParsedMinMax) { |
| if (isLower) { |
| return p->emitError(attrLoc, "lower loop bound affine map with " |
| "multiple results requires 'max' prefix"); |
| } |
| return p->emitError(attrLoc, "upper loop bound affine map with multiple " |
| "results requires 'min' prefix"); |
| } |
| return false; |
| } |
| |
| // Parse custom assembly form. |
| if (auto integerAttr = boundAttr.dyn_cast<IntegerAttr>()) { |
| result->attributes.pop_back(); |
| result->addAttribute( |
| boundAttrName, builder.getAffineMapAttr( |
| builder.getConstantAffineMap(integerAttr.getInt()))); |
| return false; |
| } |
| |
| return p->emitError( |
| p->getNameLoc(), |
| "expected valid affine map representation for loop bounds"); |
| } |
| |
| bool AffineForOp::parse(OpAsmParser *parser, OperationState *result) { |
| auto &builder = parser->getBuilder(); |
| // Parse the induction variable followed by '='. |
| if (parser->parseRegionEntryBlockArgument(builder.getIndexType()) || |
| parser->parseEqual()) |
| return true; |
| |
| // Parse loop bounds. |
| if (parseBound(/*isLower=*/true, result, parser) || |
| parser->parseKeyword("to", " between bounds") || |
| parseBound(/*isLower=*/false, result, parser)) |
| return true; |
| |
| // Parse the optional loop step, we default to 1 if one is not present. |
| if (parser->parseOptionalKeyword("step")) { |
| result->addAttribute( |
| getStepAttrName(), |
| builder.getIntegerAttr(builder.getIndexType(), /*value=*/1)); |
| } else { |
| llvm::SMLoc stepLoc; |
| IntegerAttr stepAttr; |
| if (parser->getCurrentLocation(&stepLoc) || |
| parser->parseAttribute(stepAttr, builder.getIndexType(), |
| getStepAttrName().data(), result->attributes)) |
| return true; |
| |
| if (stepAttr.getValue().getSExtValue() < 0) |
| return parser->emitError( |
| stepLoc, |
| "expected step to be representable as a positive signed integer"); |
| } |
| |
| // Parse the body region. |
| result->reserveRegions(/*numReserved=*/1); |
| if (parser->parseRegion()) |
| return true; |
| |
| // Parse the optional attribute list. |
| if (parser->parseOptionalAttributeDict(result->attributes)) |
| return true; |
| |
| // Set the operands list as resizable so that we can freely modify the bounds. |
| result->setOperandListToResizable(); |
| return false; |
| } |
| |
| static void printBound(AffineBound bound, const char *prefix, OpAsmPrinter *p) { |
| AffineMap map = bound.getMap(); |
| |
| // Check if this bound should be printed using custom assembly form. |
| // The decision to restrict printing custom assembly form to trivial cases |
| // comes from the will to roundtrip MLIR binary -> text -> binary in a |
| // lossless way. |
| // Therefore, custom assembly form parsing and printing is only supported for |
| // zero-operand constant maps and single symbol operand identity maps. |
| if (map.getNumResults() == 1) { |
| AffineExpr expr = map.getResult(0); |
| |
| // Print constant bound. |
| if (map.getNumDims() == 0 && map.getNumSymbols() == 0) { |
| if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) { |
| *p << constExpr.getValue(); |
| return; |
| } |
| } |
| |
| // Print bound that consists of a single SSA symbol if the map is over a |
| // single symbol. |
| if (map.getNumDims() == 0 && map.getNumSymbols() == 1) { |
| if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) { |
| p->printOperand(bound.getOperand(0)); |
| return; |
| } |
| } |
| } else { |
| // Map has multiple results. Print 'min' or 'max' prefix. |
| *p << prefix << ' '; |
| } |
| |
| // Print the map and its operands. |
| p->printAffineMap(map); |
| printDimAndSymbolList(bound.operand_begin(), bound.operand_end(), |
| map.getNumDims(), p); |
| } |
| |
| void AffineForOp::print(OpAsmPrinter *p) { |
| *p << "for "; |
| p->printOperand(getBody()->getArgument(0)); |
| *p << " = "; |
| printBound(getLowerBound(), "max", p); |
| *p << " to "; |
| printBound(getUpperBound(), "min", p); |
| |
| if (getStep() != 1) |
| *p << " step " << getStep(); |
| p->printRegion(getInstruction()->getRegion(0), |
| /*printEntryBlockArgs=*/false); |
| p->printOptionalAttrDict(getAttrs(), |
| /*elidedAttrs=*/{getLowerBoundAttrName(), |
| getUpperBoundAttrName(), |
| getStepAttrName()}); |
| } |
| |
| namespace { |
| /// This is a pattern to fold constant loop bounds. |
