blob: 5e1981c8abbd98ba861d1e4d61d12e59e2dd6d26 [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python wrappers for Datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import functools
import sys
import threading
import warnings
import weakref
import numpy as np
import six
from six.moves import queue as Queue # pylint: disable=redefined-builtin
from tensorflow.core.framework import graph_pb2
from tensorflow.python import tf2
from tensorflow.python.data.experimental.ops import distribute_options
from tensorflow.python.data.experimental.ops import optimization_options
from tensorflow.python.data.experimental.ops import stats_options
from tensorflow.python.data.experimental.ops import threading_options
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.data.util import convert
from tensorflow.python.data.util import nest
from tensorflow.python.data.util import options as options_lib
from tensorflow.python.data.util import random_seed
from tensorflow.python.data.util import structure
from tensorflow.python.data.util import traverse
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.eager import function as eager_function
from tensorflow.python.framework import auto_control_deps
from tensorflow.python.framework import auto_control_deps_utils as acd_utils
from tensorflow.python.framework import composite_tensor
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import function
from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed as core_random_seed
from tensorflow.python.framework import smart_cond
from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import tensor_util
from tensorflow.python.framework import type_spec
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_dataset_ops
from tensorflow.python.ops import gen_experimental_dataset_ops as ged_ops
from tensorflow.python.ops import gen_io_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import script_ops
from tensorflow.python.ops import string_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.training.tracking import base as tracking_base
from tensorflow.python.training.tracking import tracking
from tensorflow.python.util import deprecation
from tensorflow.python.util import function_utils
from tensorflow.python.util import lazy_loader
from tensorflow.python.util import nest as tf_nest
from tensorflow.python.util.compat import collections_abc
from tensorflow.python.util.tf_export import tf_export
# Loaded lazily due to a circular dependency (roughly
# tf.function->wrap_function->dataset->autograph->tf.function).
# TODO(b/133251390): Use a regular import.
wrap_function = lazy_loader.LazyLoader(
"wrap_function", globals(),
"tensorflow.python.eager.wrap_function")
# TODO(mdan): Create a public API for this.
autograph_ctx = lazy_loader.LazyLoader(
"autograph_ctx", globals(),
"tensorflow.python.autograph.core.ag_ctx")
autograph = lazy_loader.LazyLoader(
"autograph", globals(),
"tensorflow.python.autograph.impl.api")
ops.NotDifferentiable("ReduceDataset")
# A constant that can be used to enable auto-tuning.
AUTOTUNE = -1
tf_export("data.AUTOTUNE").export_constant(__name__, "AUTOTUNE")
# TODO(b/168128531): Deprecate and remove this symbol.
tf_export("data.experimental.AUTOTUNE").export_constant(__name__, "AUTOTUNE")
# Constants representing infinite and unknown cardinalities.
INFINITE = -1
UNKNOWN = -2
tf_export("data.INFINITE_CARDINALITY").export_constant(__name__, "INFINITE")
tf_export("data.UNKNOWN_CARDINALITY").export_constant(__name__, "UNKNOWN")
@tf_export("data.Dataset", v1=[])
@six.add_metaclass(abc.ABCMeta)
class DatasetV2(collections_abc.Iterable, tracking_base.Trackable,
composite_tensor.CompositeTensor):
"""Represents a potentially large set of elements.
The `tf.data.Dataset` API supports writing descriptive and efficient input
pipelines. `Dataset` usage follows a common pattern:
1. Create a source dataset from your input data.
2. Apply dataset transformations to preprocess the data.
3. Iterate over the dataset and process the elements.
Iteration happens in a streaming fashion, so the full dataset does not need to
fit into memory.
Source Datasets:
The simplest way to create a dataset is to create it from a python `list`:
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> for element in dataset:
... print(element)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
To process lines from files, use `tf.data.TextLineDataset`:
>>> dataset = tf.data.TextLineDataset(["file1.txt", "file2.txt"])
To process records written in the `TFRecord` format, use `TFRecordDataset`:
>>> dataset = tf.data.TFRecordDataset(["file1.tfrecords", "file2.tfrecords"])
To create a dataset of all files matching a pattern, use
`tf.data.Dataset.list_files`:
>>> dataset = tf.data.Dataset.list_files("/path/*.txt") # doctest: +SKIP
See `tf.data.FixedLengthRecordDataset` and `tf.data.Dataset.from_generator`
for more ways to create datasets.
Transformations:
Once you have a dataset, you can apply transformations to prepare the data for
your model:
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> dataset = dataset.map(lambda x: x*2)
>>> list(dataset.as_numpy_iterator())
[2, 4, 6]
Common Terms:
**Element**: A single output from calling `next()` on a dataset iterator.
Elements may be nested structures containing multiple components. For
example, the element `(1, (3, "apple"))` has one tuple nested in another
tuple. The components are `1`, `3`, and `"apple"`.
**Component**: The leaf in the nested structure of an element.
Supported types:
Elements can be nested structures of tuples, named tuples, and dictionaries.
Note that Python lists are *not* treated as nested structures of components.
Instead, lists are converted to tensors and treated as components. For
example, the element `(1, [1, 2, 3])` has only two components; the tensor `1`
and the tensor `[1, 2, 3]`. Element components can be of any type
representable by `tf.TypeSpec`, including `tf.Tensor`, `tf.data.Dataset`,
`tf.sparse.SparseTensor`, `tf.RaggedTensor`, and `tf.TensorArray`.
>>> a = 1 # Integer element
>>> b = 2.0 # Float element
>>> c = (1, 2) # Tuple element with 2 components
>>> d = {"a": (2, 2), "b": 3} # Dict element with 3 components
>>> Point = collections.namedtuple("Point", ["x", "y"]) # doctest: +SKIP
>>> e = Point(1, 2) # Named tuple # doctest: +SKIP
>>> f = tf.data.Dataset.range(10) # Dataset element
"""
def __init__(self, variant_tensor):
"""Creates a DatasetV2 object.
This is a difference between DatasetV1 and DatasetV2. DatasetV1 does not
take anything in its constructor whereas in the DatasetV2, we expect
subclasses to create a variant_tensor and pass it in to the super() call.
Args:
variant_tensor: A DT_VARIANT tensor that represents the dataset.
"""
self._variant_tensor_attr = variant_tensor
weak_self = weakref.proxy(self)
self._variant_tracker = self._track_trackable(
_VariantTracker(
self._variant_tensor,
# _trace_variant_creation only works when executing eagerly, so we
# don't want to run it immediately. We also want the _VariantTracker
# to have a weak reference to the Dataset to avoid creating
# reference cycles and making work for the garbage collector.
lambda: weak_self._trace_variant_creation()()), # pylint: disable=unnecessary-lambda,protected-access
name="_variant_tracker")
self._graph_attr = ops.get_default_graph()
# Initialize the options for this dataset and its inputs.
self._options_attr = Options()
for input_dataset in self._inputs():
input_options = input_dataset.options()
if input_options is not None:
self._options_attr = self._options_attr.merge(input_options)
@property
def _variant_tensor(self):
return self._variant_tensor_attr
@_variant_tensor.setter
def _variant_tensor(self, _):
raise ValueError("The _variant_tensor property is read-only")
@deprecation.deprecated_args(None, "Use external_state_policy instead",
"allow_stateful")
def _as_serialized_graph(
self,
allow_stateful=None,
strip_device_assignment=None,
external_state_policy=distribute_options.ExternalStatePolicy.WARN):
"""Produces serialized graph representation of the dataset.
Args:
allow_stateful: If true, we allow stateful ops to be present in the graph
def. In that case, the state in these ops would be thrown away.
strip_device_assignment: If true, non-local (i.e. job and task) device
assignment is stripped from ops in the serialized graph.
external_state_policy: The ExternalStatePolicy enum that determines how we
handle input pipelines that depend on external state. By default, its
set to WARN.
Returns:
A scalar `tf.Tensor` of `tf.string` type, representing this dataset as a
serialized graph.
"""
if external_state_policy:
policy = external_state_policy.value
return gen_dataset_ops.dataset_to_graph_v2(
self._variant_tensor,
external_state_policy=policy,
strip_device_assignment=strip_device_assignment)
if strip_device_assignment:
return gen_dataset_ops.dataset_to_graph(
self._variant_tensor,
allow_stateful=allow_stateful,
strip_device_assignment=strip_device_assignment)
return gen_dataset_ops.dataset_to_graph(
self._variant_tensor, allow_stateful=allow_stateful)
def _trace_variant_creation(self):
"""Traces a function which outputs a variant `tf.Tensor` for this dataset.
Note that creating this function involves evaluating an op, and is currently
only supported when executing eagerly.
