| /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/optimized/integer_ops/depthwise_conv.h" |
| |
| #include <cassert> |
| #include <cmath> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <iostream> |
| #include <limits> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/cpu_backend_context.h" |
| #include "tensorflow/lite/kernels/internal/optimized/cpu_check.h" |
| #include "tensorflow/lite/kernels/internal/optimized/depthwiseconv_multithread.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h" |
| #include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h" |
| #include "tensorflow/lite/kernels/internal/tensor.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/kernels/padding.h" |
| |
| namespace tflite { |
| namespace ops { |
| namespace builtin { |
| namespace depthwise_conv { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kFilterTensor = 1; |
| constexpr int kBiasTensor = 2; |
| constexpr int kOutputTensor = 0; |
| |
| // This file has three implementation of DepthwiseConv. |
| enum KernelType { |
| kReference, |
| kGenericOptimized, // Neon-free |
| kNeonOptimized, |
| }; |
| |
| struct OpData { |
| TfLitePaddingValues padding; |
| // The scaling factor from input to output (aka the 'real multiplier') can |
| // be represented as a fixed point multiplier plus a left shift. |
| int32_t output_multiplier; |
| int output_shift; |
| // The range of the fused activation layer. For example for kNone and |
| // uint8_t these would be 0 and 255. |
| int32_t output_activation_min; |
| int32_t output_activation_max; |
| |
| // Per channel output multiplier and shift. |
| std::vector<int32_t> per_channel_output_multiplier; |
| std::vector<int> per_channel_output_shift; |
| }; |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| // This is a builtin op, so we don't use the contents in 'buffer', if any. |
| // Instead, we allocate a new object to carry information from Prepare() to |
| // Eval(). |
| return new OpData; |
| } |
| |
| void Free(TfLiteContext* context, void* buffer) { |
| delete reinterpret_cast<OpData*>(buffer); |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = |
| reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data); |
| OpData* data = reinterpret_cast<OpData*>(node->user_data); |
| |
| // TODO(ahentz): use could use GetOptionalInputTensor() here, but we need to |
| // decide whether we are OK with optional tensors being completely absent, as |
| // opposed to having -1 as their index. |
| bool hasBias = NumInputs(node) == 3; |
| |
| TF_LITE_ENSURE(context, hasBias || NumInputs(node) == 2); |
| const TfLiteTensor* input = GetInput(context, node, kInputTensor); |
| const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); |
| const TfLiteTensor* bias = nullptr; |
| |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| TfLiteTensor* output = GetOutput(context, node, kOutputTensor); |
| |
| TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(filter), 4); |
| |
| const TfLiteType data_type = input->type; |
| TF_LITE_ENSURE(context, |
| data_type == kTfLiteFloat32 || data_type == kTfLiteUInt8 || |
| data_type == kTfLiteInt8 || data_type == kTfLiteInt16); |
| TF_LITE_ENSURE_EQ(context, output->type, data_type); |
| TF_LITE_ENSURE(context, |
| filter->type == data_type || data_type == kTfLiteInt16); |
| // Filter in DepthwiseConv is expected to be [1, H, W, O]. |
| TF_LITE_ENSURE_EQ(context, SizeOfDimension(filter, 0), 1); |
| |
| if (hasBias) { |
| bias = GetInput(context, node, kBiasTensor); |
| if (data_type == kTfLiteUInt8 || data_type == kTfLiteInt8) { |
| TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteInt32); |
