blob: 4cc192b4ce0a532556dee33adc9a252e031a0773 [file] [log] [blame]
//===- Ops.cpp - Standard MLIR Operations ---------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/StandardOps/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Value.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// StandardOpsDialect
//===----------------------------------------------------------------------===//
/// A custom binary operation printer that omits the "std." prefix from the
/// operation names.
void detail::printStandardBinaryOp(Operation *op, OpAsmPrinter *p) {
assert(op->getNumOperands() == 2 && "binary op should have two operands");
assert(op->getNumResults() == 1 && "binary op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0)->getType();
if (op->getOperand(0)->getType() != resultType ||
op->getOperand(1)->getType() != resultType) {
p->printGenericOp(op);
return;
}
*p << op->getName().getStringRef().drop_front(strlen("std.")) << ' '
<< *op->getOperand(0) << ", " << *op->getOperand(1);
p->printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
*p << " : " << op->getResult(0)->getType();
}
StandardOpsDialect::StandardOpsDialect(MLIRContext *context)
: Dialect(/*name=*/"std", context) {
addOperations<AllocOp, BranchOp, CallOp, CallIndirectOp, CmpIOp, CondBranchOp,
DeallocOp, DimOp, DmaStartOp, DmaWaitOp, ExtractElementOp,
LoadOp, MemRefCastOp, ReturnOp, SelectOp, StoreOp, TensorCastOp,
#define GET_OP_LIST
#include "mlir/StandardOps/Ops.cpp.inc"
>();
}
void mlir::printDimAndSymbolList(Operation::operand_iterator begin,
Operation::operand_iterator end,
unsigned numDims, OpAsmPrinter *p) {
*p << '(';
p->printOperands(begin, begin + numDims);
*p << ')';
if (begin + numDims != end) {
*p << '[';
p->printOperands(begin + numDims, end);
*p << ']';
}
}
// Parses dimension and symbol list, and sets 'numDims' to the number of
// dimension operands parsed.
// Returns 'false' on success and 'true' on error.
bool mlir::parseDimAndSymbolList(OpAsmParser *parser,
SmallVector<Value *, 4> &operands,
unsigned &numDims) {
SmallVector<OpAsmParser::OperandType, 8> opInfos;
if (parser->parseOperandList(opInfos, -1, OpAsmParser::Delimiter::Paren))
return true;
// Store number of dimensions for validation by caller.
numDims = opInfos.size();
// Parse the optional symbol operands.
auto affineIntTy = parser->getBuilder().getIndexType();
if (parser->parseOperandList(opInfos, -1,
OpAsmParser::Delimiter::OptionalSquare) ||
parser->resolveOperands(opInfos, affineIntTy, operands))
return true;
return false;
}
/// Matches a ConstantIndexOp.
/// TODO: This should probably just be a general matcher that uses m_Constant
/// and checks the operation for an index type.
static detail::op_matcher<ConstantIndexOp> m_ConstantIndex() {
return detail::op_matcher<ConstantIndexOp>();
}
//===----------------------------------------------------------------------===//
// Common canonicalization pattern support logic
//===----------------------------------------------------------------------===//
namespace {
/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop". It folds the source of any memref_cast
/// into the root operation directly.
struct MemRefCastFolder : public RewritePattern {
/// The rootOpName is the name of the root operation to match against.
MemRefCastFolder(StringRef rootOpName, MLIRContext *context)
: RewritePattern(rootOpName, 1, context) {}
PatternMatchResult match(Operation *op) const override {
for (auto *operand : op->getOperands())
if (matchPattern(operand, m_Op<MemRefCastOp>()))
return matchSuccess();
return matchFailure();
}
void rewrite(Operation *op, PatternRewriter &rewriter) const override {
for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i)
if (auto *memref = op->getOperand(i)->getDefiningOp())
if (auto cast = memref->dyn_cast<MemRefCastOp>())
op->setOperand(i, cast.getOperand());
rewriter.updatedRootInPlace(op);
}
};
/// Performs const folding `calculate` with element-wise behavior on the two
/// attributes in `operands` and returns the result if possible.
template <class AttrElementT,
class ElementValueT = typename AttrElementT::ValueType,
class CalculationT =
std::function<ElementValueT(ElementValueT, ElementValueT)>>
Attribute constFoldBinaryOp(ArrayRef<Attribute> operands,
const CalculationT &calculate) {
assert(operands.size() == 2 && "binary op takes two operands");
if (auto lhs = operands[0].dyn_cast_or_null<AttrElementT>()) {
auto rhs = operands[1].dyn_cast_or_null<AttrElementT>();
if (!rhs || lhs.getType() != rhs.getType())
return {};
return AttrElementT::get(lhs.getType(),
calculate(lhs.getValue(), rhs.getValue()));
} else if (auto lhs = operands[0].dyn_cast_or_null<SplatElementsAttr>()) {
auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>();
if (!rhs || lhs.getType() != rhs.getType())
return {};
auto elementResult = constFoldBinaryOp<AttrElementT>(
{lhs.getValue(), rhs.getValue()}, calculate);
if (!elementResult)
return {};
return SplatElementsAttr::get(lhs.getType(), elementResult);
}
return {};
}
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// AddFOp
//===----------------------------------------------------------------------===//
Attribute AddFOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AddIOp
//===----------------------------------------------------------------------===//
Attribute AddIOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a + b; });
}
Value *AddIOp::fold() {
/// addi(x, 0) -> x
if (matchPattern(getOperand(1), m_Zero()))
return getOperand(0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AllocOp
//===----------------------------------------------------------------------===//
void AllocOp::build(Builder *builder, OperationState *result,
MemRefType memrefType, ArrayRef<Value *> operands) {
result->addOperands(operands);
result->types.push_back(memrefType);
}
void AllocOp::print(OpAsmPrinter *p) {
MemRefType type = getType();
*p << "alloc";
// Print dynamic dimension operands.
printDimAndSymbolList(operand_begin(), operand_end(),
type.getNumDynamicDims(), p);
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{"map"});
*p << " : " << type;
}
bool AllocOp::parse(OpAsmParser *parser, OperationState *result) {
MemRefType type;
// Parse the dimension operands and optional symbol operands, followed by a
// memref type.
unsigned numDimOperands;
if (parseDimAndSymbolList(parser, result->operands, numDimOperands) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type))
return true;
// Check numDynamicDims against number of question marks in memref type.
// Note: this check remains here (instead of in verify()), because the
// partition between dim operands and symbol operands is lost after parsing.
// Verification still checks that the total number of operands matches
// the number of symbols in the affine map, plus the number of dynamic
// dimensions in the memref.
if (numDimOperands != type.getNumDynamicDims()) {
return parser->emitError(parser->getNameLoc(),
"dimension operand count does not equal memref "
"dynamic dimension count");
}
result->types.push_back(type);
return false;
}
LogicalResult AllocOp::verify() {
auto memRefType = getResult()->getType().dyn_cast<MemRefType>();
if (!memRefType)
return emitOpError("result must be a memref");
unsigned numSymbols = 0;
if (!memRefType.getAffineMaps().empty()) {
AffineMap affineMap = memRefType.getAffineMaps()[0];
// Store number of symbols used in affine map (used in subsequent check).
numSymbols = affineMap.getNumSymbols();
// TODO(zinenko): this check does not belong to AllocOp, or any other op but
// to the type system itself. It has been partially hoisted to Parser but
// remains here in case an AllocOp gets constructed programmatically.
// Remove when we can emit errors directly from *Type::get(...) functions.