Returns:
A zero-argument `ConcreteFunction` which outputs a variant `tf.Tensor`.
"""
variant = self._variant_tensor
if not isinstance(variant, ops.EagerTensor):
raise NotImplementedError(
"Can only export Datasets which were created executing eagerly. "
"Please file a feature request if this is important to you.")
with context.eager_mode(), ops.device("CPU"):
# pylint: disable=protected-access
graph_def = graph_pb2.GraphDef().FromString(
self._as_serialized_graph(external_state_policy=distribute_options
.ExternalStatePolicy.FAIL).numpy())
output_node_name = None
for node in graph_def.node:
if node.op == "_Retval":
if output_node_name is not None:
raise AssertionError(
"Found multiple return values from the dataset's graph, expected "
"only one.")
output_node_name, = node.input
if output_node_name is None:
raise AssertionError("Could not find the dataset's output node.")
# Add functions used in this Dataset to the function's graph, since they
# need to follow it around (and for example be added to a SavedModel which
# references the dataset).
variant_function = wrap_function.function_from_graph_def(
graph_def, inputs=[], outputs=output_node_name + ":0")
for used_function in self._functions():
used_function.function.add_to_graph(variant_function.graph)
return variant_function
@abc.abstractmethod
def _inputs(self):
"""Returns a list of the input datasets of the dataset."""
raise NotImplementedError("Dataset._inputs")
@property
def _graph(self):
return self._graph_attr
@_graph.setter
def _graph(self, _):
raise ValueError("The _graph property is read-only")
def _has_captured_ref(self):
"""Whether this dataset uses a function that captures ref variables.
Returns:
A boolean, which if true indicates that the dataset or one of its inputs
uses a function that captures ref variables.
"""
if context.executing_eagerly():
# RefVariables are not supported in eager mode
return False
def is_tensor_or_parent_ref(tensor):
if tensor.dtype._is_ref_dtype: # pylint: disable=protected-access
return True
# If the captured tensor is an eager tensor, we cannot trace its inputs.
if isinstance(tensor, ops._EagerTensorBase): # pylint: disable=protected-access
return False
return any(is_tensor_or_parent_ref(x) for x in tensor.op.inputs)
for fn in self._functions():
if any(is_tensor_or_parent_ref(t) for t in fn.function.captured_inputs):
return True
return any(
[input_dataset._has_captured_ref() for input_dataset in self._inputs()]) # pylint: disable=protected-access
# TODO(jsimsa): Change this to be the transitive closure of functions used
# by this dataset and its inputs.
def _functions(self):
"""Returns a list of functions associated with this dataset.
Returns:
A list of `StructuredFunctionWrapper` objects.
"""
return []
def options(self):
"""Returns the options for this dataset and its inputs.
Returns:
A `tf.data.Options` object representing the dataset options.
"""
return self._options_attr
def _apply_options(self):
"""Apply options, such as optimization configuration, to the dataset."""
dataset = self
options = self.options()
# (1) Apply threading options
if options.experimental_threading is not None:
t_options = options.experimental_threading
if t_options.max_intra_op_parallelism is not None:
dataset = _MaxIntraOpParallelismDataset(
dataset, t_options.max_intra_op_parallelism)
if t_options.private_threadpool_size is not None:
dataset = _PrivateThreadPoolDataset(dataset,
t_options.private_threadpool_size)
# (2) Apply graph rewrite options
# pylint: disable=protected-access
graph_rewrites = options._graph_rewrites()
graph_rewrite_configs = options._graph_rewrite_configs()
# pylint: enable=protected-access
if self._has_captured_ref():
if graph_rewrites.enabled or graph_rewrites.default:
warnings.warn(
"tf.data graph rewrites are not compatible with tf.Variable. "
"The following rewrites will be disabled: %s. To enable "
"rewrites, use resource variables instead by calling "
"`tf.enable_resource_variables()` at the start of the program." %
", ".join(graph_rewrites.enabled + graph_rewrites.default))
elif (graph_rewrites.enabled or graph_rewrites.default or
(options.experimental_optimization.apply_default_optimizations # pylint: disable=g-bool-id-comparison
is not False)):
dataset = _OptimizeDataset(dataset, graph_rewrites.enabled,
graph_rewrites.disabled,
graph_rewrites.default, graph_rewrite_configs)
# (3) Apply autotune options
autotune, algorithm, cpu_budget, ram_budget = options._autotune_settings() # pylint: disable=protected-access
if autotune:
dataset = _ModelDataset(dataset, algorithm, cpu_budget, ram_budget)
# (4) Apply stats aggregator options
if options.experimental_stats and options.experimental_stats.aggregator: # pylint: disable=line-too-long
dataset = _SetStatsAggregatorDataset( # pylint: disable=protected-access
dataset, options.experimental_stats.aggregator,
options.experimental_stats.prefix,
options.experimental_stats.counter_prefix)
return dataset
def __iter__(self):
"""Creates an iterator for elements of this dataset.
The returned iterator implements the Python Iterator protocol.
Returns:
An `tf.data.Iterator` for the elements of this dataset.
Raises:
RuntimeError: If not inside of tf.function and not executing eagerly.
"""
if context.executing_eagerly() or ops.inside_function():
with ops.device(self._variant_tensor.device):
return iterator_ops.OwnedIterator(self)
else:
raise RuntimeError("__iter__() is only supported inside of tf.function "
"or when eager execution is enabled.")
def __bool__(self):
return True # Required as __len__ is defined
__nonzero__ = __bool__ # Python 2 backward compatibility
def __len__(self):
"""Returns the length of the dataset if it is known and finite.
This method requires that you are running in eager mode, and that the
length of the dataset is known and non-infinite. When the length may be
unknown or infinite, or if you are running in graph mode, use
`tf.data.Dataset.cardinality` instead.
Returns:
An integer representing the length of the dataset.
Raises:
RuntimeError: If the dataset length is unknown or infinite, or if eager
execution is not enabled.
"""
if not context.executing_eagerly():
raise TypeError("__len__() is not supported while tracing functions. "
"Use `tf.data.Dataset.cardinality` instead.")
length = self.cardinality()
if length.numpy() == INFINITE:
raise TypeError("dataset length is infinite.")
if length.numpy() == UNKNOWN:
raise TypeError("dataset length is unknown.")
return length
@abc.abstractproperty
def element_spec(self):
"""The type specification of an element of this dataset.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> dataset.element_spec
TensorSpec(shape=(), dtype=tf.int32, name=None)
Returns:
A nested structure of `tf.TypeSpec` objects matching the structure of an
element of this dataset and specifying the type of individual components.
"""
raise NotImplementedError("Dataset.element_spec")
def __repr__(self):
output_shapes = nest.map_structure(str, get_legacy_output_shapes(self))
output_shapes = str(output_shapes).replace("'", "")
output_types = nest.map_structure(repr, get_legacy_output_types(self))
output_types = str(output_types).replace("'", "")
return ("<%s shapes: %s, types: %s>" % (type(self).__name__, output_shapes,
output_types))
def as_numpy_iterator(self):
"""Returns an iterator which converts all elements of the dataset to numpy.
Use `as_numpy_iterator` to inspect the content of your dataset. To see
element shapes and types, print dataset elements directly instead of using
`as_numpy_iterator`.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> for element in dataset:
... print(element)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
This method requires that you are running in eager mode and the dataset's
element_spec contains only `TensorSpec` components.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> for element in dataset.as_numpy_iterator():
... print(element)
1
2
3
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> print(list(dataset.as_numpy_iterator()))
[1, 2, 3]
`as_numpy_iterator()` will preserve the nested structure of dataset
elements.
>>> dataset = tf.data.Dataset.from_tensor_slices({'a': ([1, 2], [3, 4]),
... 'b': [5, 6]})
>>> list(dataset.as_numpy_iterator()) == [{'a': (1, 3), 'b': 5},
... {'a': (2, 4), 'b': 6}]
True
Returns:
An iterable over the elements of the dataset, with their tensors converted
to numpy arrays.
Raises:
TypeError: if an element contains a non-`Tensor` value.
RuntimeError: if eager execution is not enabled.
"""
if not context.executing_eagerly():
raise RuntimeError("as_numpy_iterator() is not supported while tracing "
"functions")
for component_spec in nest.flatten(self.element_spec):
if not isinstance(
component_spec,
(tensor_spec.TensorSpec, ragged_tensor.RaggedTensorSpec)):
raise TypeError(
"Dataset.as_numpy_iterator() does not support datasets containing "
+ str(component_spec.value_type))
return _NumpyIterator(self)
@property
def _flat_shapes(self):
"""Returns a list `tf.TensorShapes`s for the element tensor representation.
