blob: b99f091a2ab31bfe10818ab8fe6d1287a6474dc2 [file] [log] [blame]
//===- Builders.h - Helpers for constructing MLIR Classes -------*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#ifndef MLIR_IR_BUILDERS_H
#define MLIR_IR_BUILDERS_H
#include "mlir/IR/Function.h"
#include "mlir/IR/OpDefinition.h"
namespace mlir {
class AffineExpr;
class BlockAndValueMapping;
class Module;
class UnknownLoc;
class FileLineColLoc;
class Type;
class PrimitiveType;
class IntegerType;
class FunctionType;
class MemRefType;
class VectorType;
class RankedTensorType;
class UnrankedTensorType;
class TupleType;
class NoneType;
class BoolAttr;
class IntegerAttr;
class FloatAttr;
class StringAttr;
class TypeAttr;
class ArrayAttr;
class FunctionAttr;
class ElementsAttr;
class DenseElementsAttr;
class DenseIntElementsAttr;
class AffineMapAttr;
class AffineMap;
class UnitAttr;
/// This class is a general helper class for creating context-global objects
/// like types, attributes, and affine expressions.
class Builder {
public:
explicit Builder(MLIRContext *context) : context(context) {}
explicit Builder(Module *module);
MLIRContext *getContext() const { return context; }
Identifier getIdentifier(StringRef str);
Module *createModule();
// Locations.
Location getUnknownLoc();
Location getFileLineColLoc(Identifier filename, unsigned line,
unsigned column);
Location getFusedLoc(ArrayRef<Location> locs,
Attribute metadata = Attribute());
// Types.
FloatType getBF16Type();
FloatType getF16Type();
FloatType getF32Type();
FloatType getF64Type();
IndexType getIndexType();
IntegerType getI1Type();
IntegerType getIntegerType(unsigned width);
FunctionType getFunctionType(ArrayRef<Type> inputs, ArrayRef<Type> results);
MemRefType getMemRefType(ArrayRef<int64_t> shape, Type elementType,
ArrayRef<AffineMap> affineMapComposition = {},
unsigned memorySpace = 0);
VectorType getVectorType(ArrayRef<int64_t> shape, Type elementType);
RankedTensorType getTensorType(ArrayRef<int64_t> shape, Type elementType);
UnrankedTensorType getTensorType(Type elementType);
TupleType getTupleType(ArrayRef<Type> elementTypes);
NoneType getNoneType();
/// Get or construct an instance of the type 'ty' with provided arguments.
template <typename Ty, typename... Args> Ty getType(Args... args) {
return Ty::get(context, args...);
}
// Attributes.
NamedAttribute getNamedAttr(StringRef name, Attribute val);
UnitAttr getUnitAttr();
BoolAttr getBoolAttr(bool value);
DictionaryAttr getDictionaryAttr(ArrayRef<NamedAttribute> value);
IntegerAttr getIntegerAttr(Type type, int64_t value);
IntegerAttr getIntegerAttr(Type type, const APInt &value);
FloatAttr getFloatAttr(Type type, double value);
FloatAttr getFloatAttr(Type type, const APFloat &value);
StringAttr getStringAttr(StringRef bytes);
ArrayAttr getArrayAttr(ArrayRef<Attribute> value);
AffineMapAttr getAffineMapAttr(AffineMap map);
IntegerSetAttr getIntegerSetAttr(IntegerSet set);
TypeAttr getTypeAttr(Type type);
FunctionAttr getFunctionAttr(Function *value);
FunctionAttr getFunctionAttr(StringRef value);
ElementsAttr getDenseElementsAttr(ShapedType type,
ArrayRef<Attribute> values);
ElementsAttr getDenseIntElementsAttr(ShapedType type,
ArrayRef<int64_t> values);
ElementsAttr getSparseElementsAttr(ShapedType type,
DenseIntElementsAttr indices,
DenseElementsAttr values);
ElementsAttr getOpaqueElementsAttr(Dialect *dialect, ShapedType type,
StringRef bytes);
// Returns a 0-valued attribute of the given `type`. This function only
// supports boolean, integer, and 16-/32-/64-bit float types, and vector or
// ranked tensor of them. Returns null attribute otherwise.
Attribute getZeroAttr(Type type);
// Convenience methods for fixed types.