//
// Verify that the layout affine map matches the rank of the memref.
if (affineMap.getNumDims() != memRefType.getRank())
return emitOpError("affine map dimension count must equal memref rank");
}
unsigned numDynamicDims = memRefType.getNumDynamicDims();
// Check that the total number of operands matches the number of symbols in
// the affine map, plus the number of dynamic dimensions specified in the
// memref type.
if (getOperation()->getNumOperands() != numDynamicDims + numSymbols)
return emitOpError(
"operand count does not equal dimension plus symbol operand count");
// Verify that all operands are of type Index.
for (auto *operand : getOperands())
if (!operand->getType().isIndex())
return emitOpError("requires operands to be of type Index");
return success();
}
namespace {
/// Fold constant dimensions into an alloc operation.
struct SimplifyAllocConst : public RewritePattern {
SimplifyAllocConst(MLIRContext *context)
: RewritePattern(AllocOp::getOperationName(), 1, context) {}
PatternMatchResult match(Operation *op) const override {
auto alloc = op->cast<AllocOp>();
// Check to see if any dimensions operands are constants. If so, we can
// substitute and drop them.
for (auto *operand : alloc.getOperands())
if (matchPattern(operand, m_ConstantIndex()))
return matchSuccess();
return matchFailure();
}
void rewrite(Operation *op, PatternRewriter &rewriter) const override {
auto allocOp = op->cast<AllocOp>();
auto memrefType = allocOp.getType();
// Ok, we have one or more constant operands. Collect the non-constant ones
// and keep track of the resultant memref type to build.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
SmallVector<Value *, 4> newOperands;
SmallVector<Value *, 4> droppedOperands;
unsigned dynamicDimPos = 0;
for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (dimSize != -1) {
newShapeConstants.push_back(dimSize);
continue;
}
auto *defOp = allocOp.getOperand(dynamicDimPos)->getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
// Record to check for zero uses later below.
droppedOperands.push_back(constantIndexOp);
} else {
// Dynamic shape dimension not folded; copy operand from old memref.
newShapeConstants.push_back(-1);
newOperands.push_back(allocOp.getOperand(dynamicDimPos));
}
dynamicDimPos++;
}
// Create new memref type (which will have fewer dynamic dimensions).
auto newMemRefType = MemRefType::get(
newShapeConstants, memrefType.getElementType(),
memrefType.getAffineMaps(), memrefType.getMemorySpace());
assert(newOperands.size() == newMemRefType.getNumDynamicDims());
// Create and insert the alloc op for the new memref.
auto newAlloc =
rewriter.create<AllocOp>(allocOp.getLoc(), newMemRefType, newOperands);
// Insert a cast so we have the same type as the old alloc.
auto resultCast = rewriter.create<MemRefCastOp>(allocOp.getLoc(), newAlloc,
allocOp.getType());
rewriter.replaceOp(op, {resultCast}, droppedOperands);
}
};
/// Fold alloc operations with no uses. Alloc has side effects on the heap,
/// but can still be deleted if it has zero uses.
struct SimplifyDeadAlloc : public RewritePattern {
SimplifyDeadAlloc(MLIRContext *context)
: RewritePattern(AllocOp::getOperationName(), 1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Check if the alloc'ed value has any uses.
auto alloc = op->cast<AllocOp>();
if (!alloc.use_empty())
return matchFailure();
// If it doesn't, we can eliminate it.
op->erase();
return matchSuccess();
}
};
} // end anonymous namespace.
void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.push_back(llvm::make_unique<SimplifyAllocConst>(context));
results.push_back(llvm::make_unique<SimplifyDeadAlloc>(context));
}
//===----------------------------------------------------------------------===//
// BranchOp
//===----------------------------------------------------------------------===//
void BranchOp::build(Builder *builder, OperationState *result, Block *dest,
ArrayRef<Value *> operands) {
result->addSuccessor(dest, operands);
}
bool BranchOp::parse(OpAsmParser *parser, OperationState *result) {
Block *dest;
SmallVector<Value *, 4> destOperands;
if (parser->parseSuccessorAndUseList(dest, destOperands))
return true;
result->addSuccessor(dest, destOperands);
return false;
}
void BranchOp::print(OpAsmPrinter *p) {
*p << "br ";
p->printSuccessorAndUseList(getOperation(), 0);
}
Block *BranchOp::getDest() { return getOperation()->getSuccessor(0); }
void BranchOp::setDest(Block *block) {
return getOperation()->setSuccessor(block, 0);
}
void BranchOp::eraseOperand(unsigned index) {
getOperation()->eraseSuccessorOperand(0, index);
}
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
void CallOp::build(Builder *builder, OperationState *result, Function *callee,
ArrayRef<Value *> operands) {
result->addOperands(operands);
result->addAttribute("callee", builder->getFunctionAttr(callee));
result->addTypes(callee->getType().getResults());
}
bool CallOp::parse(OpAsmParser *parser, OperationState *result) {
StringRef calleeName;
llvm::SMLoc calleeLoc;
FunctionType calleeType;
SmallVector<OpAsmParser::OperandType, 4> operands;
Function *callee = nullptr;
if (parser->parseFunctionName(calleeName, calleeLoc) ||
parser->parseOperandList(operands, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(calleeType) ||
parser->resolveFunctionName(calleeName, calleeType, calleeLoc, callee) ||
parser->addTypesToList(calleeType.getResults(), result->types) ||
parser->resolveOperands(operands, calleeType.getInputs(), calleeLoc,
result->operands))
return true;
result->addAttribute("callee", parser->getBuilder().getFunctionAttr(callee));
return false;
}
void CallOp::print(OpAsmPrinter *p) {
*p << "call ";
p->printFunctionReference(getCallee());
*p << '(';
p->printOperands(getOperands());
*p << ')';
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{"callee"});
*p << " : " << getCallee()->getType();
}
LogicalResult CallOp::verify() {
// Check that the callee attribute was specified.
auto fnAttr = getAttrOfType<FunctionAttr>("callee");
if (!fnAttr)
return emitOpError("requires a 'callee' function attribute");
// Verify that the operand and result types match the callee.
auto fnType = fnAttr.getValue()->getType();
if (fnType.getNumInputs() != getNumOperands())
return emitOpError("incorrect number of operands for callee");
for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i) {
if (getOperand(i)->getType() != fnType.getInput(i))
return emitOpError("operand type mismatch");
}
if (fnType.getNumResults() != getNumResults())
return emitOpError("incorrect number of results for callee");
for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i) {
if (getResult(i)->getType() != fnType.getResult(i))
return emitOpError("result type mismatch");
}
return success();
}
//===----------------------------------------------------------------------===//
// CallIndirectOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold indirect calls that have a constant function as the callee operand.
struct SimplifyIndirectCallWithKnownCallee : public RewritePattern {
SimplifyIndirectCallWithKnownCallee(MLIRContext *context)
: RewritePattern(CallIndirectOp::getOperationName(), 1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto indirectCall = op->cast<CallIndirectOp>();
// Check that the callee is a constant operation.
Attribute callee;
if (!matchPattern(indirectCall.getCallee(), m_Constant(&callee)))
return matchFailure();
// Check that the constant callee is a function.
FunctionAttr calledFn = callee.dyn_cast<FunctionAttr>();
if (!calledFn)
return matchFailure();
// Replace with a direct call.