Returns:
A list `tf.TensorShapes`s for the element tensor representation.
"""
return structure.get_flat_tensor_shapes(self.element_spec)
@property
def _flat_types(self):
"""Returns a list `tf.DType`s for the element tensor representation.
Returns:
A list `tf.DType`s for the element tensor representation.
"""
return structure.get_flat_tensor_types(self.element_spec)
@property
def _flat_structure(self):
"""Helper for setting `output_shapes` and `output_types` attrs of an op.
Most dataset op constructors expect `output_shapes` and `output_types`
arguments that represent the flattened structure of an element. This helper
function generates these attrs as a keyword argument dictionary, allowing
`Dataset._variant_tensor` implementations to pass `**self._flat_structure`
to the op constructor.
Returns:
A dictionary of keyword arguments that can be passed to a dataset op
constructor.
"""
return {
"output_shapes": self._flat_shapes,
"output_types": self._flat_types,
}
@property
def _type_spec(self):
return DatasetSpec(self.element_spec)
@staticmethod
def from_tensors(tensors):
"""Creates a `Dataset` with a single element, comprising the given tensors.
`from_tensors` produces a dataset containing only a single element. To slice
the input tensor into multiple elements, use `from_tensor_slices` instead.
>>> dataset = tf.data.Dataset.from_tensors([1, 2, 3])
>>> list(dataset.as_numpy_iterator())
[array([1, 2, 3], dtype=int32)]
>>> dataset = tf.data.Dataset.from_tensors(([1, 2, 3], 'A'))
>>> list(dataset.as_numpy_iterator())
[(array([1, 2, 3], dtype=int32), b'A')]
>>> # You can use `from_tensors` to produce a dataset which repeats
>>> # the same example many times.
>>> example = tf.constant([1,2,3])
>>> dataset = tf.data.Dataset.from_tensors(example).repeat(2)
>>> list(dataset.as_numpy_iterator())
[array([1, 2, 3], dtype=int32), array([1, 2, 3], dtype=int32)]
Note that if `tensors` contains a NumPy array, and eager execution is not
enabled, the values will be embedded in the graph as one or more
`tf.constant` operations. For large datasets (> 1 GB), this can waste
memory and run into byte limits of graph serialization. If `tensors`
contains one or more large NumPy arrays, consider the alternative described
in [this
guide](https://tensorflow.org/guide/data#consuming_numpy_arrays).
Args:
tensors: A dataset element.
Returns:
Dataset: A `Dataset`.
"""
return TensorDataset(tensors)
@staticmethod
def from_tensor_slices(tensors):
"""Creates a `Dataset` whose elements are slices of the given tensors.
The given tensors are sliced along their first dimension. This operation
preserves the structure of the input tensors, removing the first dimension
of each tensor and using it as the dataset dimension. All input tensors
must have the same size in their first dimensions.
>>> # Slicing a 1D tensor produces scalar tensor elements.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> list(dataset.as_numpy_iterator())
[1, 2, 3]
>>> # Slicing a 2D tensor produces 1D tensor elements.
>>> dataset = tf.data.Dataset.from_tensor_slices([[1, 2], [3, 4]])
>>> list(dataset.as_numpy_iterator())
[array([1, 2], dtype=int32), array([3, 4], dtype=int32)]
>>> # Slicing a tuple of 1D tensors produces tuple elements containing
>>> # scalar tensors.
>>> dataset = tf.data.Dataset.from_tensor_slices(([1, 2], [3, 4], [5, 6]))
>>> list(dataset.as_numpy_iterator())
[(1, 3, 5), (2, 4, 6)]
>>> # Dictionary structure is also preserved.
>>> dataset = tf.data.Dataset.from_tensor_slices({"a": [1, 2], "b": [3, 4]})
>>> list(dataset.as_numpy_iterator()) == [{'a': 1, 'b': 3},
... {'a': 2, 'b': 4}]
True
>>> # Two tensors can be combined into one Dataset object.
>>> features = tf.constant([[1, 3], [2, 1], [3, 3]]) # ==> 3x2 tensor
>>> labels = tf.constant(['A', 'B', 'A']) # ==> 3x1 tensor
>>> dataset = Dataset.from_tensor_slices((features, labels))
>>> # Both the features and the labels tensors can be converted
>>> # to a Dataset object separately and combined after.
>>> features_dataset = Dataset.from_tensor_slices(features)
>>> labels_dataset = Dataset.from_tensor_slices(labels)
>>> dataset = Dataset.zip((features_dataset, labels_dataset))
>>> # A batched feature and label set can be converted to a Dataset
>>> # in similar fashion.
>>> batched_features = tf.constant([[[1, 3], [2, 3]],
... [[2, 1], [1, 2]],
... [[3, 3], [3, 2]]], shape=(3, 2, 2))
>>> batched_labels = tf.constant([['A', 'A'],
... ['B', 'B'],
... ['A', 'B']], shape=(3, 2, 1))
>>> dataset = Dataset.from_tensor_slices((batched_features, batched_labels))
>>> for element in dataset.as_numpy_iterator():
... print(element)
(array([[1, 3],
[2, 3]], dtype=int32), array([[b'A'],
[b'A']], dtype=object))
(array([[2, 1],
[1, 2]], dtype=int32), array([[b'B'],
[b'B']], dtype=object))
(array([[3, 3],
[3, 2]], dtype=int32), array([[b'A'],
[b'B']], dtype=object))
Note that if `tensors` contains a NumPy array, and eager execution is not
enabled, the values will be embedded in the graph as one or more
`tf.constant` operations. For large datasets (> 1 GB), this can waste
memory and run into byte limits of graph serialization. If `tensors`
contains one or more large NumPy arrays, consider the alternative described
in [this guide](
https://tensorflow.org/guide/data#consuming_numpy_arrays).
Args:
tensors: A dataset element, with each component having the same size in
the first dimension.
Returns:
Dataset: A `Dataset`.
"""
return TensorSliceDataset(tensors)
class _GeneratorState(object):
"""Stores outstanding iterators created from a Python generator.
This class keeps track of potentially multiple iterators that may have
been created from a generator, e.g. in the case that the dataset is
repeated, or nested within a parallel computation.
"""
def __init__(self, generator):
self._generator = generator
self._lock = threading.Lock()
self._next_id = 0 # GUARDED_BY(self._lock)
self._args = {}
self._iterators = {}
def get_next_id(self, *args):
with self._lock:
ret = self._next_id
self._next_id += 1
self._args[ret] = args
# NOTE(mrry): Explicitly create an array of `np.int64` because implicit
# casting in `py_func()` will create an array of `np.int32` on Windows,
# leading to a runtime error.
return np.array(ret, dtype=np.int64)
def get_iterator(self, iterator_id):
try:
return self._iterators[iterator_id]
except KeyError:
iterator = iter(self._generator(*self._args.pop(iterator_id)))
self._iterators[iterator_id] = iterator
return iterator
def iterator_completed(self, iterator_id):
del self._iterators[iterator_id]
@staticmethod
@deprecation.deprecated_args(None, "Use output_signature instead",
"output_types", "output_shapes")
def from_generator(generator,
output_types=None,
output_shapes=None,
args=None,
output_signature=None):
"""Creates a `Dataset` whose elements are generated by `generator`.
The `generator` argument must be a callable object that returns
an object that supports the `iter()` protocol (e.g. a generator function).
The elements generated by `generator` must be compatible with either the
given `output_signature` argument or with the given `output_types` and
(optionally) `output_shapes` arguments, whichiver was specified.
The recommended way to call `from_generator` is to use the
`output_signature` argument. In this case the output will be assumed to
consist of objects with the classes, shapes and types defined by
`tf.TypeSpec` objects from `output_signature` argument:
>>> def gen():
... ragged_tensor = tf.ragged.constant([[1, 2], [3]])
... yield 42, ragged_tensor
>>>
>>> dataset = tf.data.Dataset.from_generator(
... gen,
... output_signature=(
... tf.TensorSpec(shape=(), dtype=tf.int32),
... tf.RaggedTensorSpec(shape=(2, None), dtype=tf.int32)))
>>>
>>> list(dataset.take(1))
[(<tf.Tensor: shape=(), dtype=int32, numpy=42>,
<tf.RaggedTensor [[1, 2], [3]]>)]
There is also a deprecated way to call `from_generator` by either with
`output_types` argument alone or together with `output_shapes` argument.
In this case the output of the function will be assumed to consist of
`tf.Tensor` objects with with the types defined by `output_types` and with
the shapes which are either unknown or defined by `output_shapes`.