| TF_LITE_ENSURE_EQ(context, bias->params.zero_point, 0); |
| } else if (data_type == kTfLiteInt16) { |
| TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteInt64); |
| TF_LITE_ENSURE_EQ(context, bias->params.zero_point, 0); |
| } else { |
| TF_LITE_ENSURE_EQ(context, bias->type, data_type); |
| } |
| TF_LITE_ENSURE_EQ(context, NumDimensions(bias), 1); |
| TF_LITE_ENSURE_EQ(context, SizeOfDimension(filter, 3), |
| SizeOfDimension(bias, 0)); |
| } |
| |
| int channels_out = SizeOfDimension(filter, 3); |
| int width = SizeOfDimension(input, 2); |
| int height = SizeOfDimension(input, 1); |
| int filter_width = SizeOfDimension(filter, 2); |
| int filter_height = SizeOfDimension(filter, 1); |
| int batches = SizeOfDimension(input, 0); |
| |
| // Matching GetWindowedOutputSize in TensorFlow. |
| auto padding = params->padding; |
| int out_width, out_height; |
| |
| data->padding = ComputePaddingHeightWidth( |
| params->stride_height, params->stride_width, |
| params->dilation_height_factor, params->dilation_width_factor, height, |
| width, filter_height, filter_width, padding, &out_height, &out_width); |
| |
| // Note that quantized inference requires that all tensors have their |
| // parameters set. This is usually done during quantized training or |
| // calibration. |
| if (data_type != kTfLiteFloat32) { |
| TF_LITE_ENSURE_EQ(context, filter->quantization.type, |
| kTfLiteAffineQuantization); |
| const auto* affine_quantization = |
| reinterpret_cast<TfLiteAffineQuantization*>( |
| filter->quantization.params); |
| TF_LITE_ENSURE(context, affine_quantization); |
| TF_LITE_ENSURE(context, affine_quantization->scale); |
| TF_LITE_ENSURE(context, (affine_quantization->scale->size == 1 || |
| affine_quantization->scale->size == channels_out)); |
| |
| data->per_channel_output_multiplier.resize(channels_out); |
| data->per_channel_output_shift.resize(channels_out); |
| TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams( |
| context, input, filter, bias, output, params->activation, |
| &data->output_multiplier, &data->output_shift, |
| &data->output_activation_min, &data->output_activation_max, |
| data->per_channel_output_multiplier.data(), |
| data->per_channel_output_shift.data(), channels_out)); |
| } |
| |
| TfLiteIntArray* outputSize = TfLiteIntArrayCreate(4); |
| outputSize->data[0] = batches; |
| outputSize->data[1] = out_height; |
| outputSize->data[2] = out_width; |
| outputSize->data[3] = channels_out; |
| return context->ResizeTensor(context, output, outputSize); |
| } |
| |
| TfLiteStatus ComputeDepthMultiplier(TfLiteContext* context, |
| const TfLiteTensor* input, |
| const TfLiteTensor* filter, |
| int16* depth_multiplier) { |
| int num_filter_channels = SizeOfDimension(filter, 3); |
| int num_input_channels = SizeOfDimension(input, 3); |
| TF_LITE_ENSURE_EQ(context, num_filter_channels % num_input_channels, 0); |
| |
| *depth_multiplier = num_filter_channels / num_input_channels; |
| return kTfLiteOk; |
| } |
| |
| template <KernelType kernel_type> |
| TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node, |
| TfLiteDepthwiseConvParams* params, OpData* data, |
| const TfLiteTensor* input, const TfLiteTensor* filter, |
| const TfLiteTensor* bias, TfLiteTensor* output) { |
| float output_activation_min, output_activation_max; |
| CalculateActivationRange(params->activation, &output_activation_min, |
| &output_activation_max); |
| |
| DepthwiseParams op_params; |
| op_params.padding_type = PaddingType::kSame; |
| op_params.padding_values.width = data->padding.width; |
| op_params.padding_values.height = data->padding.height; |