SmallVector<Value *, 8> callOperands(indirectCall.getArgOperands());
rewriter.replaceOpWithNewOp<CallOp>(op, calledFn.getValue(), callOperands);
return matchSuccess();
}
};
} // end anonymous namespace.
void CallIndirectOp::build(Builder *builder, OperationState *result,
Value *callee, ArrayRef<Value *> operands) {
auto fnType = callee->getType().cast<FunctionType>();
result->operands.push_back(callee);
result->addOperands(operands);
result->addTypes(fnType.getResults());
}
bool CallIndirectOp::parse(OpAsmParser *parser, OperationState *result) {
FunctionType calleeType;
OpAsmParser::OperandType callee;
llvm::SMLoc operandsLoc;
SmallVector<OpAsmParser::OperandType, 4> operands;
return parser->parseOperand(callee) ||
parser->getCurrentLocation(&operandsLoc) ||
parser->parseOperandList(operands, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(calleeType) ||
parser->resolveOperand(callee, calleeType, result->operands) ||
parser->resolveOperands(operands, calleeType.getInputs(), operandsLoc,
result->operands) ||
parser->addTypesToList(calleeType.getResults(), result->types);
}
void CallIndirectOp::print(OpAsmPrinter *p) {
*p << "call_indirect ";
p->printOperand(getCallee());
*p << '(';
auto operandRange = getOperands();
p->printOperands(++operandRange.begin(), operandRange.end());
*p << ')';
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{"callee"});
*p << " : " << getCallee()->getType();
}
LogicalResult CallIndirectOp::verify() {
// The callee must be a function.
auto fnType = getCallee()->getType().dyn_cast<FunctionType>();
if (!fnType)
return emitOpError("callee must have function type");
// Verify that the operand and result types match the callee.
if (fnType.getNumInputs() != getNumOperands() - 1)
return emitOpError("incorrect number of operands for callee");
for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i) {
if (getOperand(i + 1)->getType() != fnType.getInput(i))
return emitOpError("operand type mismatch");
}
if (fnType.getNumResults() != getNumResults())
return emitOpError("incorrect number of results for callee");
for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i) {
if (getResult(i)->getType() != fnType.getResult(i))
return emitOpError("result type mismatch");
}
return success();
}
void CallIndirectOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.push_back(
llvm::make_unique<SimplifyIndirectCallWithKnownCallee>(context));
}
//===----------------------------------------------------------------------===//
// CmpIOp
//===----------------------------------------------------------------------===//
// Return the type of the same shape (scalar, vector or tensor) containing i1.
static Type getCheckedI1SameShape(Builder *build, Type type) {
auto i1Type = build->getI1Type();
if (type.isIntOrIndexOrFloat())
return i1Type;
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return build->getTensorType(tensorType.getShape(), i1Type);
if (auto tensorType = type.dyn_cast<UnrankedTensorType>())
return build->getTensorType(i1Type);
if (auto vectorType = type.dyn_cast<VectorType>())
return build->getVectorType(vectorType.getShape(), i1Type);
return Type();
}
static Type getI1SameShape(Builder *build, Type type) {
Type res = getCheckedI1SameShape(build, type);
assert(res && "expected type with valid i1 shape");
return res;
}
static inline bool isI1(Type type) {
return type.isa<IntegerType>() && type.cast<IntegerType>().getWidth() == 1;
}
template <typename Ty>
static inline bool implCheckI1SameShape(Ty pattern, Type type) {
auto specificType = type.dyn_cast<Ty>();
if (!specificType)
return true;
if (specificType.getShape() != pattern.getShape())
return true;
return !isI1(specificType.getElementType());
}
// Checks if "type" has the same shape (scalar, vector or tensor) as "pattern"
// and contains i1.
static bool checkI1SameShape(Type pattern, Type type) {
if (pattern.isIntOrIndexOrFloat())
return !isI1(type);
if (auto patternTensorType = pattern.dyn_cast<TensorType>())
return implCheckI1SameShape(patternTensorType, type);
if (auto patternVectorType = pattern.dyn_cast<VectorType>())
return implCheckI1SameShape(patternVectorType, type);
llvm_unreachable("unsupported type");
}
// Returns an array of mnemonics for CmpIPredicates, indexed by values thereof.
static inline const char *const *getPredicateNames() {
static const char *predicateNames[(int)CmpIPredicate::NumPredicates]{
/*EQ*/ "eq",
/*NE*/ "ne",
/*SLT*/ "slt",
/*SLE*/ "sle",
/*SGT*/ "sgt",
/*SGE*/ "sge",
/*ULT*/ "ult",
/*ULE*/ "ule",
/*UGT*/ "ugt",
/*UGE*/ "uge"};
return predicateNames;
}
// Returns a value of the predicate corresponding to the given mnemonic.
// Returns NumPredicates (one-past-end) if there is no such mnemonic.
CmpIPredicate CmpIOp::getPredicateByName(StringRef name) {
return llvm::StringSwitch<CmpIPredicate>(name)
.Case("eq", CmpIPredicate::EQ)
.Case("ne", CmpIPredicate::NE)
.Case("slt", CmpIPredicate::SLT)
.Case("sle", CmpIPredicate::SLE)
.Case("sgt", CmpIPredicate::SGT)
.Case("sge", CmpIPredicate::SGE)
.Case("ult", CmpIPredicate::ULT)
.Case("ule", CmpIPredicate::ULE)
.Case("ugt", CmpIPredicate::UGT)
.Case("uge", CmpIPredicate::UGE)
.Default(CmpIPredicate::NumPredicates);
}
void CmpIOp::build(Builder *build, OperationState *result,
CmpIPredicate predicate, Value *lhs, Value *rhs) {
result->addOperands({lhs, rhs});
result->types.push_back(getI1SameShape(build, lhs->getType()));
result->addAttribute(getPredicateAttrName(),
build->getIntegerAttr(build->getIntegerType(64),
static_cast<int64_t>(predicate)));
}
bool CmpIOp::parse(OpAsmParser *parser, OperationState *result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
SmallVector<NamedAttribute, 4> attrs;
Attribute predicateNameAttr;
Type type;
if (parser->parseAttribute(predicateNameAttr, getPredicateAttrName(),
attrs) ||
parser->parseComma() || parser->parseOperandList(ops, 2) ||
parser->parseOptionalAttributeDict(attrs) ||
parser->parseColonType(type) ||
parser->resolveOperands(ops, type, result->operands))
return true;
if (!predicateNameAttr.isa<StringAttr>())
return parser->emitError(parser->getNameLoc(),
"expected string comparison predicate attribute");
// Rewrite string attribute to an enum value.
StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue();
auto predicate = getPredicateByName(predicateName);
if (predicate == CmpIPredicate::NumPredicates)
return parser->emitError(parser->getNameLoc(),
"unknown comparison predicate \"" + predicateName +
"\"");
auto builder = parser->getBuilder();
Type i1Type = getCheckedI1SameShape(&builder, type);
if (!i1Type)
return parser->emitError(parser->getNameLoc(),
"expected type with valid i1 shape");
attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(predicate));
result->attributes = attrs;
result->addTypes({i1Type});
return false;
}
void CmpIOp::print(OpAsmPrinter *p) {
*p << "cmpi ";
auto predicateValue =
getAttrOfType<IntegerAttr>(getPredicateAttrName()).getInt();
assert(predicateValue >= static_cast<int>(CmpIPredicate::FirstValidValue) &&
predicateValue < static_cast<int>(CmpIPredicate::NumPredicates) &&
"unknown predicate index");
Builder b(getContext());
auto predicateStringAttr =
b.getStringAttr(getPredicateNames()[predicateValue]);
p->printAttribute(predicateStringAttr);
*p << ", ";
p->printOperand(getOperand(0));
*p << ", ";
p->printOperand(getOperand(1));
p->printOptionalAttrDict(getAttrs(),
/*elidedAttrs=*/{getPredicateAttrName()});
*p << " : " << getOperand(0)->getType();
}
LogicalResult CmpIOp::verify() {
auto predicateAttr = getAttrOfType<IntegerAttr>(getPredicateAttrName());
if (!predicateAttr)
return emitOpError("requires an integer attribute named 'predicate'");
auto predicate = predicateAttr.getInt();
if (predicate < (int64_t)CmpIPredicate::FirstValidValue ||
predicate >= (int64_t)CmpIPredicate::NumPredicates)
return emitOpError("'predicate' attribute value out of range");
return success();
}
// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer
// comparison predicates.