| struct AffineForLoopBoundFolder : public RewritePattern { |
| /// The rootOpName is the name of the root operation to match against. |
| AffineForLoopBoundFolder(MLIRContext *context) |
| : RewritePattern(AffineForOp::getOperationName(), 1, context) {} |
| |
| PatternMatchResult match(Instruction *op) const override { |
| auto forOp = op->cast<AffineForOp>(); |
| |
| // If the loop has non-constant bounds, it may be foldable. |
| if (!forOp->hasConstantBounds()) |
| return matchSuccess(); |
| |
| return matchFailure(); |
| } |
| |
| void rewrite(Instruction *op, PatternRewriter &rewriter) const override { |
| auto forOp = op->cast<AffineForOp>(); |
| auto foldLowerOrUpperBound = [&forOp](bool lower) { |
| // Check to see if each of the operands is the result of a constant. If |
| // so, get the value. If not, ignore it. |
| SmallVector<Attribute, 8> operandConstants; |
| auto boundOperands = lower ? forOp->getLowerBoundOperands() |
| : forOp->getUpperBoundOperands(); |
| for (auto *operand : boundOperands) { |
| Attribute operandCst; |
| matchPattern(operand, m_Constant(&operandCst)); |
| operandConstants.push_back(operandCst); |
| } |
| |
| AffineMap boundMap = |
| lower ? forOp->getLowerBoundMap() : forOp->getUpperBoundMap(); |
| assert(boundMap.getNumResults() >= 1 && |
| "bound maps should have at least one result"); |
| SmallVector<Attribute, 4> foldedResults; |
| if (failed(boundMap.constantFold(operandConstants, foldedResults))) |
| return; |
| |
| // Compute the max or min as applicable over the results. |
| assert(!foldedResults.empty() && |
| "bounds should have at least one result"); |
| auto maxOrMin = foldedResults[0].cast<IntegerAttr>().getValue(); |
| for (unsigned i = 1, e = foldedResults.size(); i < e; i++) { |
| auto foldedResult = foldedResults[i].cast<IntegerAttr>().getValue(); |
| maxOrMin = lower ? llvm::APIntOps::smax(maxOrMin, foldedResult) |
| : llvm::APIntOps::smin(maxOrMin, foldedResult); |
| } |
| lower ? forOp->setConstantLowerBound(maxOrMin.getSExtValue()) |
| : forOp->setConstantUpperBound(maxOrMin.getSExtValue()); |
| }; |
| |
| // Try to fold the lower bound. |
| if (!forOp->hasConstantLowerBound()) |
| foldLowerOrUpperBound(/*lower=*/true); |
| |
| // Try to fold the upper bound. |
| if (!forOp->hasConstantUpperBound()) |
| foldLowerOrUpperBound(/*lower=*/false); |
| |
| rewriter.updatedRootInPlace(op); |
| } |
| }; |
| } // end anonymous namespace |
| |
| void AffineForOp::getCanonicalizationPatterns(OwningRewritePatternList &results, |
| MLIRContext *context) { |
| results.push_back(llvm::make_unique<AffineForLoopBoundFolder>(context)); |
| } |
| |
| Block *AffineForOp::createBody() { |
| auto &bodyRegion = getRegion(); |
| assert(bodyRegion.empty() && "expected no existing body blocks"); |
| |
| // Create a new block for the body, and add an argument for the induction |
| // variable. |
| Block *body = new Block(); |
| body->addArgument(IndexType::get(getInstruction()->getContext())); |
| bodyRegion.push_back(body); |
| return body; |
| } |
| |
| const AffineBound AffineForOp::getLowerBound() const { |
| auto lbMap = getLowerBoundMap(); |
| return AffineBound(OpPointer<AffineForOp>(*this), 0, lbMap.getNumInputs(), |
| lbMap); |
| } |
| |
| const AffineBound AffineForOp::getUpperBound() const { |
| auto lbMap = getLowerBoundMap(); |
| auto ubMap = getUpperBoundMap(); |
| return AffineBound(OpPointer<AffineForOp>(*this), lbMap.getNumInputs(), |
| getNumOperands(), ubMap); |
| } |
| |
| void AffineForOp::setLowerBound(ArrayRef<Value *> lbOperands, AffineMap map) { |
| assert(lbOperands.size() == map.getNumInputs()); |
| assert(map.getNumResults() >= 1 && "bound map has at least one result"); |
| |
| SmallVector<Value *, 4> newOperands(lbOperands.begin(), lbOperands.end()); |
| |
| auto ubOperands = getUpperBoundOperands(); |
| newOperands.append(ubOperands.begin(), ubOperands.end()); |
| getInstruction()->setOperands(newOperands); |
| |
| setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map)); |
| } |
| |
| void AffineForOp::setUpperBound(ArrayRef<Value *> ubOperands, AffineMap map) { |
| assert(ubOperands.size() == map.getNumInputs()); |
| assert(map.getNumResults() >= 1 && "bound map has at least one result"); |
| |
| SmallVector<Value *, 4> newOperands(getLowerBoundOperands()); |