FloatAttr getF16FloatAttr(float value);
FloatAttr getF32FloatAttr(float value);
FloatAttr getF64FloatAttr(double value);
IntegerAttr getI32IntegerAttr(int32_t value);
IntegerAttr getI64IntegerAttr(int64_t value);
ArrayAttr getI32ArrayAttr(ArrayRef<int32_t> values);
ArrayAttr getI64ArrayAttr(ArrayRef<int64_t> values);
ArrayAttr getF32ArrayAttr(ArrayRef<float> values);
ArrayAttr getF64ArrayAttr(ArrayRef<double> values);
ArrayAttr getStrArrayAttr(ArrayRef<StringRef> values);
// Affine expressions and affine maps.
AffineExpr getAffineDimExpr(unsigned position);
AffineExpr getAffineSymbolExpr(unsigned position);
AffineExpr getAffineConstantExpr(int64_t constant);
AffineMap getAffineMap(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results);
// Special cases of affine maps and integer sets
/// Returns a single constant result affine map with 0 dimensions and 0
/// symbols. One constant result: () -> (val).
AffineMap getConstantAffineMap(int64_t val);
// One dimension id identity map: (i) -> (i).
AffineMap getDimIdentityMap();
// Multi-dimensional identity map: (d0, d1, d2) -> (d0, d1, d2).
AffineMap getMultiDimIdentityMap(unsigned rank);
// One symbol identity map: ()[s] -> (s).
AffineMap getSymbolIdentityMap();
/// Returns a map that shifts its (single) input dimension by 'shift'.
/// (d0) -> (d0 + shift)
AffineMap getSingleDimShiftAffineMap(int64_t shift);
/// Returns an affine map that is a translation (shift) of all result
/// expressions in 'map' by 'shift'.
/// Eg: input: (d0, d1)[s0] -> (d0, d1 + s0), shift = 2
/// returns: (d0, d1)[s0] -> (d0 + 2, d1 + s0 + 2)
AffineMap getShiftedAffineMap(AffineMap map, int64_t shift);
// Integer set.
IntegerSet getIntegerSet(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> constraints,
ArrayRef<bool> isEq);
// TODO: Helpers for affine map/exprs, etc.
protected:
MLIRContext *context;
};
/// This class helps build Operations. Operations that are created are
/// automatically inserted at an insertion point. The builder is copyable.
class OpBuilder : public Builder {
public:
/// Create a builder and set the insertion point to the start of the region.
explicit OpBuilder(Region *region)
: Builder(region->getContext()), region(region) {
if (!region->empty())
setInsertionPoint(&region->front(), region->front().begin());
else
clearInsertionPoint();
}
explicit OpBuilder(Region &region) : OpBuilder(&region) {}
virtual ~OpBuilder();
/// Create a builder and set insertion point to the given operation, which
/// will cause subsequent insertions to go right before it.
OpBuilder(Operation *op) : OpBuilder(op->getContainingRegion()) {
setInsertionPoint(op);
}
OpBuilder(Block *block) : OpBuilder(block, block->end()) {}
OpBuilder(Block *block, Block::iterator insertPoint)
: OpBuilder(block->getParent()) {
setInsertionPoint(block, insertPoint);
}
/// Return the region this builder is referring to.
Region *getRegion() const { return region; }
/// This class represents a saved insertion point.
class InsertPoint {
public:
/// Creates a new insertion point which doesn't point to anything.
InsertPoint() = default;
/// Creates a new insertion point at the given location.
InsertPoint(Block *insertBlock, Block::iterator insertPt)
: block(insertBlock), point(insertPt) {}
/// Returns true if this insert point is set.
bool isSet() const { return (block != nullptr); }
Block *getBlock() const { return block; }
Block::iterator getPoint() const { return point; }
private:
Block *block = nullptr;
Block::iterator point;
};
/// Reset the insertion point to no location. Creating an operation without a
/// set insertion point is an error, but this can still be useful when the
/// current insertion point a builder refers to is being removed.
void clearInsertionPoint() {
this->block = nullptr;
insertPoint = Block::iterator();
}
/// Return a saved insertion point.