static bool applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs,
const APInt &rhs) {
switch (predicate) {
case CmpIPredicate::EQ:
return lhs.eq(rhs);
case CmpIPredicate::NE:
return lhs.ne(rhs);
case CmpIPredicate::SLT:
return lhs.slt(rhs);
case CmpIPredicate::SLE:
return lhs.sle(rhs);
case CmpIPredicate::SGT:
return lhs.sgt(rhs);
case CmpIPredicate::SGE:
return lhs.sge(rhs);
case CmpIPredicate::ULT:
return lhs.ult(rhs);
case CmpIPredicate::ULE:
return lhs.ule(rhs);
case CmpIPredicate::UGT:
return lhs.ugt(rhs);
case CmpIPredicate::UGE:
return lhs.uge(rhs);
default:
llvm_unreachable("unknown comparison predicate");
}
}
// Constant folding hook for comparisons.
Attribute CmpIOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
assert(operands.size() == 2 && "cmpi takes two arguments");
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return IntegerAttr::get(IntegerType::get(1, context), APInt(1, val));
}
//===----------------------------------------------------------------------===//
// CondBranchOp
//===----------------------------------------------------------------------===//
namespace {
/// cond_br true, ^bb1, ^bb2 -> br ^bb1
/// cond_br false, ^bb1, ^bb2 -> br ^bb2
///
struct SimplifyConstCondBranchPred : public RewritePattern {
SimplifyConstCondBranchPred(MLIRContext *context)
: RewritePattern(CondBranchOp::getOperationName(), 1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto condbr = op->cast<CondBranchOp>();
// Check that the condition is a constant.
if (!matchPattern(condbr.getCondition(), m_Op<ConstantOp>()))
return matchFailure();
Block *foldedDest;
SmallVector<Value *, 4> branchArgs;
// If the condition is known to evaluate to false we fold to a branch to the
// false destination. Otherwise, we fold to a branch to the true
// destination.
if (matchPattern(condbr.getCondition(), m_Zero())) {
foldedDest = condbr.getFalseDest();
branchArgs.assign(condbr.false_operand_begin(),
condbr.false_operand_end());
} else {
foldedDest = condbr.getTrueDest();
branchArgs.assign(condbr.true_operand_begin(), condbr.true_operand_end());
}
rewriter.replaceOpWithNewOp<BranchOp>(op, foldedDest, branchArgs);
return matchSuccess();
}
};
} // end anonymous namespace.
void CondBranchOp::build(Builder *builder, OperationState *result,
Value *condition, Block *trueDest,
ArrayRef<Value *> trueOperands, Block *falseDest,
ArrayRef<Value *> falseOperands) {
result->addOperands(condition);
result->addSuccessor(trueDest, trueOperands);
result->addSuccessor(falseDest, falseOperands);
}
bool CondBranchOp::parse(OpAsmParser *parser, OperationState *result) {
SmallVector<Value *, 4> destOperands;
Block *dest;
OpAsmParser::OperandType condInfo;
// Parse the condition.
Type int1Ty = parser->getBuilder().getI1Type();
if (parser->parseOperand(condInfo) || parser->parseComma() ||
parser->resolveOperand(condInfo, int1Ty, result->operands)) {
return parser->emitError(parser->getNameLoc(),
"expected condition type was boolean (i1)");
}
// Parse the true successor.
if (parser->parseSuccessorAndUseList(dest, destOperands))
return true;
result->addSuccessor(dest, destOperands);
// Parse the false successor.
destOperands.clear();
if (parser->parseComma() ||
parser->parseSuccessorAndUseList(dest, destOperands))
return true;
result->addSuccessor(dest, destOperands);
// Return false on success.
return false;
}
void CondBranchOp::print(OpAsmPrinter *p) {
*p << "cond_br ";
p->printOperand(getCondition());
*p << ", ";
p->printSuccessorAndUseList(getOperation(), trueIndex);
*p << ", ";
p->printSuccessorAndUseList(getOperation(), falseIndex);
}
LogicalResult CondBranchOp::verify() {
if (!getCondition()->getType().isInteger(1))
return emitOpError("expected condition type was boolean (i1)");
return success();
}
void CondBranchOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.push_back(llvm::make_unique<SimplifyConstCondBranchPred>(context));
}
Block *CondBranchOp::getTrueDest() {
return getOperation()->getSuccessor(trueIndex);
}
Block *CondBranchOp::getFalseDest() {
return getOperation()->getSuccessor(falseIndex);
}
unsigned CondBranchOp::getNumTrueOperands() {
return getOperation()->getNumSuccessorOperands(trueIndex);
}
void CondBranchOp::eraseTrueOperand(unsigned index) {
getOperation()->eraseSuccessorOperand(trueIndex, index);
}
unsigned CondBranchOp::getNumFalseOperands() {
return getOperation()->getNumSuccessorOperands(falseIndex);
}
void CondBranchOp::eraseFalseOperand(unsigned index) {
getOperation()->eraseSuccessorOperand(falseIndex, index);
}
//===----------------------------------------------------------------------===//
// Constant*Op
//===----------------------------------------------------------------------===//
static void printConstantOp(OpAsmPrinter *p, ConstantOp &op) {
*p << "constant ";
p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"});
if (op.getAttrs().size() > 1)
*p << ' ';
*p << op.getValue();
if (!op.getValue().isa<FunctionAttr>())
*p << " : " << op.getType();
}
static bool parseConstantOp(OpAsmParser *parser, OperationState *result) {
Attribute valueAttr;
Type type;
if (parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseAttribute(valueAttr, "value", result->attributes))
return true;
// 'constant' taking a function reference doesn't get a redundant type
// specifier. The attribute itself carries it.
if (auto fnAttr = valueAttr.dyn_cast<FunctionAttr>())
return parser->addTypeToList(fnAttr.getValue()->getType(), result->types);
if (auto intAttr = valueAttr.dyn_cast<IntegerAttr>()) {
type = intAttr.getType();
} else if (auto fpAttr = valueAttr.dyn_cast<FloatAttr>()) {
type = fpAttr.getType();
} else if (parser->parseColonType(type)) {
return true;
}
return parser->addTypeToList(type, result->types);
}
/// The constant op requires an attribute, and furthermore requires that it
/// matches the return type.
static LogicalResult verify(ConstantOp &op) {
auto value = op.getValue();
if (!value)
return op.emitOpError("requires a 'value' attribute");
auto type = op.getType();
if (type.isa<IntegerType>() || type.isIndex()) {
auto intAttr = value.dyn_cast<IntegerAttr>();
if (!intAttr)
return op.emitOpError(
"requires 'value' to be an integer for an integer result type");
// If the type has a known bitwidth we verify that the value can be
// represented with the given bitwidth.