| newOperands.append(ubOperands.begin(), ubOperands.end()); |
| getInstruction()->setOperands(newOperands); |
| |
| setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map)); |
| } |
| |
| void AffineForOp::setLowerBoundMap(AffineMap map) { |
| auto lbMap = getLowerBoundMap(); |
| assert(lbMap.getNumDims() == map.getNumDims() && |
| lbMap.getNumSymbols() == map.getNumSymbols()); |
| assert(map.getNumResults() >= 1 && "bound map has at least one result"); |
| (void)lbMap; |
| setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map)); |
| } |
| |
| void AffineForOp::setUpperBoundMap(AffineMap map) { |
| auto ubMap = getUpperBoundMap(); |
| assert(ubMap.getNumDims() == map.getNumDims() && |
| ubMap.getNumSymbols() == map.getNumSymbols()); |
| assert(map.getNumResults() >= 1 && "bound map has at least one result"); |
| (void)ubMap; |
| setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map)); |
| } |
| |
| bool AffineForOp::hasConstantLowerBound() const { |
| return getLowerBoundMap().isSingleConstant(); |
| } |
| |
| bool AffineForOp::hasConstantUpperBound() const { |
| return getUpperBoundMap().isSingleConstant(); |
| } |
| |
| int64_t AffineForOp::getConstantLowerBound() const { |
| return getLowerBoundMap().getSingleConstantResult(); |
| } |
| |
| int64_t AffineForOp::getConstantUpperBound() const { |
| return getUpperBoundMap().getSingleConstantResult(); |
| } |
| |
| void AffineForOp::setConstantLowerBound(int64_t value) { |
| setLowerBound( |
| {}, AffineMap::getConstantMap(value, getInstruction()->getContext())); |
| } |
| |
| void AffineForOp::setConstantUpperBound(int64_t value) { |
| setUpperBound( |
| {}, AffineMap::getConstantMap(value, getInstruction()->getContext())); |
| } |
| |
| AffineForOp::operand_range AffineForOp::getLowerBoundOperands() { |
| return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs()}; |
| } |
| |
| AffineForOp::const_operand_range AffineForOp::getLowerBoundOperands() const { |
| return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs()}; |
| } |
| |
| AffineForOp::operand_range AffineForOp::getUpperBoundOperands() { |
| return {operand_begin() + getLowerBoundMap().getNumInputs(), operand_end()}; |
| } |
| |
| AffineForOp::const_operand_range AffineForOp::getUpperBoundOperands() const { |
| return {operand_begin() + getLowerBoundMap().getNumInputs(), operand_end()}; |
| } |
| |
| bool AffineForOp::matchingBoundOperandList() const { |
| auto lbMap = getLowerBoundMap(); |
| auto ubMap = getUpperBoundMap(); |
| if (lbMap.getNumDims() != ubMap.getNumDims() || |
| lbMap.getNumSymbols() != ubMap.getNumSymbols()) |
| return false; |
| |
| unsigned numOperands = lbMap.getNumInputs(); |
| for (unsigned i = 0, e = lbMap.getNumInputs(); i < e; i++) { |
| // Compare Value *'s. |
| if (getOperand(i) != getOperand(numOperands + i)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Returns the induction variable for this loop. |
| Value *AffineForOp::getInductionVar() { return getBody()->getArgument(0); } |
| |
| /// Returns if the provided value is the induction variable of a AffineForOp. |
| bool mlir::isForInductionVar(const Value *val) { |
| return getForInductionVarOwner(val) != nullptr; |
| } |
| |
| /// Returns the loop parent of an induction variable. If the provided value is |
| /// not an induction variable, then return nullptr. |
| OpPointer<AffineForOp> mlir::getForInductionVarOwner(const Value *val) { |
| const BlockArgument *ivArg = dyn_cast<BlockArgument>(val); |
| if (!ivArg || !ivArg->getOwner()) |
| return OpPointer<AffineForOp>(); |
| auto *containingInst = ivArg->getOwner()->getParent()->getContainingInst(); |
| if (!containingInst) |
| return OpPointer<AffineForOp>(); |
| return containingInst->dyn_cast<AffineForOp>(); |
| } |
| |
| /// Extracts the induction variables from a list of AffineForOps and returns |
| /// them. |
| void mlir::extractForInductionVars(ArrayRef<OpPointer<AffineForOp>> forInsts, |
| SmallVectorImpl<Value *> *ivs) { |
| ivs->reserve(forInsts.size()); |
| for (auto forInst : forInsts) |
| ivs->push_back(forInst->getInductionVar()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AffineIfOp |
| //===----------------------------------------------------------------------===// |
| |
