blob: 4cdbcc9a02fc9a6297c3de889d1b72376c209c01 [file] [log] [blame]
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Part of the Keras training engine related to plain array data.
"""
# pylint: disable=protected-access
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import numpy as np
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.eager import context
from tensorflow.python.framework import errors
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import callbacks as cbks
from tensorflow.python.keras.distribute import distributed_training_utils_v1
from tensorflow.python.keras.engine import training_utils
from tensorflow.python.keras.utils.generic_utils import make_batches
from tensorflow.python.keras.utils.generic_utils import slice_arrays
from tensorflow.python.keras.utils.mode_keys import ModeKeys
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import nest
try:
from scipy.sparse import issparse # pylint: disable=g-import-not-at-top
except ImportError:
issparse = None
def model_iteration(model,
inputs,
targets=None,
sample_weights=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
val_inputs=None,
val_targets=None,
val_sample_weights=None,
shuffle=True,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
validation_freq=1,
mode=ModeKeys.TRAIN,
validation_in_fit=False,
prepared_feed_values_from_dataset=False,
steps_name='steps',
**kwargs):
"""Loop function for arrays of data with modes TRAIN/TEST/PREDICT.
Arguments:
model: Keras Model instance.
inputs: Either a list or dictionary of arrays, or a dataset instance.
targets: List/dictionary of input arrays.
sample_weights: Optional list of sample weight arrays.
batch_size: Integer batch size or None if unknown.
epochs: Number of times to iterate over the data
verbose: 0, 1, or 2. Verbosity mode.
0 = silent, 1 = progress bar, 2 = one line per epoch.
Note that the progress bar is not particularly useful when
logged to a file, so verbose=2 is recommended when not running
interactively (eg, in a production environment).
callbacks: List of callbacks to be called during training
val_inputs: Either a list or dictionary of arrays, or a dataset instance.
val_targets: List/dictionary of target arrays.
val_sample_weights: Optional list of sample weight arrays.
shuffle: Whether to shuffle the data at the beginning of each epoch
concatenation of list the display names of the outputs of `f` and the
list of display names of the outputs of `f_val`.
initial_epoch: Epoch at which to start training (useful for resuming a
previous training run)
steps_per_epoch: Total number of steps (batches of samples) before
declaring one epoch finished and starting the next epoch. Ignored with
the default value of `None`.
validation_steps: Number of steps to run validation for (only if doing
validation from data tensors). Ignored with the default value of
`None`.
validation_freq: Only relevant if validation data is provided. Integer or
`collections_abc.Container` instance (e.g. list, tuple, etc.). If an
integer, specifies how many training epochs to run before a new
validation run is performed, e.g. `validation_freq=2` runs
validation every 2 epochs. If a Container, specifies the epochs on
which to run validation, e.g. `validation_freq=[1, 2, 10]` runs
validation at the end of the 1st, 2nd, and 10th epochs.
mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT.
validation_in_fit: if true, then this method is invoked from within
training iteration (for validation). In the case where `val_inputs` is
a dataset, this flag indicates that its iterator and feed values are
already created so should properly reuse resources.
prepared_feed_values_from_dataset: if True, `inputs` is a list of feed
tensors returned from `_prepare_feed_values` call on the validation
dataset, so do not call it again on `inputs`. Should only be used for
inline validation (i.e., only if `validation_in_fit` is also True).
steps_name: The string name of the steps argument, either `steps`,
`validation_steps`, or `steps_per_epoch`. Only used for error message
formatting.
**kwargs: Additional arguments for backwards compatibility.
Returns:
- In TRAIN mode: `History` object.
- In TEST mode: Evaluation metrics.
- In PREDICT mode: Outputs of the Model called on inputs.
Raises:
ValueError: in case of invalid arguments.
"""
# Backwards compatibility.
if 'steps' in kwargs:
steps_per_epoch = kwargs.pop('steps')
if kwargs:
raise TypeError('Unknown arguments: %s' % (kwargs,))
# In case we were passed a dataset, we extract symbolic tensors from it.
reset_dataset_after_each_epoch = False
input_iterator = None
is_dataset = isinstance(inputs,
(dataset_ops.DatasetV1, dataset_ops.DatasetV2))