| op_params.stride_width = params->stride_width; |
| op_params.stride_height = params->stride_height; |
| op_params.dilation_width_factor = params->dilation_width_factor; |
| op_params.dilation_height_factor = params->dilation_height_factor; |
| op_params.float_activation_min = output_activation_min; |
| op_params.float_activation_max = output_activation_max; |
| TF_LITE_ENSURE_STATUS(ComputeDepthMultiplier(context, input, filter, |
| &op_params.depth_multiplier)); |
| if (kernel_type == kReference) { |
| reference_ops::DepthwiseConv( |
| op_params, GetTensorShape(input), GetTensorData<float>(input), |
| GetTensorShape(filter), GetTensorData<float>(filter), |
| GetTensorShape(bias), GetTensorData<float>(bias), |
| GetTensorShape(output), GetTensorData<float>(output)); |
| } else { |
| optimized_ops::DepthwiseConv<float, float>( |
| op_params, GetTensorShape(input), GetTensorData<float>(input), |
| GetTensorShape(filter), GetTensorData<float>(filter), |
| GetTensorShape(bias), GetTensorData<float>(bias), |
| GetTensorShape(output), GetTensorData<float>(output), |
| CpuBackendContext::GetFromContext(context)); |
| } |
| return kTfLiteOk; |
| } |
| |
| template <KernelType kernel_type> |
| TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node, |
| TfLiteDepthwiseConvParams* params, OpData* data, |
| const TfLiteTensor* input, |
| const TfLiteTensor* filter, const TfLiteTensor* bias, |
| TfLiteTensor* output) { |
| auto input_offset = -input->params.zero_point; |
| auto filter_offset = -filter->params.zero_point; |
| auto output_offset = output->params.zero_point; |
| |
| DepthwiseParams op_params; |
| op_params.padding_type = PaddingType::kSame; |
| op_params.padding_values.width = data->padding.width; |
| op_params.padding_values.height = data->padding.height; |
| op_params.stride_width = params->stride_width; |
| op_params.stride_height = params->stride_height; |
| op_params.dilation_width_factor = params->dilation_width_factor; |
| op_params.dilation_height_factor = params->dilation_height_factor; |
| op_params.input_offset = input_offset; |
| op_params.weights_offset = filter_offset; |
| op_params.output_offset = output_offset; |
| op_params.output_multiplier = data->output_multiplier; |
| op_params.output_shift = -data->output_shift; |
| op_params.quantized_activation_min = data->output_activation_min; |
| op_params.quantized_activation_max = data->output_activation_max; |
| TF_LITE_ENSURE_STATUS(ComputeDepthMultiplier(context, input, filter, |
| &op_params.depth_multiplier)); |
| if (kernel_type == kReference) { |
| reference_ops::DepthwiseConv( |
| op_params, GetTensorShape(input), GetTensorData<uint8_t>(input), |
| GetTensorShape(filter), GetTensorData<uint8_t>(filter), |
| GetTensorShape(bias), GetTensorData<int32_t>(bias), |
| GetTensorShape(output), GetTensorData<uint8_t>(output)); |
| } else { |
| optimized_ops::DepthwiseConv<uint8, int32>( |
| op_params, GetTensorShape(input), GetTensorData<uint8_t>(input), |
| GetTensorShape(filter), GetTensorData<uint8_t>(filter), |
| GetTensorShape(bias), GetTensorData<int32_t>(bias), |
| GetTensorShape(output), GetTensorData<uint8_t>(output), |
| CpuBackendContext::GetFromContext(context)); |
| } |
| return kTfLiteOk; |
| } |
| |
| template <KernelType kernel_type> |
| TfLiteStatus EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node, |
| TfLiteDepthwiseConvParams* params, |
| OpData* data, const TfLiteTensor* input, |
| const TfLiteTensor* filter, |
| const TfLiteTensor* bias, |
| TfLiteTensor* output) { |
| DepthwiseParams op_params; |
| op_params.padding_type = PaddingType::kSame; |