| void AffineIfOp::build(Builder *builder, OperationState *result, |
| IntegerSet condition, |
| ArrayRef<Value *> conditionOperands) { |
| result->addAttribute(getConditionAttrName(), IntegerSetAttr::get(condition)); |
| result->addOperands(conditionOperands); |
| |
| // Reserve 2 regions, one for the 'then' and one for the 'else' regions. |
| result->reserveRegions(2); |
| } |
| |
| bool AffineIfOp::verify() { |
| // Verify that we have a condition attribute. |
| auto conditionAttr = getAttrOfType<IntegerSetAttr>(getConditionAttrName()); |
| if (!conditionAttr) |
| return emitOpError("requires an integer set attribute named 'condition'"); |
| |
| // Verify that there are enough operands for the condition. |
| IntegerSet condition = conditionAttr.getValue(); |
| if (getNumOperands() != condition.getNumOperands()) |
| return emitOpError("operand count and condition integer set dimension and " |
| "symbol count must match"); |
| |
| // Verify that the operands are valid dimension/symbols. |
| if (verifyDimAndSymbolIdentifiers(*this, getOperands(), |
| condition.getNumDims())) |
| return true; |
| |
| // Verify that the entry of each child region does not have arguments. |
| for (auto ®ion : getInstruction()->getRegions()) { |
| if (region.empty()) |
| continue; |
| |
| // TODO(riverriddle) We currently do not allow multiple blocks in child |
| // regions. |
| if (std::next(region.begin()) != region.end()) |
| return emitOpError("expects only one block per 'then' or 'else' regions"); |
| if (region.front().back().isKnownTerminator()) |
| return emitOpError("expects region block to not have a terminator"); |
| |
| for (auto &b : region) |
| if (b.getNumArguments() != 0) |
| return emitOpError( |
| "requires that child entry blocks have no arguments"); |
| } |
| return false; |
| } |
| |
| bool AffineIfOp::parse(OpAsmParser *parser, OperationState *result) { |
| // Parse the condition attribute set. |
| IntegerSetAttr conditionAttr; |
| unsigned numDims; |
| if (parser->parseAttribute(conditionAttr, getConditionAttrName(), |
| result->attributes) || |
| parseDimAndSymbolList(parser, result->operands, numDims)) |
| return true; |
| |
| // Verify the condition operands. |
| auto set = conditionAttr.getValue(); |
| if (set.getNumDims() != numDims) |
| return parser->emitError( |
| parser->getNameLoc(), |
| "dim operand count and integer set dim count must match"); |
| if (numDims + set.getNumSymbols() != result->operands.size()) |
| return parser->emitError( |
| parser->getNameLoc(), |
| "symbol operand count and integer set symbol count must match"); |
| |
| // Parse the 'then' region. |
| if (parser->parseRegion()) |
| return true; |
| |
| // If we find an 'else' keyword then parse the 'else' region. |
| if (!parser->parseOptionalKeyword("else")) { |
| if (parser->parseRegion()) |
| return true; |
| } |
| |
| // Parse the optional attribute list. |
| if (parser->parseOptionalAttributeDict(result->attributes)) |
| return true; |
| |
| // Reserve 2 regions, one for the 'then' and one for the 'else' regions. |
| result->reserveRegions(2); |
| return false; |
| } |
| |
| void AffineIfOp::print(OpAsmPrinter *p) { |
| auto conditionAttr = getAttrOfType<IntegerSetAttr>(getConditionAttrName()); |
| *p << "if " << conditionAttr; |
| printDimAndSymbolList(operand_begin(), operand_end(), |
| conditionAttr.getValue().getNumDims(), p); |
| p->printRegion(getInstruction()->getRegion(0)); |
| |
| // Print the 'else' regions if it has any blocks. |
| auto &elseRegion = getInstruction()->getRegion(1); |
| if (!elseRegion.empty()) { |
| *p << " else"; |
| p->printRegion(elseRegion); |
| } |
| |
| // Print the attribute list. |
| p->printOptionalAttrDict(getAttrs(), |
| /*elidedAttrs=*/getConditionAttrName()); |
| } |
| |
| IntegerSet AffineIfOp::getIntegerSet() const { |
| return getAttrOfType<IntegerSetAttr>(getConditionAttrName()).getValue(); |
| } |
| void AffineIfOp::setIntegerSet(IntegerSet newSet) { |
| setAttr(getConditionAttrName(), IntegerSetAttr::get(newSet)); |
| } |
| |
| /// Returns the list of 'then' blocks. |
| Region &AffineIfOp::getThenBlocks() { return getInstruction()->getRegion(0); } |
| |
| /// Returns the list of 'else' blocks. |
| Region &AffineIfOp::getElseBlocks() { return getInstruction()->getRegion(1); } |