# TODO(fchollet): consider moving `steps_per_epoch` inference to
# _standardize_user_data and set reset_dataset_after_each_epoch as an
# attribute on the dataset instance.
if is_dataset:
if steps_per_epoch is None:
reset_dataset_after_each_epoch = True
steps_per_epoch = training_utils.infer_steps_for_dataset(
model, inputs, steps_per_epoch, epochs=epochs, steps_name=steps_name)
input_iterator = _get_iterator(inputs, model._distribution_strategy)
# Enter tf.distribute.Strategy scope.
if model._distribution_strategy:
scope = distributed_training_utils_v1.distributed_scope(
strategy=model._distribution_strategy,
learning_phase=(1 if mode == ModeKeys.TRAIN else 0))
scope.__enter__()
use_steps = is_dataset or steps_per_epoch is not None
do_validation = val_inputs is not None
# Convert Eager Tensors to NumPy arrays to support batching/shuffling.
inputs, targets, sample_weights = training_utils. \
convert_eager_tensors_to_numpy((inputs, targets, sample_weights))
# Prepare input data.
inputs = input_iterator or inputs
if validation_in_fit and prepared_feed_values_from_dataset:
# When invoking validation in training loop, avoid creating iterator and
# list of feed values for the same validation dataset multiple times (which
# essentially would call `iterator.get_next()` that slows down execution and
# leads to OOM errors eventually.
ins = inputs
else:
ins = _prepare_feed_values(model, inputs, targets, sample_weights, mode)
# `ins` is a function when a distribute strategy is used in Eager mode. In
# that case `is_dataset` is True. The code branches that have requirements
# about the type of `ins` do not trigger in the distributed case.
if not is_dataset:
num_samples_or_steps = _get_num_samples_or_steps(ins, batch_size,
steps_per_epoch)
else:
num_samples_or_steps = steps_per_epoch
# Update sample_weight_mode of the model if sample_weights is specified by the
# user. We need to call this function after we have a handle on the inputs
# (both numpy arrays and datasets) in order to determine if the user has
# specified sample_weights.
_update_sample_weight_mode(model, mode, ins)
# Get step function and loop type. As part of building the execution
# function we recompile the metrics based on the updated
# sample_weight_mode value.
f = _make_execution_function(model, mode)
# Prepare validation data. Hold references to the iterator and the input list
# to properly reinitialize and reuse in multiple validation passes.
val_iterator = None
if isinstance(val_inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)):
if validation_steps is None:
# Because we pass an iterator feed instead of a Dataset to the eval
# model_iteration() call, it will not trigger the dataset-input path
# that determines the number of steps required. To avoid this issue,
# set validation_steps here if validation_steps is None.
validation_steps = training_utils.infer_steps_for_dataset(
model,
val_inputs,
validation_steps,
epochs=epochs,
steps_name='validation_steps')
val_iterator = _get_iterator(val_inputs, model._distribution_strategy)
val_inputs = _prepare_feed_values(
model, val_iterator, val_targets, val_sample_weights, ModeKeys.TEST)
# Get num steps for printing.
val_samples_or_steps = validation_steps
else:
# Get num samples for printing.
val_samples_or_steps = val_inputs and nest.flatten(
val_inputs)[0].shape[0] or None
if mode == ModeKeys.TRAIN and verbose:
_print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset)
# Configure callbacks.
count_mode = 'steps' if use_steps else 'samples'
callbacks = cbks.configure_callbacks(
callbacks,
model,
do_validation=do_validation,
batch_size=batch_size,
epochs=epochs,
steps_per_epoch=steps_per_epoch,
samples=num_samples_or_steps,
count_mode=count_mode,
verbose=verbose,
mode=mode)
# Find beforehand arrays that need sparse-to-dense conversion.
if issparse is not None and not use_steps:
indices_for_conversion_to_dense = []
feed = _get_model_feed(model, mode)
for i, (input_data, feed_tensor) in enumerate(zip(ins, feed)):
if issparse(input_data) and not K.is_sparse(feed_tensor):
indices_for_conversion_to_dense.append(i)
# Select aggregation method.
if mode == ModeKeys.PREDICT:
aggregator = training_utils.OutputsAggregator(
use_steps,
num_samples=None if steps_per_epoch else num_samples_or_steps,
steps=steps_per_epoch)
else:
aggregator = training_utils.MetricsAggregator(
use_steps,
num_samples=None if steps_per_epoch else num_samples_or_steps,
steps=steps_per_epoch)
if model._compile_distribution:
distributed_training_utils_v1._copy_weights_to_distributed_model(
model, mode)
callbacks.model.stop_training = False
callbacks._call_begin_hook(mode)
initial_epoch = model._maybe_load_initial_epoch_from_ckpt(initial_epoch, mode)
for epoch in range(initial_epoch, epochs):
if callbacks.model.stop_training:
break
# Setup work for each epoch
epoch_logs = {}
if mode != ModeKeys.PREDICT:
# Collecting and resetting metrics has non-zero cost and will needlessly
# slow down model.predict.
model.reset_metrics()
if mode == ModeKeys.TRAIN:
callbacks.on_epoch_begin(epoch, epoch_logs)
if use_steps:
# Step-wise loop.
if steps_per_epoch is None:
# Loop over dataset until `OutOfRangeError` is raised.
target_steps = np.inf
else:
# Loop over dataset for the specified number of steps.
target_steps = steps_per_epoch
step = 0
while step < target_steps:
batch_logs = {'batch': step, 'size': 1}
callbacks._call_batch_hook(mode, 'begin', step, batch_logs)
# Get outputs.
try:
# `ins` can be callable in tf.distribute.Strategy + eager case.
if not callable(ins) or (model._distribution_strategy and
not distributed_training_utils_v1
.is_distributing_by_cloning(model)):
actual_inputs = ins
else:
actual_inputs = ins()
batch_outs = f(actual_inputs)
except errors.OutOfRangeError:
if is_dataset:
# The dataset passed by the user ran out of batches.
# Now we know the cardinality of the dataset.
# If steps_per_epoch was specified, then running out of data is
# unexpected, so we stop training and inform the user.
if steps_per_epoch:
callbacks.model.stop_training = True
logging.warning(
'Your dataset ran out of data; interrupting training. '
'Make sure that your dataset can generate at least '
'`%s * epochs` batches (in this case, %d batches). '
'You may need to use the repeat() function when '
'building your dataset.'
% (steps_name, steps_per_epoch * epochs))
elif step > 0:
steps_per_epoch = step
aggregator.steps = steps_per_epoch
else:
# We ran out of batches while the user passed an iterator (legacy).
callbacks.model.stop_training = True
logging.warning(
'Your dataset iterator ran out of data; '
'interrupting training. Make sure that your iterator '
'can generate at least `%s * epochs` '
'batches (in this case, %d batches). You may need to'
'use the repeat() function when building your '
'dataset.' % (steps_name, steps_per_epoch * epochs))
break
if not isinstance(batch_outs, list):
batch_outs = [batch_outs]
if model._distribution_strategy:
batch_outs = (
distributed_training_utils_v1._per_replica_aggregate_batch(
model._distribution_strategy, batch_outs, model, mode))
# Aggregate results.
if step == 0:
aggregator.create(batch_outs)
aggregator.aggregate(batch_outs)
# Callbacks batch end.
batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
callbacks._call_batch_hook(mode, 'end', step, batch_logs)
step += 1
if callbacks.model.stop_training:
break
else:
# Sample-wise loop.
index_array = np.arange(num_samples_or_steps)
if shuffle == 'batch':
index_array = training_utils.batch_shuffle(index_array, batch_size)
elif shuffle:
np.random.shuffle(index_array)
batches = make_batches(num_samples_or_steps, batch_size)
for batch_index, (batch_start, batch_end) in enumerate(batches):
batch_ids = index_array[batch_start:batch_end]
# Slice into a batch.
if len(batches) == 1:
# If we only have one batch, do not slice. This takes care of
# composite tensors in non-Dataset modes; we currently don't support
# slicing them.
# TODO(b/133517906): Add slicing support.
ins_batch = ins
else:
try:
if ins and isinstance(ins[-1], int):
# Do not slice the training phase flag.
ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]]
else:
ins_batch = slice_arrays(ins, batch_ids)
except TypeError:
raise TypeError('TypeError while preparing batch. '
'If using HDF5 input data, '
'pass shuffle="batch".')
# Sparse to dense conversion.
if issparse is not None:
for i in indices_for_conversion_to_dense:
ins_batch[i] = ins_batch[i].toarray()
# Callbacks batch_begin.
batch_logs = {'batch': batch_index, 'size': len(batch_ids)}
callbacks._call_batch_hook(mode, 'begin', batch_index, batch_logs)
# Get outputs.
batch_outs = f(ins_batch)
if not isinstance(batch_outs, list):
batch_outs = [batch_outs]
# Aggregate results.
if batch_index == 0:
aggregator.create(batch_outs)
aggregator.aggregate(batch_outs, batch_start, batch_end)
# Callbacks batch end.
batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs)
if callbacks.model.stop_training:
break
aggregator.finalize()
results = aggregator.results
epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
if len(results) == 1:
results = results[0]
