blob: 4e57ba1d7e552b2743dd0c9781ba3d240ed50c12 [file] [log] [blame]
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/pooling.h"
// These are headers from the ARM CMSIS-NN library.
#include "arm_nnfunctions.h" // NOLINT
#include "scratch_buffer.h" // NOLINT
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
namespace tflite {
namespace ops {
namespace micro {
namespace pooling {
namespace {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
struct OpData {
TfLitePaddingValues padding;
};
TfLiteStatus CalculateOpData(const TfLiteContext* context,
const TfLitePoolParams* params,
const TfLiteTensor* input,
const TfLiteTensor* output, OpData* data) {
// input: batch, height, width, channel
int height = SizeOfDimension(input, 1);
int width = SizeOfDimension(input, 2);
int out_height, out_width;
data->padding = ComputePaddingHeightWidth(
params->stride_height, params->stride_width,
/*dilation_rate_height=*/1,
/*dilation_rate_width=*/1, height, width, params->filter_height,
params->filter_width, params->padding, &out_height, &out_width);
return kTfLiteOk;
}
void AverageEvalFloat(const TfLiteContext* context, const TfLiteNode* node,
const TfLitePoolParams* params, const OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
float activation_min, activation_max;
CalculateActivationRange(params->activation, &activation_min,
&activation_max);
PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.filter_height = params->filter_height;
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.float_activation_min = activation_min;
op_params.float_activation_max = activation_max;
reference_ops::AveragePool(
op_params, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
}
void AverageEvalUint8(TfLiteContext* context, const TfLiteNode* node,
const TfLitePoolParams* params, const OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
int32_t activation_min, activation_max;
(void)CalculateActivationRangeQuantized(context, params->activation, output,
&activation_min, &activation_max);
PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.filter_height = params->filter_height;
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.quantized_activation_min = activation_min;
op_params.quantized_activation_max = activation_max;
reference_ops::AveragePool(
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
GetTensorShape(output), GetTensorData<uint8_t>(output));
}
TfLiteStatus AverageEvalInt8(TfLiteContext* context, const TfLiteNode* node,
const TfLitePoolParams* params, const OpData* data,
TfLiteTensor* input, TfLiteTensor* output) {
int32_t activation_min, activation_max;
(void)CalculateActivationRangeQuantized(context, params->activation, output,
&activation_min, &activation_max);
TFLITE_DCHECK_LE(activation_min, activation_max);
#if defined(ARM_MATH_DSP) && defined(ARM_MATH_LOOPUNROLL)
RuntimeShape input_shape = GetTensorShape(input);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
RuntimeShape output_shape = GetTensorShape(output);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params->stride_height;
const int stride_width = params->stride_width;
const int filter_height = params->filter_height;
const int filter_width = params->filter_width;
const int padding_height = data->padding.height;
const int padding_width = data->padding.width;
int16_t* scratch_buffer = nullptr;
int32_t buffer_size = arm_avgpool_s8_get_buffer_size(output_width, depth);
TF_LITE_ENSURE_OK(
context, get_cmsis_scratch_buffer(context, &scratch_buffer, buffer_size));
TF_LITE_ENSURE_EQ(
context,
arm_avgpool_s8(input_height, input_width, output_height, output_width,
stride_height, stride_width, filter_height, filter_width,
padding_height, padding_width, activation_min,
activation_max, depth, GetTensorData<int8_t>(input),
scratch_buffer, GetTensorData<int8_t>(output)),
ARM_MATH_SUCCESS);
#else
PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.filter_height = params->filter_height;
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.quantized_activation_min = activation_min;
op_params.quantized_activation_max = activation_max;
reference_integer_ops::AveragePool(
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
GetTensorShape(output), GetTensorData<int8_t>(output));
#endif
return kTfLiteOk;
}
void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLitePoolParams* params, OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
float activation_min, activation_max;
CalculateActivationRange(params->activation, &activation_min,
&activation_max);
tflite::PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.filter_height = params->filter_height;
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.float_activation_min = activation_min;
op_params.float_activation_max = activation_max;
reference_ops::MaxPool(op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(output),
GetTensorData<float>(output));
}
void MaxEvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node,
TfLitePoolParams* params, OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
int32_t activation_min, activation_max;
(void)CalculateActivationRangeQuantized(context, params->activation, output,
&activation_min, &activation_max);
tflite::PoolParams op_params;
op_params.stride_height = params->stride_height;
op_params.stride_width = params->stride_width;
op_params.filter_height = params->filter_height;
op_params.filter_width = params->filter_width;
op_params.padding_values.height = data->padding.height;
op_params.padding_values.width = data->padding.width;
op_params.quantized_activation_min = activation_min;
op_params.quantized_activation_max = activation_max;
reference_ops::MaxPool(op_params, GetTensorShape(input),
GetTensorData<uint8_t>(input), GetTensorShape(output),
GetTensorData<uint8_t>(output));
}
} // namespace
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
return nullptr;
}
void Free(TfLiteContext* context, void* buffer) {}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
return kTfLiteOk;
}
TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
OpData data;
// Todo: make 'input' const once CMSIS-reuse is fixed
TfLiteTensor* input = &context->tensors[flatbuffers::EndianScalar(
node->inputs->data[kInputTensor])];
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, &data));
// Inputs and outputs share the same type, guarenteed by the converter.
switch (input->type) {
case kTfLiteFloat32:
AverageEvalFloat(context, node, params, &data, input, output);
break;
case kTfLiteUInt8:
AverageEvalUint8(context, node, params, &data, input, output);
break;
case kTfLiteInt8:
return AverageEvalInt8(context, node, params, &data, input, output);
break;
default:
context->ReportError(context, "Input type %s is not currently supported",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
return kTfLiteOk;
}
TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
OpData data;
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, &data));
switch (input->type) {
case kTfLiteFloat32:
MaxEvalFloat(context, node, params, &data, input, output);
break;
case kTfLiteUInt8:
MaxEvalQuantizedUInt8(context, node, params, &data, input, output);
break;
default:
context->ReportError(context, "Type %s not currently supported.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace pooling
TfLiteRegistration* Register_AVERAGE_POOL_2D() {
static TfLiteRegistration r = {
pooling::Init,
pooling::Free,
pooling::Prepare,
pooling::AverageEval,
};
return &r;
}
TfLiteRegistration* Register_MAX_POOL_2D() {
static TfLiteRegistration r = {pooling::Init, pooling::Free, pooling::Prepare,
pooling::MaxEval};
return &r;
}
} // namespace micro
} // namespace ops
} // namespace tflite