Note: The current implementation of `Dataset.from_generator()` uses
`tf.numpy_function` and inherits the same constraints. In particular, it
requires the dataset and iterator related operations to be placed
on a device in the same process as the Python program that called
`Dataset.from_generator()`. The body of `generator` will not be
serialized in a `GraphDef`, and you should not use this method if you
need to serialize your model and restore it in a different environment.
Note: If `generator` depends on mutable global variables or other external
state, be aware that the runtime may invoke `generator` multiple times
(in order to support repeating the `Dataset`) and at any time
between the call to `Dataset.from_generator()` and the production of the
first element from the generator. Mutating global variables or external
state can cause undefined behavior, and we recommend that you explicitly
cache any external state in `generator` before calling
`Dataset.from_generator()`.
Args:
generator: A callable object that returns an object that supports the
`iter()` protocol. If `args` is not specified, `generator` must take no
arguments; otherwise it must take as many arguments as there are values
in `args`.
output_types: (Optional.) A nested structure of `tf.DType` objects
corresponding to each component of an element yielded by `generator`.
output_shapes: (Optional.) A nested structure of `tf.TensorShape` objects
corresponding to each component of an element yielded by `generator`.
args: (Optional.) A tuple of `tf.Tensor` objects that will be evaluated
and passed to `generator` as NumPy-array arguments.
output_signature: (Optional.) A nested structure of `tf.TypeSpec` objects
corresponding to each component of an element yielded by `generator`.
Returns:
Dataset: A `Dataset`.
"""
if not callable(generator):
raise TypeError("`generator` must be callable.")
if output_signature is not None:
if output_types is not None:
raise TypeError("`output_types` can not be used together with "
"`output_signature`")
if output_shapes is not None:
raise TypeError("`output_shapes` can not be used together with "
"`output_signature`")
if not all(
isinstance(_, type_spec.TypeSpec)
for _ in nest.flatten(output_signature)):
raise TypeError("All the elements of `output_signature` must be "
"`tf.TypeSpec` objects.")
else:
if output_types is None:
raise TypeError("Either `output_signature` or `output_types` must "
"be specified")
if output_signature is None:
if output_shapes is None:
output_shapes = nest.map_structure(
lambda _: tensor_shape.TensorShape(None), output_types)
else:
output_shapes = nest.map_structure_up_to(output_types,
tensor_shape.as_shape,
output_shapes)
output_signature = nest.map_structure_up_to(output_types,
tensor_spec.TensorSpec,
output_shapes, output_types)
if args is None:
args = ()
else:
args = tuple(ops.convert_n_to_tensor(args, name="args"))
flat_output_types = structure.get_flat_tensor_types(output_signature)
generator_state = DatasetV2._GeneratorState(generator)
def get_iterator_id_fn(unused_dummy):
"""Creates a unique `iterator_id` for each pass over the dataset.
The returned `iterator_id` disambiguates between multiple concurrently
existing iterators.
Args:
unused_dummy: Ignored value.
Returns:
A `tf.int64` tensor whose value uniquely identifies an iterator in
`generator_state`.
"""
return script_ops.numpy_function(generator_state.get_next_id, args,
dtypes.int64)
def generator_next_fn(iterator_id_t):
"""Generates the next element from iterator with ID `iterator_id_t`.
We map this function across an infinite repetition of the
`iterator_id_t`, and raise `StopIteration` to terminate the iteration.
Args:
iterator_id_t: A `tf.int64` tensor whose value uniquely identifies the
iterator in `generator_state` from which to generate an element.
Returns:
The next element to generate from the iterator.
"""
def generator_py_func(iterator_id):
"""A `py_func` that will be called to invoke the iterator."""
# `next()` raises `StopIteration` when there are no more
# elements remaining to be generated.
values = next(generator_state.get_iterator(iterator_id.numpy()))
try:
values = structure.normalize_element(values, output_signature)
except (TypeError, ValueError):
six.reraise(
TypeError,
TypeError(
"`generator` yielded an element that did not match the "
"expected structure. The expected structure was %s, but the "
"yielded element was %s." % (output_signature, values)),
sys.exc_info()[2])
values_spec = structure.type_spec_from_value(values)
if not structure.are_compatible(values_spec, output_signature):
raise TypeError(
"`generator` yielded an element of %s where an element "
"of %s was expected." % (values_spec, output_signature))
return structure.to_tensor_list(output_signature, values)
return script_ops._eager_py_func( # pylint: disable=protected-access
generator_py_func,
inp=[iterator_id_t],
Tout=flat_output_types,
use_tape_cache=False)
def finalize_fn(iterator_id_t):
"""Releases host-side state for the iterator with ID `iterator_id_t`."""
def finalize_py_func(iterator_id):
generator_state.iterator_completed(iterator_id)
# We return a dummy value so that the `finalize_fn` has a valid
# signature.
# NOTE(mrry): Explicitly create an array of `np.int64` because implicit
# casting in `py_func()` will create an array of `np.int32` on Windows,
# leading to a runtime error.
return np.array(0, dtype=np.int64)
return script_ops.numpy_function(finalize_py_func, [iterator_id_t],
dtypes.int64)
# This function associates each traversal of `generator` with a unique
# iterator ID.
def flat_map_fn(dummy_arg):
# The `get_iterator_id_fn` gets a unique ID for the current instance of
# of the generator.
# The `generator_next_fn` gets the next element from the iterator with the
# given ID, and raises StopIteration when that iterator contains no
# more elements.
return _GeneratorDataset(dummy_arg, get_iterator_id_fn, generator_next_fn,
finalize_fn, output_signature)
# A single-element dataset that, each time it is evaluated, contains a
# freshly-generated and unique (for the returned dataset) int64
# ID that will be used to identify the appropriate Python state, which
# is encapsulated in `generator_state`, and captured in
# `get_iterator_id_map_fn`.
dummy = 0
id_dataset = Dataset.from_tensors(dummy)
# A dataset that contains all of the elements generated by a
# single iterator created from `generator`, identified by the
# iterator ID contained in `id_dataset`. Lifting the iteration
# into a flat_map here enables multiple repetitions and/or nested
# versions of the returned dataset to be created, because it forces
# the generation of a new ID for each version.
return id_dataset.flat_map(flat_map_fn)
@staticmethod
def range(*args, **kwargs):
"""Creates a `Dataset` of a step-separated range of values.
>>> list(Dataset.range(5).as_numpy_iterator())
[0, 1, 2, 3, 4]
>>> list(Dataset.range(2, 5).as_numpy_iterator())
[2, 3, 4]
>>> list(Dataset.range(1, 5, 2).as_numpy_iterator())
[1, 3]
>>> list(Dataset.range(1, 5, -2).as_numpy_iterator())
[]
>>> list(Dataset.range(5, 1).as_numpy_iterator())
[]
>>> list(Dataset.range(5, 1, -2).as_numpy_iterator())
[5, 3]
>>> list(Dataset.range(2, 5, output_type=tf.int32).as_numpy_iterator())
[2, 3, 4]
>>> list(Dataset.range(1, 5, 2, output_type=tf.float32).as_numpy_iterator())
[1.0, 3.0]
Args:
*args: follows the same semantics as python's xrange.
len(args) == 1 -> start = 0, stop = args[0], step = 1.
len(args) == 2 -> start = args[0], stop = args[1], step = 1.
len(args) == 3 -> start = args[0], stop = args[1], step = args[2].
**kwargs:
- output_type: Its expected dtype. (Optional, default: `tf.int64`).
Returns:
Dataset: A `RangeDataset`.
Raises:
ValueError: if len(args) == 0.
"""
return RangeDataset(*args, **kwargs)
@staticmethod
def zip(datasets):
"""Creates a `Dataset` by zipping together the given datasets.
This method has similar semantics to the built-in `zip()` function
in Python, with the main difference being that the `datasets`
argument can be an arbitrary nested structure of `Dataset` objects.
>>> # The nested structure of the `datasets` argument determines the
>>> # structure of elements in the resulting dataset.
>>> a = tf.data.Dataset.range(1, 4) # ==> [ 1, 2, 3 ]
>>> b = tf.data.Dataset.range(4, 7) # ==> [ 4, 5, 6 ]
>>> ds = tf.data.Dataset.zip((a, b))
>>> list(ds.as_numpy_iterator())
[(1, 4), (2, 5), (3, 6)]
>>> ds = tf.data.Dataset.zip((b, a))
>>> list(ds.as_numpy_iterator())
[(4, 1), (5, 2), (6, 3)]
>>>
>>> # The `datasets` argument may contain an arbitrary number of datasets.