if (!type.isIndex()) {
auto bitwidth = type.cast<IntegerType>().getWidth();
auto intVal = intAttr.getValue();
if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth))
return op.emitOpError(
"requires 'value' to be an integer within the range "
"of the integer result type");
}
return success();
}
if (type.isa<FloatType>()) {
if (!value.isa<FloatAttr>())
return op.emitOpError("requires 'value' to be a floating point constant");
return success();
}
if (type.isa<VectorOrTensorType>()) {
if (!value.isa<ElementsAttr>())
return op.emitOpError("requires 'value' to be a vector/tensor constant");
return success();
}
if (type.isa<FunctionType>()) {
if (!value.isa<FunctionAttr>())
return op.emitOpError("requires 'value' to be a function reference");
return success();
}
if (value.getType() != type)
return op.emitOpError("requires the type of the 'value' attribute to match "
"that of the operation result");
return op.emitOpError(
"requires a result type that aligns with the 'value' attribute");
}
Attribute ConstantOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
assert(operands.empty() && "constant has no operands");
return getValue();
}
void ConstantFloatOp::build(Builder *builder, OperationState *result,
const APFloat &value, FloatType type) {
ConstantOp::build(builder, result, type, builder->getFloatAttr(type, value));
}
bool ConstantFloatOp::isClassFor(Operation *op) {
return ConstantOp::isClassFor(op) &&
op->getResult(0)->getType().isa<FloatType>();
}
/// ConstantIntOp only matches values whose result type is an IntegerType.
bool ConstantIntOp::isClassFor(Operation *op) {
return ConstantOp::isClassFor(op) &&
op->getResult(0)->getType().isa<IntegerType>();
}
void ConstantIntOp::build(Builder *builder, OperationState *result,
int64_t value, unsigned width) {
Type type = builder->getIntegerType(width);
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
/// Build a constant int op producing an integer with the specified type,
/// which must be an integer type.
void ConstantIntOp::build(Builder *builder, OperationState *result,
int64_t value, Type type) {
assert(type.isa<IntegerType>() && "ConstantIntOp can only have integer type");
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
/// ConstantIndexOp only matches values whose result type is Index.
bool ConstantIndexOp::isClassFor(Operation *op) {
return ConstantOp::isClassFor(op) && op->getResult(0)->getType().isIndex();
}
void ConstantIndexOp::build(Builder *builder, OperationState *result,
int64_t value) {
Type type = builder->getIndexType();
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold Dealloc operations that are deallocating an AllocOp that is only used
/// by other Dealloc operations.
struct SimplifyDeadDealloc : public RewritePattern {
SimplifyDeadDealloc(MLIRContext *context)
: RewritePattern(DeallocOp::getOperationName(), 1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto dealloc = op->cast<DeallocOp>();
// Check that the memref operand's defining operation is an AllocOp.
Value *memref = dealloc.getMemRef();
Operation *defOp = memref->getDefiningOp();
if (!isa_and_nonnull<AllocOp>(defOp))
return matchFailure();
// Check that all of the uses of the AllocOp are other DeallocOps.
for (auto &use : memref->getUses())
if (!use.getOwner()->isa<DeallocOp>())
return matchFailure();
// Erase the dealloc operation.
op->erase();
return matchSuccess();
}
};
} // end anonymous namespace.
void DeallocOp::build(Builder *builder, OperationState *result, Value *memref) {
result->addOperands(memref);
}
void DeallocOp::print(OpAsmPrinter *p) {
*p << "dealloc " << *getMemRef() << " : " << getMemRef()->getType();
}
bool DeallocOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType memrefInfo;
MemRefType type;
return parser->parseOperand(memrefInfo) || parser->parseColonType(type) ||
parser->resolveOperand(memrefInfo, type, result->operands);
}
LogicalResult DeallocOp::verify() {
if (!getMemRef()->getType().isa<MemRefType>())
return emitOpError("operand must be a memref");
return success();
}
void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
/// dealloc(memrefcast) -> dealloc
results.push_back(
llvm::make_unique<MemRefCastFolder>(getOperationName(), context));
results.push_back(llvm::make_unique<SimplifyDeadDealloc>(context));
}
//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//
void DimOp::build(Builder *builder, OperationState *result,
Value *memrefOrTensor, unsigned index) {
result->addOperands(memrefOrTensor);
auto type = builder->getIndexType();
result->addAttribute("index", builder->getIntegerAttr(type, index));
result->types.push_back(type);
}
void DimOp::print(OpAsmPrinter *p) {
*p << "dim " << *getOperand() << ", " << getIndex();
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{"index"});
*p << " : " << getOperand()->getType();
}
bool DimOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType operandInfo;
IntegerAttr indexAttr;
Type type;
Type indexType = parser->getBuilder().getIndexType();
return parser->parseOperand(operandInfo) || parser->parseComma() ||
parser->parseAttribute(indexAttr, indexType, "index",
result->attributes) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->resolveOperand(operandInfo, type, result->operands) ||
parser->addTypeToList(indexType, result->types);
}
LogicalResult DimOp::verify() {
// Check that we have an integer index operand.
auto indexAttr = getAttrOfType<IntegerAttr>("index");
if (!indexAttr)
return emitOpError("requires an integer attribute named 'index'");
uint64_t index = indexAttr.getValue().getZExtValue();
auto type = getOperand()->getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
if (index >= tensorType.getRank())
return emitOpError("index is out of range");
} else if (auto memrefType = type.dyn_cast<MemRefType>()) {
if (index >= memrefType.getRank())
return emitOpError("index is out of range");
} else if (type.isa<UnrankedTensorType>()) {
// ok, assumed to be in-range.
} else {
return emitOpError("requires an operand with tensor or memref type");
}
return success();
}
Attribute DimOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
// Constant fold dim when the size along the index referred to is a constant.
auto opType = getOperand()->getType();
int64_t indexSize = -1;
if (auto tensorType = opType.dyn_cast<RankedTensorType>()) {
indexSize = tensorType.getShape()[getIndex()];
} else if (auto memrefType = opType.dyn_cast<MemRefType>()) {
indexSize = memrefType.getShape()[getIndex()];
}
if (indexSize >= 0)
return IntegerAttr::get(IndexType::get(context), indexSize);
return nullptr;
}
//===----------------------------------------------------------------------===//
// DivISOp
//===----------------------------------------------------------------------===//
Attribute DivISOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
assert(operands.size() == 2 && "binary operation takes two operands");
(void)context;
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return {};
// Don't fold if it requires division by zero.
if (rhs.getValue().isNullValue()) {
return {};
}
// Don't fold if it would overflow.
bool overflow;
auto result = lhs.getValue().sdiv_ov(rhs.getValue(), overflow);
return overflow ? IntegerAttr{} : IntegerAttr::get(lhs.getType(), result);
}
//===----------------------------------------------------------------------===//
// DivIUOp
//===----------------------------------------------------------------------===//
Attribute DivIUOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
assert(operands.size() == 2 && "binary operation takes two operands");
(void)context;
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return {};
// Don't fold if it requires division by zero.
if (rhs.getValue().isNullValue()) {
return {};
}
return IntegerAttr::get(lhs.getType(), lhs.getValue().udiv(rhs.getValue()));
}
// ---------------------------------------------------------------------------
// DmaStartOp
// ---------------------------------------------------------------------------
void DmaStartOp::build(Builder *builder, OperationState *result,
Value *srcMemRef, ArrayRef<Value *> srcIndices,
Value *destMemRef, ArrayRef<Value *> destIndices,
Value *numElements, Value *tagMemRef,
ArrayRef<Value *> tagIndices, Value *stride,
Value *elementsPerStride) {
result->addOperands(srcMemRef);
result->addOperands(srcIndices);
result->addOperands(destMemRef);
result->addOperands(destIndices);
result->addOperands(numElements);
result->addOperands(tagMemRef);
result->addOperands(tagIndices);
if (stride) {
result->addOperands(stride);
result->addOperands(elementsPerStride);
}
}
void DmaStartOp::print(OpAsmPrinter *p) {
*p << "dma_start " << *getSrcMemRef() << '[';
p->printOperands(getSrcIndices());
*p << "], " << *getDstMemRef() << '[';
p->printOperands(getDstIndices());
*p << "], " << *getNumElements();
*p << ", " << *getTagMemRef() << '[';
p->printOperands(getTagIndices());
*p << ']';
if (isStrided()) {
*p << ", " << *getStride();
*p << ", " << *getNumElementsPerStride();
}
p->printOptionalAttrDict(getAttrs());
*p << " : " << getSrcMemRef()->getType();
*p << ", " << getDstMemRef()->getType();
*p << ", " << getTagMemRef()->getType();
}
// Parse DmaStartOp.
