blob: 858fcc92f8cab471d6521c716585293a849fdee3 [file] [log] [blame]
//===- Block.cpp - MLIR Block Class ---------------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// BlockArgument
//===----------------------------------------------------------------------===//
/// Returns the number of this argument.
unsigned BlockArgument::getArgNumber() {
// Arguments are not stored in place, so we have to find it within the list.
auto argList = getOwner()->getArguments();
return std::distance(argList.begin(), llvm::find(argList, this));
}
//===----------------------------------------------------------------------===//
// Block
//===----------------------------------------------------------------------===//
Block::~Block() {
assert(!verifyInstOrder() && "Expected valid operation ordering.");
clear();
llvm::DeleteContainerPointers(arguments);
}
Region *Block::getParent() const {
return parentValidInstOrderPair.getPointer();
}
/// Returns the closest surrounding operation that contains this block or
/// nullptr if this block is unlinked.
Operation *Block::getParentOp() {
return getParent() ? getParent()->getParentOp() : nullptr;
}
/// Return if this block is the entry block in the parent region.
bool Block::isEntryBlock() { return this == &getParent()->front(); }
/// Insert this block (which must not already be in a region) right before the
/// specified block.
void Block::insertBefore(Block *block) {
assert(!getParent() && "already inserted into a block!");
assert(block->getParent() && "cannot insert before a block without a parent");
block->getParent()->getBlocks().insert(Region::iterator(block), this);
}
/// Unlink this Block from its parent Region and delete it.
void Block::erase() {
assert(getParent() && "Block has no parent");
getParent()->getBlocks().erase(this);
}
/// Returns 'op' if 'op' lies in this block, or otherwise finds the
/// ancestor operation of 'op' that lies in this block. Returns nullptr if
/// the latter fails.
Operation *Block::findAncestorInstInBlock(Operation &op) {
// Traverse up the operation hierarchy starting from the owner of operand to
// find the ancestor operation that resides in the block of 'forInst'.
auto *currInst = &op;
while (currInst->getBlock() != this) {
currInst = currInst->getParentOp();
if (!currInst)
return nullptr;
}
return currInst;
}
/// This drops all operand uses from operations within this block, which is
/// an essential step in breaking cyclic dependences between references when
/// they are to be deleted.
void Block::dropAllReferences() {
for (Operation &i : *this)
i.dropAllReferences();
}
void Block::dropAllDefinedValueUses() {
for (auto *arg : getArguments())
arg->dropAllUses();
for (auto &op : *this)
op.dropAllDefinedValueUses();
dropAllUses();
}
/// Returns true if the ordering of the child operations is valid, false
/// otherwise.
bool Block::isInstOrderValid() { return parentValidInstOrderPair.getInt(); }
/// Invalidates the current ordering of operations.
void Block::invalidateInstOrder() {
// Validate the current ordering.
assert(!verifyInstOrder());
parentValidInstOrderPair.setInt(false);
}
/// Verifies the current ordering of child operations. Returns false if the
/// order is valid, true otherwise.
bool Block::verifyInstOrder() {
// The order is already known to be invalid.
if (!isInstOrderValid())
return false;
// The order is valid if there are less than 2 operations.
if (operations.empty() || std::next(operations.begin()) == operations.end())
return false;
Operation *prev = nullptr;
for (auto &i : *this) {
// The previous operation must have a smaller order index than the next as
// it appears earlier in the list.
if (prev && prev->orderIndex >= i.orderIndex)
return true;
prev = &i;
}
return false;
}
/// Recomputes the ordering of child operations within the block.
void Block::recomputeInstOrder() {
parentValidInstOrderPair.setInt(true);
// TODO(riverriddle) Have non-congruent indices to reduce the number of times
// an insert invalidates the list.
unsigned orderIndex = 0;
for (auto &op : *this)
op.orderIndex = orderIndex++;
}
//===----------------------------------------------------------------------===//
// Argument list management.
//===----------------------------------------------------------------------===//
BlockArgument *Block::addArgument(Type type) {
auto *arg = new BlockArgument(type, this);
arguments.push_back(arg);
return arg;
}
/// Add one argument to the argument list for each type specified in the list.
auto Block::addArguments(ArrayRef<Type> types)
-> llvm::iterator_range<args_iterator> {
arguments.reserve(arguments.size() + types.size());
auto initialSize = arguments.size();
for (auto type : types) {
addArgument(type);
}
return {arguments.data() + initialSize, arguments.data() + arguments.size()};
}
void Block::eraseArgument(unsigned index, bool updatePredTerms) {
assert(index < arguments.size());
// Delete the argument.
delete arguments[index];
arguments.erase(arguments.begin() + index);
// If we aren't updating predecessors, there is nothing left to do.
if (!updatePredTerms)
return;
// Erase this argument from each of the predecessor's terminator.
for (auto predIt = pred_begin(), predE = pred_end(); predIt != predE;
++predIt) {
auto *predTerminator = (*predIt)->getTerminator();
predTerminator->eraseSuccessorOperand(predIt.getSuccessorIndex(), index);
}
}
//===----------------------------------------------------------------------===//
// Terminator management
//===----------------------------------------------------------------------===//
/// Get the terminator operation of this block. This function asserts that
/// the block has a valid terminator operation.
Operation *Block::getTerminator() {
assert(!empty() && !back().isKnownNonTerminator());
return &back();
}
/// Return true if this block has no predecessors.
bool Block::hasNoPredecessors() { return pred_begin() == pred_end(); }
// Indexed successor access.
unsigned Block::getNumSuccessors() {
return empty() ? 0 : back().getNumSuccessors();
}
Block *Block::getSuccessor(unsigned i) {
assert(i < getNumSuccessors());
return getTerminator()->getSuccessor(i);
}
/// If this block has exactly one predecessor, return it. Otherwise, return
/// null.
///
/// Note that multiple edges from a single block (e.g. if you have a cond
/// branch with the same block as the true/false destinations) is not
/// considered to be a single predecessor.
Block *Block::getSinglePredecessor() {
auto it = pred_begin();
if (it == pred_end())
return nullptr;
auto *firstPred = *it;
++it;
return it == pred_end() ? firstPred : nullptr;
}
//===----------------------------------------------------------------------===//
// Other
//===----------------------------------------------------------------------===//
/// Split the block into two blocks before the specified operation or
/// iterator.
///
/// Note that all operations BEFORE the specified iterator stay as part of
/// the original basic block, and the rest of the operations in the original
/// block are moved to the new block, including the old terminator. The
/// original block is left without a terminator.
///
/// The newly formed Block is returned, and the specified iterator is
/// invalidated.
Block *Block::splitBlock(iterator splitBefore) {
// Start by creating a new basic block, and insert it immediate after this
// one in the containing region.
auto newBB = new Block();
getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB);
// Move all of the operations from the split point to the end of the region
// into the new block.
newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore,
end());
return newBB;
}
//===----------------------------------------------------------------------===//
// Predecessors
//===----------------------------------------------------------------------===//
Block *PredecessorIterator::unwrap(BlockOperand &value) {
return value.getOwner()->getBlock();
}
/// Get the successor number in the predecessor terminator.
unsigned PredecessorIterator::getSuccessorIndex() const {
return I->getOperandNumber();
}