>>> c = tf.data.Dataset.range(7, 13).batch(2) # ==> [ [7, 8],
... # [9, 10],
... # [11, 12] ]
>>> ds = tf.data.Dataset.zip((a, b, c))
>>> for element in ds.as_numpy_iterator():
... print(element)
(1, 4, array([7, 8]))
(2, 5, array([ 9, 10]))
(3, 6, array([11, 12]))
>>>
>>> # The number of elements in the resulting dataset is the same as
>>> # the size of the smallest dataset in `datasets`.
>>> d = tf.data.Dataset.range(13, 15) # ==> [ 13, 14 ]
>>> ds = tf.data.Dataset.zip((a, d))
>>> list(ds.as_numpy_iterator())
[(1, 13), (2, 14)]
Args:
datasets: A nested structure of datasets.
Returns:
Dataset: A `Dataset`.
"""
return ZipDataset(datasets)
def concatenate(self, dataset):
"""Creates a `Dataset` by concatenating the given dataset with this dataset.
>>> a = tf.data.Dataset.range(1, 4) # ==> [ 1, 2, 3 ]
>>> b = tf.data.Dataset.range(4, 8) # ==> [ 4, 5, 6, 7 ]
>>> ds = a.concatenate(b)
>>> list(ds.as_numpy_iterator())
[1, 2, 3, 4, 5, 6, 7]
>>> # The input dataset and dataset to be concatenated should have the same
>>> # nested structures and output types.
>>> c = tf.data.Dataset.zip((a, b))
>>> a.concatenate(c)
Traceback (most recent call last):
TypeError: Two datasets to concatenate have different types
<dtype: 'int64'> and (tf.int64, tf.int64)
>>> d = tf.data.Dataset.from_tensor_slices(["a", "b", "c"])
>>> a.concatenate(d)
Traceback (most recent call last):
TypeError: Two datasets to concatenate have different types
<dtype: 'int64'> and <dtype: 'string'>
Args:
dataset: `Dataset` to be concatenated.
Returns:
Dataset: A `Dataset`.
"""
return ConcatenateDataset(self, dataset)
def prefetch(self, buffer_size):
"""Creates a `Dataset` that prefetches elements from this dataset.
Most dataset input pipelines should end with a call to `prefetch`. This
allows later elements to be prepared while the current element is being
processed. This often improves latency and throughput, at the cost of
using additional memory to store prefetched elements.
Note: Like other `Dataset` methods, prefetch operates on the
elements of the input dataset. It has no concept of examples vs. batches.
`examples.prefetch(2)` will prefetch two elements (2 examples),
while `examples.batch(20).prefetch(2)` will prefetch 2 elements
(2 batches, of 20 examples each).
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.prefetch(2)
>>> list(dataset.as_numpy_iterator())
[0, 1, 2]
Args:
buffer_size: A `tf.int64` scalar `tf.Tensor`, representing the maximum
number of elements that will be buffered when prefetching.
Returns:
Dataset: A `Dataset`.
"""
return PrefetchDataset(self, buffer_size)
@staticmethod
def list_files(file_pattern, shuffle=None, seed=None):
"""A dataset of all files matching one or more glob patterns.
The `file_pattern` argument should be a small number of glob patterns.
If your filenames have already been globbed, use
`Dataset.from_tensor_slices(filenames)` instead, as re-globbing every
filename with `list_files` may result in poor performance with remote
storage systems.
Note: The default behavior of this method is to return filenames in
a non-deterministic random shuffled order. Pass a `seed` or `shuffle=False`
to get results in a deterministic order.
Example:
If we had the following files on our filesystem:
- /path/to/dir/a.txt
- /path/to/dir/b.py
- /path/to/dir/c.py
If we pass "/path/to/dir/*.py" as the directory, the dataset
would produce:
- /path/to/dir/b.py
- /path/to/dir/c.py
Args:
file_pattern: A string, a list of strings, or a `tf.Tensor` of string type
(scalar or vector), representing the filename glob (i.e. shell wildcard)
pattern(s) that will be matched.
shuffle: (Optional.) If `True`, the file names will be shuffled randomly.
Defaults to `True`.
seed: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the random
seed that will be used to create the distribution. See
`tf.random.set_seed` for behavior.
Returns:
Dataset: A `Dataset` of strings corresponding to file names.
"""
with ops.name_scope("list_files"):
if shuffle is None:
shuffle = True
file_pattern = ops.convert_to_tensor(
file_pattern, dtype=dtypes.string, name="file_pattern")
matching_files = gen_io_ops.matching_files(file_pattern)
# Raise an exception if `file_pattern` does not match any files.
condition = math_ops.greater(array_ops.shape(matching_files)[0], 0,
name="match_not_empty")
message = math_ops.add(
"No files matched pattern: ",
string_ops.reduce_join(file_pattern, separator=", "), name="message")
assert_not_empty = control_flow_ops.Assert(
condition, [message], summarize=1, name="assert_not_empty")
with ops.control_dependencies([assert_not_empty]):
matching_files = array_ops.identity(matching_files)
dataset = Dataset.from_tensor_slices(matching_files)
if shuffle:
# NOTE(mrry): The shuffle buffer size must be greater than zero, but the
# list of files might be empty.
buffer_size = math_ops.maximum(
array_ops.shape(matching_files, out_type=dtypes.int64)[0], 1)
dataset = dataset.shuffle(buffer_size, seed=seed)
return dataset
def repeat(self, count=None):
"""Repeats this dataset so each original value is seen `count` times.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> dataset = dataset.repeat(3)
>>> list(dataset.as_numpy_iterator())
[1, 2, 3, 1, 2, 3, 1, 2, 3]
Note: If this dataset is a function of global state (e.g. a random number
generator), then different repetitions may produce different elements.
Args:
count: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the
number of times the dataset should be repeated. The default behavior (if
`count` is `None` or `-1`) is for the dataset be repeated indefinitely.
Returns:
Dataset: A `Dataset`.
"""
return RepeatDataset(self, count)
def enumerate(self, start=0):
"""Enumerates the elements of this dataset.
It is similar to python's `enumerate`.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> dataset = dataset.enumerate(start=5)
>>> for element in dataset.as_numpy_iterator():
... print(element)
(5, 1)
(6, 2)
(7, 3)
>>> # The nested structure of the input dataset determines the structure of
>>> # elements in the resulting dataset.
>>> dataset = tf.data.Dataset.from_tensor_slices([(7, 8), (9, 10)])
>>> dataset = dataset.enumerate()
>>> for element in dataset.as_numpy_iterator():
... print(element)
(0, array([7, 8], dtype=int32))
(1, array([ 9, 10], dtype=int32))
Args:
start: A `tf.int64` scalar `tf.Tensor`, representing the start value for
enumeration.
Returns:
Dataset: A `Dataset`.
"""
max_value = np.iinfo(dtypes.int64.as_numpy_dtype).max
return Dataset.zip((Dataset.range(start, max_value), self))
def shuffle(self, buffer_size, seed=None, reshuffle_each_iteration=None):
"""Randomly shuffles the elements of this dataset.
This dataset fills a buffer with `buffer_size` elements, then randomly
samples elements from this buffer, replacing the selected elements with new
elements. For perfect shuffling, a buffer size greater than or equal to the
full size of the dataset is required.
For instance, if your dataset contains 10,000 elements but `buffer_size` is
set to 1,000, then `shuffle` will initially select a random element from
only the first 1,000 elements in the buffer. Once an element is selected,
its space in the buffer is replaced by the next (i.e. 1,001-st) element,
maintaining the 1,000 element buffer.
`reshuffle_each_iteration` controls whether the shuffle order should be
different for each epoch. In TF 1.X, the idiomatic way to create epochs
was through the `repeat` transformation:
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.shuffle(3, reshuffle_each_iteration=True)
>>> dataset = dataset.repeat(2) # doctest: +SKIP
[1, 0, 2, 1, 2, 0]
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.shuffle(3, reshuffle_each_iteration=False)
>>> dataset = dataset.repeat(2) # doctest: +SKIP
[1, 0, 2, 1, 0, 2]
In TF 2.0, `tf.data.Dataset` objects are Python iterables which makes it
possible to also create epochs through Python iteration:
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.shuffle(3, reshuffle_each_iteration=True)
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[1, 0, 2]
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[1, 2, 0]
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.shuffle(3, reshuffle_each_iteration=False)
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[1, 0, 2]
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[1, 0, 2]
Args:
buffer_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
elements from this dataset from which the new dataset will sample.
seed: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the random
seed that will be used to create the distribution. See
`tf.random.set_seed` for behavior.
reshuffle_each_iteration: (Optional.) A boolean, which if true indicates
that the dataset should be pseudorandomly reshuffled each time it is
iterated over. (Defaults to `True`.)
Returns:
Dataset: A `Dataset`.