| op_params.padding_values.width = data->padding.width; |
| op_params.padding_values.height = data->padding.height; |
| op_params.stride_width = params->stride_width; |
| op_params.stride_height = params->stride_height; |
| op_params.dilation_width_factor = params->dilation_width_factor; |
| op_params.dilation_height_factor = params->dilation_height_factor; |
| op_params.input_offset = -input->params.zero_point; |
| op_params.weights_offset = 0; |
| op_params.output_offset = output->params.zero_point; |
| // TODO(b/130439627): Use calculated value for clamping. |
| op_params.quantized_activation_min = std::numeric_limits<int8_t>::min(); |
| op_params.quantized_activation_max = std::numeric_limits<int8_t>::max(); |
| TF_LITE_ENSURE_STATUS(ComputeDepthMultiplier(context, input, filter, |
| &op_params.depth_multiplier)); |
| |
| if (kernel_type == kReference) { |
| reference_integer_ops::DepthwiseConvPerChannel( |
| op_params, data->per_channel_output_multiplier.data(), |
| data->per_channel_output_shift.data(), GetTensorShape(input), |
| GetTensorData<int8>(input), GetTensorShape(filter), |
| GetTensorData<int8>(filter), GetTensorShape(bias), |
| GetTensorData<int32>(bias), GetTensorShape(output), |
| GetTensorData<int8>(output)); |
| } else { |
| optimized_integer_ops::DepthwiseConvPerChannel( |
| op_params, data->per_channel_output_multiplier.data(), |
| data->per_channel_output_shift.data(), GetTensorShape(input), |
| GetTensorData<int8>(input), GetTensorShape(filter), |
| GetTensorData<int8>(filter), GetTensorShape(bias), |
| GetTensorData<int32>(bias), GetTensorShape(output), |
| GetTensorData<int8>(output), |
| CpuBackendContext::GetFromContext(context)); |
| } |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus EvalQuantizedPerChannel16x8( |
| TfLiteContext* context, TfLiteNode* node, TfLiteDepthwiseConvParams* params, |
| OpData* data, const TfLiteTensor* input, const TfLiteTensor* filter, |
| const TfLiteTensor* bias, TfLiteTensor* output) { |
| DepthwiseParams op_params; |
| op_params.padding_type = PaddingType::kSame; |
| op_params.padding_values.width = data->padding.width; |
| op_params.padding_values.height = data->padding.height; |
| op_params.stride_width = params->stride_width; |
| op_params.stride_height = params->stride_height; |
| op_params.dilation_width_factor = params->dilation_width_factor; |
| op_params.dilation_height_factor = params->dilation_height_factor; |
| op_params.depth_multiplier = params->depth_multiplier; |
| op_params.input_offset = -input->params.zero_point; |
| op_params.weights_offset = 0; |
| op_params.output_offset = output->params.zero_point; |
| // TODO(b/130439627): Use calculated value for clamping. |
| op_params.quantized_activation_min = std::numeric_limits<int16_t>::min(); |
| op_params.quantized_activation_max = std::numeric_limits<int16_t>::max(); |
| |
| reference_integer_ops::DepthwiseConvPerChannel( |
| op_params, data->per_channel_output_multiplier.data(), |
| data->per_channel_output_shift.data(), GetTensorShape(input), |
| GetTensorData<int16>(input), GetTensorShape(filter), |
| GetTensorData<int8>(filter), GetTensorShape(bias), |
| GetTensorData<std::int64_t>(bias), GetTensorShape(output), |
| GetTensorData<int16>(output)); |
| return kTfLiteOk; |
| } |
| |
| template <KernelType kernel_type, TfLiteType input_type> |
| TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = |
| reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data); |
| OpData* data = reinterpret_cast<OpData*>(node->user_data); |
| |
| TfLiteTensor* output = GetOutput(context, node, kOutputTensor); |