# Run the test loop every `validation_freq` epochs during training.
if (do_validation and
training_utils.should_run_validation(validation_freq, epoch) and
not callbacks.model.stop_training):
if model._compile_distribution:
# Since we create a new clone from the original model we need to copy
# the weights back to the original model before we can run validation.
distributed_training_utils_v1._copy_weights_to_original_model(
model, ModeKeys.TRAIN)
val_results = model_iteration(
model,
val_inputs,
targets=val_targets,
sample_weights=val_sample_weights,
batch_size=batch_size,
steps_per_epoch=validation_steps,
callbacks=callbacks,
verbose=0,
mode=ModeKeys.TEST,
validation_in_fit=True,
prepared_feed_values_from_dataset=(val_iterator is not None),
steps_name='validation_steps')
if not isinstance(val_results, list):
val_results = [val_results]
epoch_logs = cbks.make_logs(
model, epoch_logs, val_results, mode, prefix='val_')
if val_iterator and epoch < epochs - 1:
_reinitialize_iterator(val_iterator, model._distribution_strategy)
if mode == ModeKeys.TRAIN:
# Epochs only apply to `fit`.
callbacks.on_epoch_end(epoch, epoch_logs)
# Reinitialize dataset iterator for the next epoch.
if reset_dataset_after_each_epoch and epoch < epochs - 1:
_reinitialize_iterator(input_iterator, model._distribution_strategy)
model._successful_loop_finish = True
callbacks._call_end_hook(mode)
if model._distribution_strategy:
if model._compile_distribution:
# TODO(priyag, psv): Copy back metrics to the original model as well?
distributed_training_utils_v1._copy_weights_to_original_model(model, mode)
scope.__exit__(None, None, None)
if mode == ModeKeys.TRAIN:
return model.history
return results
def _get_model_feed(model, mode):
if mode == ModeKeys.PREDICT:
feed = model._feed_inputs
else:
feed = (
model._feed_inputs + model._feed_targets + model._feed_sample_weights)
return feed
def _print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset):
increment = 'steps' if is_dataset else 'samples'
msg = 'Train on {0} {increment}'.format(
num_samples_or_steps, increment=increment)
if val_samples_or_steps:
msg += ', validate on {0} {increment}'.format(
val_samples_or_steps, increment=increment)
print(msg)
def _get_num_samples_or_steps(ins, batch_size, steps_per_epoch):
"""Returns total number of samples (when training in batch mode) or steps."""
if steps_per_epoch:
return steps_per_epoch
return training_utils.check_num_samples(ins, batch_size, steps_per_epoch,
'steps_per_epoch')
def _prepare_feed_values(model, inputs, targets, sample_weights, mode):
"""Prepare feed values to the model execution function.
Arguments:
model: Model to prepare feed values for.
inputs: List or dict of model inputs.
targets: Optional list of model targets.
sample_weights: Optional list of sample weight arrays.
mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT.
Returns:
Feed values for the model in the given mode.
"""
if model._distribution_strategy:
if isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)):
inputs = distributed_training_utils_v1.get_iterator(
inputs, model._distribution_strategy)
def get_distributed_inputs():
return distributed_training_utils_v1._prepare_feed_values(
model, inputs, targets, sample_weights, mode)
# In the eager case, we want to call the input method per step, so return
# a lambda from here that can be called. Note that this is applicable only
# in Distribution Strategy case as it follows the same code path for both
# eager and graph modes.
# TODO(priyag,omalleyt): Either we should move the training DS with
# OwnedIterator to use training_generator code path, or figure out how to
# set a symbolic Iterator out of a Dataset when in eager mode.
if context.executing_eagerly():
return get_distributed_inputs
else:
return get_distributed_inputs()
if isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2,
iterator_ops.Iterator)):
inputs, targets, sample_weights = model._standardize_user_data(
inputs,
extract_tensors_from_dataset=True)
inputs = training_utils.ModelInputs(inputs).as_list()
targets = list(targets or [])
sample_weights = list(sample_weights or [])
ins = inputs + targets + sample_weights
if mode == ModeKeys.TRAIN and not isinstance(K.symbolic_learning_phase(),
int):
ins += [True] # Add learning phase value.
return ins
def _get_iterator(inputs, distribution_strategy=None):
if distribution_strategy:
return distributed_training_utils_v1.get_iterator(
inputs, distribution_strategy)
return training_utils.get_iterator(inputs)
def _reinitialize_iterator(iterator, distribution_strategy=None):
if distribution_strategy:
distributed_training_utils_v1.initialize_iterator(
iterator, distribution_strategy)
else:
training_utils.initialize_iterator(iterator)
def _make_execution_function(model, mode):
"""Makes function to run one step of model execution."""
if model._distribution_strategy:
return distributed_training_utils_v1._make_execution_function(model, mode)
return model._make_execution_function(mode)
def _update_sample_weight_mode(model, mode, inputs):
"""Updates the sample_weight_mode of a given model."""