InsertPoint saveInsertionPoint() const {
return InsertPoint(getInsertionBlock(), getInsertionPoint());
}
/// Restore the insert point to a previously saved point.
void restoreInsertionPoint(InsertPoint ip) {
if (ip.isSet())
setInsertionPoint(ip.getBlock(), ip.getPoint());
else
clearInsertionPoint();
}
/// Set the insertion point to the specified location.
void setInsertionPoint(Block *block, Block::iterator insertPoint) {
// TODO: check that insertPoint is in this rather than some other block.
this->block = block;
this->insertPoint = insertPoint;
}
/// Sets the insertion point to the specified operation, which will cause
/// subsequent insertions to go right before it.
void setInsertionPoint(Operation *op) {
setInsertionPoint(op->getBlock(), Block::iterator(op));
}
/// Sets the insertion point to the start of the specified block.
void setInsertionPointToStart(Block *block) {
setInsertionPoint(block, block->begin());
}
/// Sets the insertion point to the end of the specified block.
void setInsertionPointToEnd(Block *block) {
setInsertionPoint(block, block->end());
}
/// Return the block the current insertion point belongs to. Note that the
/// the insertion point is not necessarily the end of the block.
Block *getInsertionBlock() const { return block; }
/// Returns the current insertion point of the builder.
Block::iterator getInsertionPoint() const { return insertPoint; }
/// Add new block and set the insertion point to the end of it. If an
/// 'insertBefore' block is passed, the block will be placed before the
/// specified block. If not, the block will be appended to the end of the
/// current region.
Block *createBlock(Block *insertBefore = nullptr);
/// Returns the current block of the builder.
Block *getBlock() const { return block; }
/// Creates an operation given the fields represented as an OperationState.
virtual Operation *createOperation(const OperationState &state);
/// Create an operation of specific op type at the current insertion point.
template <typename OpTy, typename... Args>
OpTy create(Location location, Args... args) {
OperationState state(location, OpTy::getOperationName());
OpTy::build(this, &state, args...);
auto *op = createOperation(state);
auto result = dyn_cast<OpTy>(op);
assert(result && "Builder didn't return the right type");
return result;
}
/// Create an operation of specific op type at the current insertion point,
/// and immediately try to fold it. This functions populates 'results' with
/// the results after folding the operation.
template <typename OpTy, typename... Args>
void createOrFold(SmallVectorImpl<Value *> &results, Location location,
Args &&... args) {
auto op = create<OpTy>(location, std::forward<Args>(args)...);
tryFold(op.getOperation(), results);
}
/// Overload to create or fold a single result operation.
template <typename OpTy, typename... Args>
typename std::enable_if<OpTy::template hasTrait<OpTrait::OneResult>(),
Value *>::type
createOrFold(Location location, Args &&... args) {
SmallVector<Value *, 1> results;
createOrFold<OpTy>(results, location, std::forward<Args>(args)...);
return results.front();
}
/// Overload to create or fold a zero result operation.
template <typename OpTy, typename... Args>
typename std::enable_if<OpTy::template hasTrait<OpTrait::ZeroResult>(),
OpTy>::type
createOrFold(Location location, Args &&... args) {
auto op = create<OpTy>(location, std::forward<Args>(args)...);
SmallVector<Value *, 0> unused;
tryFold(op.getOperation(), unused);
// Folding cannot remove a zero-result operation, so for convenience we
// continue to return it.
return op;
}
/// Creates a deep copy of the specified operation, remapping any operands
/// that use values outside of the operation using the map that is provided
/// ( leaving them alone if no entry is present). Replaces references to
/// cloned sub-operations to the corresponding operation that is copied,
/// and adds those mappings to the map.
Operation *clone(Operation &op, BlockAndValueMapping &mapper) {
Operation *cloneOp = op.clone(mapper, getContext());
block->getOperations().insert(insertPoint, cloneOp);
return cloneOp;
}
Operation *clone(Operation &op) {
Operation *cloneOp = op.clone(getContext());
block->getOperations().insert(insertPoint, cloneOp);
return cloneOp;
}
/// Creates a deep copy of this operation but keep the operation regions
/// empty. Operands are remapped using `mapper` (if present), and `mapper` is
/// updated to contain the results.
Operation *cloneWithoutRegions(Operation &op, BlockAndValueMapping &mapper) {
Operation *cloneOp = op.cloneWithoutRegions(mapper, getContext());
block->getOperations().insert(insertPoint, cloneOp);
return cloneOp;
}
Operation *cloneWithoutRegions(Operation &op) {
Operation *cloneOp = op.cloneWithoutRegions(getContext());
block->getOperations().insert(insertPoint, cloneOp);
return cloneOp;
}
private:
/// Attempts to fold the given operation and places new results within
/// 'results'.
void tryFold(Operation *op, SmallVectorImpl<Value *> &results);
Region *region;
Block *block = nullptr;
Block::iterator insertPoint;
};
} // namespace mlir
#endif