// Ex:
// %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size,
// %tag[%index], %stride, %num_elt_per_stride :
// : memref<3076 x f32, 0>,
// memref<1024 x f32, 2>,
// memref<1 x i32>
//
bool DmaStartOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType srcMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos;
OpAsmParser::OperandType dstMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos;
OpAsmParser::OperandType numElementsInfo;
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos;
SmallVector<OpAsmParser::OperandType, 2> strideInfo;
SmallVector<Type, 3> types;
auto indexType = parser->getBuilder().getIndexType();
// Parse and resolve the following list of operands:
// *) source memref followed by its indices (in square brackets).
// *) destination memref followed by its indices (in square brackets).
// *) dma size in KiB.
if (parser->parseOperand(srcMemRefInfo) ||
parser->parseOperandList(srcIndexInfos, -1,
OpAsmParser::Delimiter::Square) ||
parser->parseComma() || parser->parseOperand(dstMemRefInfo) ||
parser->parseOperandList(dstIndexInfos, -1,
OpAsmParser::Delimiter::Square) ||
parser->parseComma() || parser->parseOperand(numElementsInfo) ||
parser->parseComma() || parser->parseOperand(tagMemrefInfo) ||
parser->parseOperandList(tagIndexInfos, -1,
OpAsmParser::Delimiter::Square))
return true;
// Parse optional stride and elements per stride.
if (parser->parseTrailingOperandList(strideInfo)) {
return true;
}
if (!strideInfo.empty() && strideInfo.size() != 2) {
return parser->emitError(parser->getNameLoc(),
"expected two stride related operands");
}
bool isStrided = strideInfo.size() == 2;
if (parser->parseColonTypeList(types))
return true;
if (types.size() != 3)
return parser->emitError(parser->getNameLoc(), "fewer/more types expected");
if (parser->resolveOperand(srcMemRefInfo, types[0], result->operands) ||
parser->resolveOperands(srcIndexInfos, indexType, result->operands) ||
parser->resolveOperand(dstMemRefInfo, types[1], result->operands) ||
parser->resolveOperands(dstIndexInfos, indexType, result->operands) ||
// size should be an index.
parser->resolveOperand(numElementsInfo, indexType, result->operands) ||
parser->resolveOperand(tagMemrefInfo, types[2], result->operands) ||
// tag indices should be index.
parser->resolveOperands(tagIndexInfos, indexType, result->operands))
return true;
if (!types[0].isa<MemRefType>())
return parser->emitError(parser->getNameLoc(),
"expected source to be of memref type");
if (!types[1].isa<MemRefType>())
return parser->emitError(parser->getNameLoc(),
"expected destination to be of memref type");
if (!types[2].isa<MemRefType>())
return parser->emitError(parser->getNameLoc(),
"expected tag to be of memref type");
if (isStrided) {
if (parser->resolveOperand(strideInfo[0], indexType, result->operands) ||
parser->resolveOperand(strideInfo[1], indexType, result->operands))
return true;
}
// Check that source/destination index list size matches associated rank.
if (srcIndexInfos.size() != types[0].cast<MemRefType>().getRank() ||
dstIndexInfos.size() != types[1].cast<MemRefType>().getRank())
return parser->emitError(parser->getNameLoc(),
"memref rank not equal to indices count");
if (tagIndexInfos.size() != types[2].cast<MemRefType>().getRank())
return parser->emitError(parser->getNameLoc(),
"tag memref rank not equal to indices count");
return false;
}
LogicalResult DmaStartOp::verify() {
// DMAs from different memory spaces supported.
if (getSrcMemorySpace() == getDstMemorySpace()) {
return emitOpError("DMA should be between different memory spaces");
}
if (getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
getDstMemRefRank() + 3 + 1 &&
getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
getDstMemRefRank() + 3 + 1 + 2) {
return emitOpError("incorrect number of operands");
}
return success();
}
void DmaStartOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
/// dma_start(memrefcast) -> dma_start
results.push_back(
llvm::make_unique<MemRefCastFolder>(getOperationName(), context));
}
// ---------------------------------------------------------------------------
// DmaWaitOp
// ---------------------------------------------------------------------------
void DmaWaitOp::build(Builder *builder, OperationState *result,
Value *tagMemRef, ArrayRef<Value *> tagIndices,
Value *numElements) {
result->addOperands(tagMemRef);
result->addOperands(tagIndices);
result->addOperands(numElements);
}
void DmaWaitOp::print(OpAsmPrinter *p) {
*p << "dma_wait ";
// Print operands.
p->printOperand(getTagMemRef());
*p << '[';
p->printOperands(getTagIndices());
*p << "], ";
p->printOperand(getNumElements());
p->printOptionalAttrDict(getAttrs());
*p << " : " << getTagMemRef()->getType();
}
// Parse DmaWaitOp.
// Eg:
// dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4>
//
bool DmaWaitOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos;
Type type;
auto indexType = parser->getBuilder().getIndexType();
OpAsmParser::OperandType numElementsInfo;
// Parse tag memref, its indices, and dma size.
if (parser->parseOperand(tagMemrefInfo) ||
parser->parseOperandList(tagIndexInfos, -1,
OpAsmParser::Delimiter::Square) ||
parser->parseComma() || parser->parseOperand(numElementsInfo) ||
parser->parseColonType(type) ||
parser->resolveOperand(tagMemrefInfo, type, result->operands) ||
parser->resolveOperands(tagIndexInfos, indexType, result->operands) ||
parser->resolveOperand(numElementsInfo, indexType, result->operands))
return true;
if (!type.isa<MemRefType>())
return parser->emitError(parser->getNameLoc(),
"expected tag to be of memref type");
if (tagIndexInfos.size() != type.cast<MemRefType>().getRank())
return parser->emitError(parser->getNameLoc(),
"tag memref rank not equal to indices count");
return false;
}
void DmaWaitOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
/// dma_wait(memrefcast) -> dma_wait
results.push_back(
llvm::make_unique<MemRefCastFolder>(getOperationName(), context));
}
//===----------------------------------------------------------------------===//
// ExtractElementOp
//===----------------------------------------------------------------------===//
void ExtractElementOp::build(Builder *builder, OperationState *result,
Value *aggregate, ArrayRef<Value *> indices) {
auto aggregateType = aggregate->getType().cast<VectorOrTensorType>();
result->addOperands(aggregate);
result->addOperands(indices);
result->types.push_back(aggregateType.getElementType());
}
void ExtractElementOp::print(OpAsmPrinter *p) {
*p << "extract_element " << *getAggregate() << '[';
p->printOperands(getIndices());
*p << ']';
p->printOptionalAttrDict(getAttrs());
*p << " : " << getAggregate()->getType();
}
bool ExtractElementOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType aggregateInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
VectorOrTensorType type;
auto affineIntTy = parser->getBuilder().getIndexType();
return parser->parseOperand(aggregateInfo) ||
parser->parseOperandList(indexInfo, -1,
OpAsmParser::Delimiter::Square) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->resolveOperand(aggregateInfo, type, result->operands) ||
parser->resolveOperands(indexInfo, affineIntTy, result->operands) ||
parser->addTypeToList(type.getElementType(), result->types);
}
LogicalResult ExtractElementOp::verify() {
if (getNumOperands() == 0)
return emitOpError("expected an aggregate to index into");
auto aggregateType = getAggregate()->getType().dyn_cast<VectorOrTensorType>();
if (!aggregateType)
return emitOpError("first operand must be a vector or tensor");
if (getType() != aggregateType.getElementType())
return emitOpError("result type must match element type of aggregate");
for (auto *idx : getIndices())
if (!idx->getType().isIndex())
return emitOpError("index to extract_element must have 'index' type");
// Verify the # indices match if we have a ranked type.
auto aggregateRank = aggregateType.getRank();
if (aggregateRank != -1 && aggregateRank != getNumOperands() - 1)
return emitOpError("incorrect number of indices for extract_element");
return success();
}
Attribute ExtractElementOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
assert(!operands.empty() && "extract_element takes atleast one operand");
// The aggregate operand must be a known constant.