"""
return ShuffleDataset(self, buffer_size, seed, reshuffle_each_iteration)
def cache(self, filename=""):
"""Caches the elements in this dataset.
The first time the dataset is iterated over, its elements will be cached
either in the specified file or in memory. Subsequent iterations will
use the cached data.
Note: For the cache to be finalized, the input dataset must be iterated
through in its entirety. Otherwise, subsequent iterations will not use
cached data.
>>> dataset = tf.data.Dataset.range(5)
>>> dataset = dataset.map(lambda x: x**2)
>>> dataset = dataset.cache()
>>> # The first time reading through the data will generate the data using
>>> # `range` and `map`.
>>> list(dataset.as_numpy_iterator())
[0, 1, 4, 9, 16]
>>> # Subsequent iterations read from the cache.
>>> list(dataset.as_numpy_iterator())
[0, 1, 4, 9, 16]
When caching to a file, the cached data will persist across runs. Even the
first iteration through the data will read from the cache file. Changing
the input pipeline before the call to `.cache()` will have no effect until
the cache file is removed or the filename is changed.
>>> dataset = tf.data.Dataset.range(5)
>>> dataset = dataset.cache("/path/to/file") # doctest: +SKIP
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[0, 1, 2, 3, 4]
>>> dataset = tf.data.Dataset.range(10)
>>> dataset = dataset.cache("/path/to/file") # Same file! # doctest: +SKIP
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[0, 1, 2, 3, 4]
Note: `cache` will produce exactly the same elements during each iteration
through the dataset. If you wish to randomize the iteration order, make sure
to call `shuffle` *after* calling `cache`.
Args:
filename: A `tf.string` scalar `tf.Tensor`, representing the name of a
directory on the filesystem to use for caching elements in this Dataset.
If a filename is not provided, the dataset will be cached in memory.
Returns:
Dataset: A `Dataset`.
"""
return CacheDataset(self, filename)
def take(self, count):
"""Creates a `Dataset` with at most `count` elements from this dataset.
>>> dataset = tf.data.Dataset.range(10)
>>> dataset = dataset.take(3)
>>> list(dataset.as_numpy_iterator())
[0, 1, 2]
Args:
count: A `tf.int64` scalar `tf.Tensor`, representing the number of
elements of this dataset that should be taken to form the new dataset.
If `count` is -1, or if `count` is greater than the size of this
dataset, the new dataset will contain all elements of this dataset.
Returns:
Dataset: A `Dataset`.
"""
return TakeDataset(self, count)
def skip(self, count):
"""Creates a `Dataset` that skips `count` elements from this dataset.
>>> dataset = tf.data.Dataset.range(10)
>>> dataset = dataset.skip(7)
>>> list(dataset.as_numpy_iterator())
[7, 8, 9]
Args:
count: A `tf.int64` scalar `tf.Tensor`, representing the number of
elements of this dataset that should be skipped to form the new dataset.
If `count` is greater than the size of this dataset, the new dataset
will contain no elements. If `count` is -1, skips the entire dataset.
Returns:
Dataset: A `Dataset`.
"""
return SkipDataset(self, count)
def shard(self, num_shards, index):
"""Creates a `Dataset` that includes only 1/`num_shards` of this dataset.
`shard` is deterministic. The Dataset produced by `A.shard(n, i)` will
contain all elements of A whose index mod n = i.
>>> A = tf.data.Dataset.range(10)
>>> B = A.shard(num_shards=3, index=0)
>>> list(B.as_numpy_iterator())
[0, 3, 6, 9]
>>> C = A.shard(num_shards=3, index=1)
>>> list(C.as_numpy_iterator())
[1, 4, 7]
>>> D = A.shard(num_shards=3, index=2)
>>> list(D.as_numpy_iterator())
[2, 5, 8]
This dataset operator is very useful when running distributed training, as
it allows each worker to read a unique subset.
When reading a single input file, you can shard elements as follows:
```python
d = tf.data.TFRecordDataset(input_file)
d = d.shard(num_workers, worker_index)
d = d.repeat(num_epochs)
d = d.shuffle(shuffle_buffer_size)
d = d.map(parser_fn, num_parallel_calls=num_map_threads)
```
Important caveats:
- Be sure to shard before you use any randomizing operator (such as
shuffle).
- Generally it is best if the shard operator is used early in the dataset
pipeline. For example, when reading from a set of TFRecord files, shard
before converting the dataset to input samples. This avoids reading every
file on every worker. The following is an example of an efficient
sharding strategy within a complete pipeline:
```python
d = Dataset.list_files(pattern)
d = d.shard(num_workers, worker_index)
d = d.repeat(num_epochs)
d = d.shuffle(shuffle_buffer_size)
d = d.interleave(tf.data.TFRecordDataset,
cycle_length=num_readers, block_length=1)
d = d.map(parser_fn, num_parallel_calls=num_map_threads)
```
Args:
num_shards: A `tf.int64` scalar `tf.Tensor`, representing the number of
shards operating in parallel.
index: A `tf.int64` scalar `tf.Tensor`, representing the worker index.
Returns:
Dataset: A `Dataset`.
Raises:
InvalidArgumentError: if `num_shards` or `index` are illegal values.
Note: error checking is done on a best-effort basis, and errors aren't
guaranteed to be caught upon dataset creation. (e.g. providing in a
placeholder tensor bypasses the early checking, and will instead result
in an error during a session.run call.)
"""
return ShardDataset(self, num_shards, index)
def batch(self, batch_size, drop_remainder=False):
"""Combines consecutive elements of this dataset into batches.
>>> dataset = tf.data.Dataset.range(8)
>>> dataset = dataset.batch(3)
>>> list(dataset.as_numpy_iterator())
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7])]
>>> dataset = tf.data.Dataset.range(8)
>>> dataset = dataset.batch(3, drop_remainder=True)
>>> list(dataset.as_numpy_iterator())
[array([0, 1, 2]), array([3, 4, 5])]
The components of the resulting element will have an additional outer
dimension, which will be `batch_size` (or `N % batch_size` for the last
element if `batch_size` does not divide the number of input elements `N`
evenly and `drop_remainder` is `False`). If your program depends on the
batches having the same outer dimension, you should set the `drop_remainder`
argument to `True` to prevent the smaller batch from being produced.
Args:
batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
consecutive elements of this dataset to combine in a single batch.
drop_remainder: (Optional.) A `tf.bool` scalar `tf.Tensor`, representing
whether the last batch should be dropped in the case it has fewer than
`batch_size` elements; the default behavior is not to drop the smaller
batch.
Returns:
Dataset: A `Dataset`.
"""
return BatchDataset(self, batch_size, drop_remainder)
def padded_batch(self,
batch_size,
padded_shapes=None,
padding_values=None,
drop_remainder=False):
"""Combines consecutive elements of this dataset into padded batches.
This transformation combines multiple consecutive elements of the input
dataset into a single element.
Like `tf.data.Dataset.batch`, the components of the resulting element will
have an additional outer dimension, which will be `batch_size` (or
`N % batch_size` for the last element if `batch_size` does not divide the
number of input elements `N` evenly and `drop_remainder` is `False`). If
your program depends on the batches having the same outer dimension, you
should set the `drop_remainder` argument to `True` to prevent the smaller
batch from being produced.
Unlike `tf.data.Dataset.batch`, the input elements to be batched may have
different shapes, and this transformation will pad each component to the
respective shape in `padded_shapes`. The `padded_shapes` argument
determines the resulting shape for each dimension of each component in an
output element:
* If the dimension is a constant, the component will be padded out to that
length in that dimension.
* If the dimension is unknown, the component will be padded out to the
maximum length of all elements in that dimension.
>>> A = (tf.data.Dataset
... .range(1, 5, output_type=tf.int32)
... .map(lambda x: tf.fill([x], x)))
>>> # Pad to the smallest per-batch size that fits all elements.
>>> B = A.padded_batch(2)
>>> for element in B.as_numpy_iterator():
... print(element)
[[1 0]
[2 2]]
[[3 3 3 0]
[4 4 4 4]]
>>> # Pad to a fixed size.
>>> C = A.padded_batch(2, padded_shapes=5)
>>> for element in C.as_numpy_iterator():
... print(element)
[[1 0 0 0 0]
[2 2 0 0 0]]
[[3 3 3 0 0]
[4 4 4 4 0]]
>>> # Pad with a custom value.
>>> D = A.padded_batch(2, padded_shapes=5, padding_values=-1)
>>> for element in D.as_numpy_iterator():
... print(element)
[[ 1 -1 -1 -1 -1]
[ 2 2 -1 -1 -1]]
[[ 3 3 3 -1 -1]
[ 4 4 4 4 -1]]
>>> # Components of nested elements can be padded independently.