# Add a quick return to prevent us from calling model._feed_targets that
# accesses certain model properties that may not be set in the `PREDICT` mode.
if mode == ModeKeys.PREDICT:
return
sample_weights = None
# `inputs` is the model's inputs + targets + sample_weights +
# learning phase placeholder if specified. To update the sample_weight_mode
# we need to determine if the user has passed sample weights as part of the
# input.
if not callable(inputs):
sample_weights = inputs[len(model._feed_inputs) + len(model._feed_targets):]
has_learning_phase_pl = (mode == ModeKeys.TRAIN and
not isinstance(K.symbolic_learning_phase(), int))
if has_learning_phase_pl:
sample_weights = sample_weights[:-1]
model._update_sample_weight_modes(sample_weights=sample_weights)
# Call the DistributionStrategy specific function to update the
# sample_weight_mode on the model.
if model._distribution_strategy:
distributed_training_utils_v1._update_sample_weight_modes(model, mode,
sample_weights)
# For backwards compatibility for internal users of these loops.
fit_loop = functools.partial(model_iteration, mode=ModeKeys.TRAIN)
test_loop = functools.partial(
model_iteration, mode=ModeKeys.TEST, shuffle=False)
predict_loop = functools.partial(
model_iteration, mode=ModeKeys.PREDICT, shuffle=False)
class ArrayLikeTrainingLoop(training_utils.TrainingLoop):
"""TrainingLoop that handle inputs like array.
This is the default handler for most of the input data types, includes
symbolic tensors or Numpy array-like, Datasets and iterators in graph mode
(since they generate symbolic tensors). This Function is used to handle model
with `run_eagerly` = False.
"""
def fit(self,
model,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
validation_freq=1,
**kwargs):
batch_size = model._validate_or_infer_batch_size(batch_size,
steps_per_epoch, x)
x, y, sample_weights = model._standardize_user_data(
x,
y,
sample_weight=sample_weight,
class_weight=class_weight,
batch_size=batch_size,
check_steps=True,
steps_name='steps_per_epoch',
steps=steps_per_epoch,
validation_split=validation_split,
shuffle=shuffle)
if validation_data:
val_x, val_y, val_sample_weights = model._prepare_validation_data(
validation_data, batch_size, validation_steps)
elif validation_split and 0. < validation_split < 1.:
(x, y, sample_weights, val_x, val_y,
val_sample_weights) = training_utils.split_training_and_validation_data(
x, y, sample_weights, validation_split)
else:
if validation_steps:
raise ValueError('`validation_steps` should not be specified if '
'`validation_data` is None.')
val_x, val_y, val_sample_weights = None, None, None
return fit_loop(
model,
inputs=x,
targets=y,
sample_weights=sample_weights,
batch_size=batch_size,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
val_inputs=val_x,
val_targets=val_y,
val_sample_weights=val_sample_weights,
shuffle=shuffle,
initial_epoch=initial_epoch,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps,
validation_freq=validation_freq,
steps_name='steps_per_epoch')
def evaluate(self,
model,
x=None,
y=None,
batch_size=None,
verbose=1,
sample_weight=None,
steps=None,
callbacks=None,
**kwargs):
batch_size = model._validate_or_infer_batch_size(batch_size, steps, x)
x, y, sample_weights = model._standardize_user_data(
x,
y,
sample_weight=sample_weight,
batch_size=batch_size,
check_steps=True,
steps_name='steps',
steps=steps)
return test_loop(
model,
inputs=x,
targets=y,
sample_weights=sample_weights,
batch_size=batch_size,
verbose=verbose,
steps=steps,
callbacks=callbacks)
def predict(self,
model,
x,
batch_size=None,
verbose=0,
steps=None,
callbacks=None,
**kwargs):
batch_size = model._validate_or_infer_batch_size(batch_size, steps, x)
x, _, _ = model._standardize_user_data(
x, check_steps=True, steps_name='steps', steps=steps)
return predict_loop(
model,
x,
batch_size=batch_size,
verbose=verbose,
steps=steps,
callbacks=callbacks)