Attribute aggregate = operands.front();
if (!aggregate)
return Attribute();
// If this is a splat elements attribute, simply return the value. All of the
// elements of a splat attribute are the same.
if (auto splatAggregate = aggregate.dyn_cast<SplatElementsAttr>())
return splatAggregate.getValue();
// Otherwise, collect the constant indices into the aggregate.
SmallVector<uint64_t, 8> indices;
for (Attribute indice : llvm::drop_begin(operands, 1)) {
if (!indice || !indice.isa<IntegerAttr>())
return Attribute();
indices.push_back(indice.cast<IntegerAttr>().getInt());
}
// If this is an elements attribute, query the value at the given indices.
if (auto elementsAttr = aggregate.dyn_cast<ElementsAttr>())
return elementsAttr.getValue(indices);
return Attribute();
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
void LoadOp::build(Builder *builder, OperationState *result, Value *memref,
ArrayRef<Value *> indices) {
auto memrefType = memref->getType().cast<MemRefType>();
result->addOperands(memref);
result->addOperands(indices);
result->types.push_back(memrefType.getElementType());
}
void LoadOp::print(OpAsmPrinter *p) {
*p << "load " << *getMemRef() << '[';
p->printOperands(getIndices());
*p << ']';
p->printOptionalAttrDict(getAttrs());
*p << " : " << getMemRefType();
}
bool LoadOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
MemRefType type;
auto affineIntTy = parser->getBuilder().getIndexType();
return parser->parseOperand(memrefInfo) ||
parser->parseOperandList(indexInfo, -1,
OpAsmParser::Delimiter::Square) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->resolveOperand(memrefInfo, type, result->operands) ||
parser->resolveOperands(indexInfo, affineIntTy, result->operands) ||
parser->addTypeToList(type.getElementType(), result->types);
}
LogicalResult LoadOp::verify() {
if (getNumOperands() == 0)
return emitOpError("expected a memref to load from");
auto memRefType = getMemRef()->getType().dyn_cast<MemRefType>();
if (!memRefType)
return emitOpError("first operand must be a memref");
if (getType() != memRefType.getElementType())
return emitOpError("result type must match element type of memref");
if (memRefType.getRank() != getNumOperands() - 1)
return emitOpError("incorrect number of indices for load");
for (auto *idx : getIndices())
if (!idx->getType().isIndex())
return emitOpError("index to load must have 'index' type");
// TODO: Verify we have the right number of indices.
// TODO: in Function verify that the indices are parameters, IV's, or the
// result of an affine.apply.
return success();
}
void LoadOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
/// load(memrefcast) -> load
results.push_back(
llvm::make_unique<MemRefCastFolder>(getOperationName(), context));
}
//===----------------------------------------------------------------------===//
// MemRefCastOp
//===----------------------------------------------------------------------===//
bool MemRefCastOp::areCastCompatible(Type a, Type b) {
auto aT = a.dyn_cast<MemRefType>();
auto bT = b.dyn_cast<MemRefType>();
if (!aT || !bT)
return false;
if (aT.getElementType() != bT.getElementType())
return false;
if (aT.getAffineMaps() != bT.getAffineMaps())
return false;
if (aT.getMemorySpace() != bT.getMemorySpace())
return false;
// They must have the same rank, and any specified dimensions must match.
if (aT.getRank() != bT.getRank())
return false;
for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
if (aDim != -1 && bDim != -1 && aDim != bDim)
return false;
}
return true;
}
void MemRefCastOp::print(OpAsmPrinter *p) {
*p << "memref_cast " << *getOperand() << " : " << getOperand()->getType()
<< " to " << getType();
}
LogicalResult MemRefCastOp::verify() {
auto opType = getOperand()->getType();
auto resType = getType();
if (!areCastCompatible(opType, resType))
return emitError(llvm::formatv(
"operand type {0} and result type {1} are cast incompatible", opType,
resType));
return success();
}
//===----------------------------------------------------------------------===//
// MulFOp
//===----------------------------------------------------------------------===//
Attribute MulFOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// MulIOp
//===----------------------------------------------------------------------===//
Attribute MulIOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
// TODO: Handle the overflow case.
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a * b; });
}
Value *MulIOp::fold() {
/// muli(x, 0) -> 0
if (matchPattern(getOperand(1), m_Zero()))
return getOperand(1);
/// muli(x, 1) -> x
if (matchPattern(getOperand(1), m_One()))
return getOperand(0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// RemISOp
//===----------------------------------------------------------------------===//
Attribute RemISOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
assert(operands.size() == 2 && "remis takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
// x % 1 = 0
if (rhs.getValue().isOneValue())
return IntegerAttr::get(rhs.getType(),
APInt(rhs.getValue().getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhs.getValue().isNullValue()) {
return {};
}
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhs.getValue()));
}
//===----------------------------------------------------------------------===//
// RemIUOp
//===----------------------------------------------------------------------===//
Attribute RemIUOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
assert(operands.size() == 2 && "remiu takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
// x % 1 = 0
if (rhs.getValue().isOneValue())
return IntegerAttr::get(rhs.getType(),
APInt(rhs.getValue().getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhs.getValue().isNullValue()) {
return {};
}
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhs.getValue()));
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
void ReturnOp::build(Builder *builder, OperationState *result,
ArrayRef<Value *> results) {
result->addOperands(results);
}
bool ReturnOp::parse(OpAsmParser *parser, OperationState *result) {
SmallVector<OpAsmParser::OperandType, 2> opInfo;
SmallVector<Type, 2> types;
llvm::SMLoc loc;
return parser->getCurrentLocation(&loc) || parser->parseOperandList(opInfo) ||
(!opInfo.empty() && parser->parseColonTypeList(types)) ||
parser->resolveOperands(opInfo, types, loc, result->operands);
}
void ReturnOp::print(OpAsmPrinter *p) {
*p << "return";
if (getNumOperands() > 0) {
*p << ' ';
p->printOperands(operand_begin(), operand_end());
*p << " : ";
interleave(
operand_begin(), operand_end(),
[&](Value *e) { p->printType(e->getType()); }, [&]() { *p << ", "; });
}
}
LogicalResult ReturnOp::verify() {
auto *function = getOperation()->getFunction();
// The operand number and types must match the function signature.