>>> elements = [([1, 2, 3], [10]),
... ([4, 5], [11, 12])]
>>> dataset = tf.data.Dataset.from_generator(
... lambda: iter(elements), (tf.int32, tf.int32))
>>> # Pad the first component of the tuple to length 4, and the second
>>> # component to the smallest size that fits.
>>> dataset = dataset.padded_batch(2,
... padded_shapes=([4], [None]),
... padding_values=(-1, 100))
>>> list(dataset.as_numpy_iterator())
[(array([[ 1, 2, 3, -1], [ 4, 5, -1, -1]], dtype=int32),
array([[ 10, 100], [ 11, 12]], dtype=int32))]
>>> # Pad with a single value and multiple components.
>>> E = tf.data.Dataset.zip((A, A)).padded_batch(2, padding_values=-1)
>>> for element in E.as_numpy_iterator():
... print(element)
(array([[ 1, -1],
[ 2, 2]], dtype=int32), array([[ 1, -1],
[ 2, 2]], dtype=int32))
(array([[ 3, 3, 3, -1],
[ 4, 4, 4, 4]], dtype=int32), array([[ 3, 3, 3, -1],
[ 4, 4, 4, 4]], dtype=int32))
See also `tf.data.experimental.dense_to_sparse_batch`, which combines
elements that may have different shapes into a `tf.sparse.SparseTensor`.
Args:
batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
consecutive elements of this dataset to combine in a single batch.
padded_shapes: (Optional.) A nested structure of `tf.TensorShape` or
`tf.int64` vector tensor-like objects representing the shape to which
the respective component of each input element should be padded prior
to batching. Any unknown dimensions will be padded to the maximum size
of that dimension in each batch. If unset, all dimensions of all
components are padded to the maximum size in the batch. `padded_shapes`
must be set if any component has an unknown rank.
padding_values: (Optional.) A nested structure of scalar-shaped
`tf.Tensor`, representing the padding values to use for the respective
components. None represents that the nested structure should be padded
with default values. Defaults are `0` for numeric types and the empty
string for string types. The `padding_values` should have the
same structure as the input dataset. If `padding_values` is a single
element and the input dataset has multiple components, then the same
`padding_values` will be used to pad every component of the dataset.
If `padding_values` is a scalar, then its value will be broadcasted
to match the shape of each component.
drop_remainder: (Optional.) A `tf.bool` scalar `tf.Tensor`, representing
whether the last batch should be dropped in the case it has fewer than
`batch_size` elements; the default behavior is not to drop the smaller
batch.
Returns:
Dataset: A `Dataset`.
Raises:
ValueError: If a component has an unknown rank, and the `padded_shapes`
argument is not set.
"""
if padded_shapes is None:
padded_shapes = get_legacy_output_shapes(self)
# A `tf.TensorShape` only is only falsey if its *rank* is unknown:
# bool(tf.TensorShape(None)) is False
if not all(nest.flatten(padded_shapes)):
raise ValueError("You must set the `padded_shapes` argument to "
"`Dataset.padded_batch` if any component of its "
"input has an unknown rank")
return PaddedBatchDataset(self, batch_size, padded_shapes, padding_values,
drop_remainder)
def map(self, map_func, num_parallel_calls=None, deterministic=None):
"""Maps `map_func` across the elements of this dataset.
This transformation applies `map_func` to each element of this dataset, and
returns a new dataset containing the transformed elements, in the same
order as they appeared in the input. `map_func` can be used to change both
the values and the structure of a dataset's elements. For example, adding 1
to each element, or projecting a subset of element components.
>>> dataset = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ]
>>> dataset = dataset.map(lambda x: x + 1)
>>> list(dataset.as_numpy_iterator())
[2, 3, 4, 5, 6]
The input signature of `map_func` is determined by the structure of each
element in this dataset.
>>> dataset = Dataset.range(5)
>>> # `map_func` takes a single argument of type `tf.Tensor` with the same
>>> # shape and dtype.
>>> result = dataset.map(lambda x: x + 1)
>>> # Each element is a tuple containing two `tf.Tensor` objects.
>>> elements = [(1, "foo"), (2, "bar"), (3, "baz")]
>>> dataset = tf.data.Dataset.from_generator(
... lambda: elements, (tf.int32, tf.string))
>>> # `map_func` takes two arguments of type `tf.Tensor`. This function
>>> # projects out just the first component.
>>> result = dataset.map(lambda x_int, y_str: x_int)
>>> list(result.as_numpy_iterator())
[1, 2, 3]
>>> # Each element is a dictionary mapping strings to `tf.Tensor` objects.
>>> elements = ([{"a": 1, "b": "foo"},
... {"a": 2, "b": "bar"},
... {"a": 3, "b": "baz"}])
>>> dataset = tf.data.Dataset.from_generator(
... lambda: elements, {"a": tf.int32, "b": tf.string})
>>> # `map_func` takes a single argument of type `dict` with the same keys
>>> # as the elements.
>>> result = dataset.map(lambda d: str(d["a"]) + d["b"])
The value or values returned by `map_func` determine the structure of each
element in the returned dataset.
>>> dataset = tf.data.Dataset.range(3)
>>> # `map_func` returns two `tf.Tensor` objects.
>>> def g(x):
... return tf.constant(37.0), tf.constant(["Foo", "Bar", "Baz"])
>>> result = dataset.map(g)
>>> result.element_spec
(TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(3,), \
dtype=tf.string, name=None))
>>> # Python primitives, lists, and NumPy arrays are implicitly converted to
>>> # `tf.Tensor`.
>>> def h(x):
... return 37.0, ["Foo", "Bar"], np.array([1.0, 2.0], dtype=np.float64)
>>> result = dataset.map(h)
>>> result.element_spec
(TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(2,), \
dtype=tf.string, name=None), TensorSpec(shape=(2,), dtype=tf.float64, \
name=None))
>>> # `map_func` can return nested structures.
>>> def i(x):
... return (37.0, [42, 16]), "foo"
>>> result = dataset.map(i)
>>> result.element_spec
((TensorSpec(shape=(), dtype=tf.float32, name=None),
TensorSpec(shape=(2,), dtype=tf.int32, name=None)),
TensorSpec(shape=(), dtype=tf.string, name=None))
`map_func` can accept as arguments and return any type of dataset element.
Note that irrespective of the context in which `map_func` is defined (eager
vs. graph), tf.data traces the function and executes it as a graph. To use
Python code inside of the function you have a few options:
1) Rely on AutoGraph to convert Python code into an equivalent graph
computation. The downside of this approach is that AutoGraph can convert
some but not all Python code.
2) Use `tf.py_function`, which allows you to write arbitrary Python code but
will generally result in worse performance than 1). For example:
>>> d = tf.data.Dataset.from_tensor_slices(['hello', 'world'])
>>> # transform a string tensor to upper case string using a Python function
>>> def upper_case_fn(t: tf.Tensor):
... return t.numpy().decode('utf-8').upper()
>>> d = d.map(lambda x: tf.py_function(func=upper_case_fn,
... inp=[x], Tout=tf.string))
>>> list(d.as_numpy_iterator())
[b'HELLO', b'WORLD']
3) Use `tf.numpy_function`, which also allows you to write arbitrary
Python code. Note that `tf.py_function` accepts `tf.Tensor` whereas
`tf.numpy_function` accepts numpy arrays and returns only numpy arrays.
For example:
>>> d = tf.data.Dataset.from_tensor_slices(['hello', 'world'])
>>> def upper_case_fn(t: np.ndarray):
... return t.decode('utf-8').upper()
>>> d = d.map(lambda x: tf.numpy_function(func=upper_case_fn,
... inp=[x], Tout=tf.string))
>>> list(d.as_numpy_iterator())
[b'HELLO', b'WORLD']
Note that the use of `tf.numpy_function` and `tf.py_function`
in general precludes the possibility of executing user-defined
transformations in parallel (because of Python GIL).
Performance can often be improved by setting `num_parallel_calls` so that
`map` will use multiple threads to process elements. If deterministic order
isn't required, it can also improve performance to set
`deterministic=False`.
>>> dataset = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ]
>>> dataset = dataset.map(lambda x: x + 1,
... num_parallel_calls=tf.data.AUTOTUNE,
... deterministic=False)
Args:
map_func: A function mapping a dataset element to another dataset element.
num_parallel_calls: (Optional.) A `tf.int32` scalar `tf.Tensor`,
representing the number elements to process asynchronously in parallel.