| const TfLiteTensor* input = GetInput(context, node, kInputTensor); |
| const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); |
| const TfLiteTensor* bias = |
| (NumInputs(node) == 3) ? GetInput(context, node, kBiasTensor) : nullptr; |
| TFLITE_DCHECK_EQ(input_type, input->type); |
| |
| switch (input_type) { // Already know in/out types are same. |
| case kTfLiteFloat32: |
| return EvalFloat<kernel_type>(context, node, params, data, input, filter, |
| bias, output); |
| break; |
| case kTfLiteUInt8: |
| return EvalQuantized<kernel_type>(context, node, params, data, input, |
| filter, bias, output); |
| break; |
| case kTfLiteInt8: |
| return EvalQuantizedPerChannel<kernel_type>(context, node, params, data, |
| input, filter, bias, output); |
| break; |
| case kTfLiteInt16: |
| return EvalQuantizedPerChannel16x8(context, node, params, data, input, |
| filter, bias, output); |
| break; |
| default: |
| context->ReportError(context, "Type %d not currently supported.", |
| input->type); |
| return kTfLiteError; |
| } |
| } |
| |
| template <KernelType kernel_type> |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteTensor* input = GetInput(context, node, kInputTensor); |
| |
| switch (input->type) { // Already know in/out types are same. |
| case kTfLiteFloat32: |
| return EvalImpl<kernel_type, kTfLiteFloat32>(context, node); |
| case kTfLiteUInt8: |
| return EvalImpl<kernel_type, kTfLiteUInt8>(context, node); |
| case kTfLiteInt8: |
| return EvalImpl<kernel_type, kTfLiteInt8>(context, node); |
| case kTfLiteInt16: |
| return EvalImpl<kernel_type, kTfLiteInt16>(context, node); |
| default: |
| context->ReportError(context, "Type %d not currently supported.", |
| input->type); |
| return kTfLiteError; |
| } |
| } |
| |
| } // namespace depthwise_conv |
| |
| TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_REF() { |
| static TfLiteRegistration r = { |
| depthwise_conv::Init, depthwise_conv::Free, depthwise_conv::Prepare, |
| depthwise_conv::Eval<depthwise_conv::kReference>}; |
| return &r; |
| } |
| |
| TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_GENERIC_OPT() { |
| static TfLiteRegistration r = { |
| depthwise_conv::Init, depthwise_conv::Free, depthwise_conv::Prepare, |
| depthwise_conv::Eval<depthwise_conv::kGenericOptimized>}; |
| return &r; |
| } |
| |
| TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_NEON_OPT() { |
| static TfLiteRegistration r = { |
| depthwise_conv::Init, depthwise_conv::Free, depthwise_conv::Prepare, |
| depthwise_conv::Eval<depthwise_conv::kNeonOptimized>}; |
| return &r; |
| } |
| |
| TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_NEON_OPT_UINT8() { |
| static TfLiteRegistration r = { |
| depthwise_conv::Init, depthwise_conv::Free, depthwise_conv::Prepare, |
| depthwise_conv::EvalImpl<depthwise_conv::kNeonOptimized, kTfLiteUInt8>}; |
| return &r; |
| } |
| |
| TfLiteRegistration* Register_DEPTHWISE_CONV_2D() { |
| #ifdef USE_NEON |
| return Register_DEPTHWISE_CONVOLUTION_NEON_OPT(); |
| #else |
| return Register_DEPTHWISE_CONVOLUTION_GENERIC_OPT(); |
| #endif |
| } |
| |
| // Warning: Clients using this variant are responsible for ensuring that their |
| // models only need the UINT8 type. TFLite's op registration mechanism doesn't |
| // yet allow for more nuanced registration mechanisms. |
| TfLiteRegistration* Register_DEPTHWISE_CONV_2D_UINT8() { |
| #ifdef USE_NEON |
| return Register_DEPTHWISE_CONVOLUTION_NEON_OPT_UINT8(); |
| #else |
| return Register_DEPTHWISE_CONV_2D(); |
| #endif |
| } |
| |
| } // namespace builtin |
| } // namespace ops |
| } // namespace tflite |