const auto &results = function->getType().getResults();
if (getNumOperands() != results.size())
return emitOpError("has " + Twine(getNumOperands()) +
" operands, but enclosing function returns " +
Twine(results.size()));
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (getOperand(i)->getType() != results[i])
return emitError("type of return operand " + Twine(i) +
" doesn't match function result type");
return success();
}
//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//
void SelectOp::build(Builder *builder, OperationState *result, Value *condition,
Value *trueValue, Value *falseValue) {
result->addOperands({condition, trueValue, falseValue});
result->addTypes(trueValue->getType());
}
bool SelectOp::parse(OpAsmParser *parser, OperationState *result) {
SmallVector<OpAsmParser::OperandType, 3> ops;
SmallVector<NamedAttribute, 4> attrs;
Type type;
if (parser->parseOperandList(ops, 3) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type))
return true;
auto i1Type = getCheckedI1SameShape(&parser->getBuilder(), type);
if (!i1Type)
return parser->emitError(parser->getNameLoc(),
"expected type with valid i1 shape");
SmallVector<Type, 3> types = {i1Type, type, type};
return parser->resolveOperands(ops, types, parser->getNameLoc(),
result->operands) ||
parser->addTypeToList(type, result->types);
}
void SelectOp::print(OpAsmPrinter *p) {
*p << "select ";
p->printOperands(getOperation()->getOperands());
*p << " : " << getTrueValue()->getType();
p->printOptionalAttrDict(getAttrs());
}
LogicalResult SelectOp::verify() {
auto conditionType = getCondition()->getType();
auto trueType = getTrueValue()->getType();
auto falseType = getFalseValue()->getType();
if (trueType != falseType)
return emitOpError(
"requires 'true' and 'false' arguments to be of the same type");
if (checkI1SameShape(trueType, conditionType))
return emitOpError("requires the condition to have the same shape as "
"arguments with elemental type i1");
return success();
}
Value *SelectOp::fold() {
auto *condition = getCondition();
// select true, %0, %1 => %0
if (matchPattern(condition, m_One()))
return getTrueValue();
// select false, %0, %1 => %1
if (matchPattern(condition, m_Zero()))
return getFalseValue();
return nullptr;
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
void StoreOp::build(Builder *builder, OperationState *result,
Value *valueToStore, Value *memref,
ArrayRef<Value *> indices) {
result->addOperands(valueToStore);
result->addOperands(memref);
result->addOperands(indices);
}
void StoreOp::print(OpAsmPrinter *p) {
*p << "store " << *getValueToStore();
*p << ", " << *getMemRef() << '[';
p->printOperands(getIndices());
*p << ']';
p->printOptionalAttrDict(getAttrs());
*p << " : " << getMemRefType();
}
bool StoreOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType storeValueInfo;
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
MemRefType memrefType;
auto affineIntTy = parser->getBuilder().getIndexType();
return parser->parseOperand(storeValueInfo) || parser->parseComma() ||
parser->parseOperand(memrefInfo) ||
parser->parseOperandList(indexInfo, -1,
OpAsmParser::Delimiter::Square) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(memrefType) ||
parser->resolveOperand(storeValueInfo, memrefType.getElementType(),
result->operands) ||
parser->resolveOperand(memrefInfo, memrefType, result->operands) ||
parser->resolveOperands(indexInfo, affineIntTy, result->operands);
}
LogicalResult StoreOp::verify() {
if (getNumOperands() < 2)
return emitOpError("expected a value to store and a memref");
// Second operand is a memref type.
auto memRefType = getMemRef()->getType().dyn_cast<MemRefType>();
if (!memRefType)
return emitOpError("second operand must be a memref");
// First operand must have same type as memref element type.
if (getValueToStore()->getType() != memRefType.getElementType())
return emitOpError("first operand must have same type memref element type");
if (getNumOperands() != 2 + memRefType.getRank())
return emitOpError("store index operand count not equal to memref rank");
for (auto *idx : getIndices())
if (!idx->getType().isIndex())
return emitOpError("index to load must have 'index' type");
// TODO: Verify we have the right number of indices.
// TODO: in Function verify that the indices are parameters, IV's, or the
// result of an affine.apply.
return success();
}
void StoreOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
/// store(memrefcast) -> store
results.push_back(
llvm::make_unique<MemRefCastFolder>(getOperationName(), context));
}
//===----------------------------------------------------------------------===//
// SubFOp
//===----------------------------------------------------------------------===//
Attribute SubFOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// SubIOp
//===----------------------------------------------------------------------===//
Attribute SubIOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a - b; });
}
namespace {
/// subi(x,x) -> 0
///
struct SimplifyXMinusX : public RewritePattern {
SimplifyXMinusX(MLIRContext *context)
: RewritePattern(SubIOp::getOperationName(), 1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto subi = op->cast<SubIOp>();
if (subi.getOperand(0) != subi.getOperand(1))
return matchFailure();
rewriter.replaceOpWithNewOp<ConstantOp>(
op, subi.getType(), rewriter.getZeroAttr(subi.getType()));
return matchSuccess();
}
};
} // end anonymous namespace.
void SubIOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.push_back(llvm::make_unique<SimplifyXMinusX>(context));
}
//===----------------------------------------------------------------------===//
// AndOp
//===----------------------------------------------------------------------===//
Attribute AndOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a & b; });
}
Value *AndOp::fold() {
/// and(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// and(x,x) -> x
if (lhs() == rhs())
return rhs();
return nullptr;
}
//===----------------------------------------------------------------------===//
// OrOp
//===----------------------------------------------------------------------===//
Attribute OrOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a | b; });
}
Value *OrOp::fold() {
/// or(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// or(x,x) -> x
if (lhs() == rhs())
return rhs();
return nullptr;
}
//===----------------------------------------------------------------------===//
// XOrOp
//===----------------------------------------------------------------------===//
Attribute XOrOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) {
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a ^ b; });
}
Value *XOrOp::fold() {
/// xor(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
return nullptr;
}
namespace {
/// xor(x,x) -> 0
///
struct SimplifyXXOrX : public RewritePattern {
SimplifyXXOrX(MLIRContext *context)
: RewritePattern(XOrOp::getOperationName(), 1, context) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto xorOp = op->cast<XOrOp>();
if (xorOp.lhs() != xorOp.rhs())
return matchFailure();
rewriter.replaceOpWithNewOp<ConstantOp>(
op, xorOp.getType(), rewriter.getZeroAttr(xorOp.getType()));
return matchSuccess();
}
};
} // end anonymous namespace.
void XOrOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.push_back(llvm::make_unique<SimplifyXXOrX>(context));
}
//===----------------------------------------------------------------------===//
// TensorCastOp
//===----------------------------------------------------------------------===//
bool TensorCastOp::areCastCompatible(Type a, Type b) {
auto aT = a.dyn_cast<TensorType>();
auto bT = b.dyn_cast<TensorType>();
if (!aT || !bT)
return false;
if (aT.getElementType() != bT.getElementType())
return false;
// If the either are unranked, then the cast is valid.
auto aRType = aT.dyn_cast<RankedTensorType>();
auto bRType = bT.dyn_cast<RankedTensorType>();
if (!aRType || !bRType)
return true;
// If they are both ranked, they have to have the same rank, and any specified
// dimensions must match.
if (aRType.getRank() != bRType.getRank())
return false;
for (unsigned i = 0, e = aRType.getRank(); i != e; ++i) {
int64_t aDim = aRType.getDimSize(i), bDim = bRType.getDimSize(i);
if (aDim != -1 && bDim != -1 && aDim != bDim)
return false;
}
return true;
}
void TensorCastOp::print(OpAsmPrinter *p) {
*p << "tensor_cast " << *getOperand() << " : " << getOperand()->getType()
<< " to " << getType();
}
LogicalResult TensorCastOp::verify() {
auto opType = getOperand()->getType();
auto resType = getType();
if (!areCastCompatible(opType, resType))
return emitError(llvm::formatv(
"operand type {0} and result type {1} are cast incompatible", opType,
resType));
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/StandardOps/Ops.cpp.inc"