If not specified, elements will be processed sequentially. If the value
`tf.data.AUTOTUNE` is used, then the number of parallel
calls is set dynamically based on available CPU.
deterministic: (Optional.) A boolean controlling whether determinism
should be traded for performance by allowing elements to be produced out
of order. If `deterministic` is `None`, the
`tf.data.Options.experimental_deterministic` dataset option (`True` by
default) is used to decide whether to produce elements
deterministically.
Returns:
Dataset: A `Dataset`.
"""
if num_parallel_calls is None:
return MapDataset(self, map_func, preserve_cardinality=True)
else:
return ParallelMapDataset(
self,
map_func,
num_parallel_calls,
deterministic,
preserve_cardinality=True)
def flat_map(self, map_func):
"""Maps `map_func` across this dataset and flattens the result.
Use `flat_map` if you want to make sure that the order of your dataset
stays the same. For example, to flatten a dataset of batches into a
dataset of their elements:
>>> dataset = tf.data.Dataset.from_tensor_slices(
... [[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> dataset = dataset.flat_map(lambda x: Dataset.from_tensor_slices(x))
>>> list(dataset.as_numpy_iterator())
[1, 2, 3, 4, 5, 6, 7, 8, 9]
`tf.data.Dataset.interleave()` is a generalization of `flat_map`, since
`flat_map` produces the same output as
`tf.data.Dataset.interleave(cycle_length=1)`
Args:
map_func: A function mapping a dataset element to a dataset.
Returns:
Dataset: A `Dataset`.
"""
return FlatMapDataset(self, map_func)
def interleave(self,
map_func,
cycle_length=None,
block_length=None,
num_parallel_calls=None,
deterministic=None):
"""Maps `map_func` across this dataset, and interleaves the results.
For example, you can use `Dataset.interleave()` to process many input files
concurrently:
>>> # Preprocess 4 files concurrently, and interleave blocks of 16 records
>>> # from each file.
>>> filenames = ["/var/data/file1.txt", "/var/data/file2.txt",
... "/var/data/file3.txt", "/var/data/file4.txt"]
>>> dataset = tf.data.Dataset.from_tensor_slices(filenames)
>>> def parse_fn(filename):
... return tf.data.Dataset.range(10)
>>> dataset = dataset.interleave(lambda x:
... tf.data.TextLineDataset(x).map(parse_fn, num_parallel_calls=1),
... cycle_length=4, block_length=16)
The `cycle_length` and `block_length` arguments control the order in which
elements are produced. `cycle_length` controls the number of input elements
that are processed concurrently. If you set `cycle_length` to 1, this
transformation will handle one input element at a time, and will produce
identical results to `tf.data.Dataset.flat_map`. In general,
this transformation will apply `map_func` to `cycle_length` input elements,
open iterators on the returned `Dataset` objects, and cycle through them
producing `block_length` consecutive elements from each iterator, and
consuming the next input element each time it reaches the end of an
iterator.
For example:
>>> dataset = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ]
>>> # NOTE: New lines indicate "block" boundaries.
>>> dataset = dataset.interleave(
... lambda x: Dataset.from_tensors(x).repeat(6),
... cycle_length=2, block_length=4)
>>> list(dataset.as_numpy_iterator())
[1, 1, 1, 1,
2, 2, 2, 2,
1, 1,
2, 2,
3, 3, 3, 3,
4, 4, 4, 4,
3, 3,
4, 4,
5, 5, 5, 5,
5, 5]
Note: The order of elements yielded by this transformation is
deterministic, as long as `map_func` is a pure function and
`deterministic=True`. If `map_func` contains any stateful operations, the
order in which that state is accessed is undefined.
Performance can often be improved by setting `num_parallel_calls` so that
`interleave` will use multiple threads to fetch elements. If determinism
isn't required, it can also improve performance to set
`deterministic=False`.
>>> filenames = ["/var/data/file1.txt", "/var/data/file2.txt",
... "/var/data/file3.txt", "/var/data/file4.txt"]
>>> dataset = tf.data.Dataset.from_tensor_slices(filenames)
>>> dataset = dataset.interleave(lambda x: tf.data.TFRecordDataset(x),
... cycle_length=4, num_parallel_calls=tf.data.AUTOTUNE,
... deterministic=False)
Args:
map_func: A function mapping a dataset element to a dataset.
cycle_length: (Optional.) The number of input elements that will be
processed concurrently. If not set, the tf.data runtime decides what it
should be based on available CPU. If `num_parallel_calls` is set to
`tf.data.AUTOTUNE`, the `cycle_length` argument identifies
the maximum degree of parallelism.
block_length: (Optional.) The number of consecutive elements to produce
from each input element before cycling to another input element. If not
set, defaults to 1.
num_parallel_calls: (Optional.) If specified, the implementation creates a
threadpool, which is used to fetch inputs from cycle elements
asynchronously and in parallel. The default behavior is to fetch inputs
from cycle elements synchronously with no parallelism. If the value
`tf.data.AUTOTUNE` is used, then the number of parallel
calls is set dynamically based on available CPU.
deterministic: (Optional.) A boolean controlling whether determinism
should be traded for performance by allowing elements to be produced out
of order. If `deterministic` is `None`, the
`tf.data.Options.experimental_deterministic` dataset option (`True` by
default) is used to decide whether to produce elements
deterministically.
Returns:
Dataset: A `Dataset`.
"""
if block_length is None:
block_length = 1
if cycle_length is None:
cycle_length = AUTOTUNE
if num_parallel_calls is None:
return InterleaveDataset(self, map_func, cycle_length, block_length)
else:
return ParallelInterleaveDataset(
self,
map_func,
cycle_length,
block_length,
num_parallel_calls,
deterministic=deterministic)
def filter(self, predicate):
"""Filters this dataset according to `predicate`.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> dataset = dataset.filter(lambda x: x < 3)
>>> list(dataset.as_numpy_iterator())
[1, 2]
>>> # `tf.math.equal(x, y)` is required for equality comparison
>>> def filter_fn(x):
... return tf.math.equal(x, 1)
>>> dataset = dataset.filter(filter_fn)
>>> list(dataset.as_numpy_iterator())
[1]
Args:
predicate: A function mapping a dataset element to a boolean.
Returns:
Dataset: The `Dataset` containing the elements of this dataset for which
`predicate` is `True`.
"""
return FilterDataset(self, predicate)
def apply(self, transformation_func):
"""Applies a transformation function to this dataset.
`apply` enables chaining of custom `Dataset` transformations, which are
represented as functions that take one `Dataset` argument and return a
transformed `Dataset`.
>>> dataset = tf.data.Dataset.range(100)
>>> def dataset_fn(ds):
... return ds.filter(lambda x: x < 5)
>>> dataset = dataset.apply(dataset_fn)
>>> list(dataset.as_numpy_iterator())
[0, 1, 2, 3, 4]
Args:
transformation_func: A function that takes one `Dataset` argument and
returns a `Dataset`.
Returns:
Dataset: The `Dataset` returned by applying `transformation_func` to this
dataset.
"""
dataset = transformation_func(self)
if not isinstance(dataset, DatasetV2):
raise TypeError(
"`transformation_func` must return a Dataset. Got {}.".format(
dataset))
dataset._input_datasets = [self] # pylint: disable=protected-access
return dataset
def window(self, size, shift=None, stride=1, drop_remainder=False):
"""Combines (nests of) input elements into a dataset of (nests of) windows.
A "window" is a finite dataset of flat elements of size `size` (or possibly
fewer if there are not enough input elements to fill the window and
`drop_remainder` evaluates to `False`).
The `shift` argument determines the number of input elements by which the
window moves on each iteration. If windows and elements are both numbered
starting at 0, the first element in window `k` will be element `k * shift`
of the input dataset. In particular, the first element of the first window
will always be the first element of the input dataset.
The `stride` argument determines the stride of the input elements, and the
`shift` argument determines the shift of the window.
For example:
>>> dataset = tf.data.Dataset.range(7).window(2)
>>> for window in dataset:
... print(list(window.as_numpy_iterator()))
[0, 1]
[2, 3]
[4, 5]
[6]
>>> dataset = tf.data.Dataset.range(7).window(3, 2, 1, True)
>>> for window in dataset:
... print(list(window.as_numpy_iterator()))
[0, 1, 2]
[2, 3, 4]
[4, 5, 6]
>>> dataset = tf.data.Dataset.range(7).window(3, 1, 2, True)
>>> for window in dataset:
... print(list(window.as_numpy_iterator()))
[0, 2, 4]
[1, 3, 5]
[2, 4, 6]
Note that when the `window` transformation is applied to a dataset of
nested elements, it produces a dataset of nested windows.
>>> nested = ([1, 2, 3, 4], [5, 6, 7, 8])
>>> dataset = tf.data.Dataset.from_tensor_slices(nested).window(2)
>>> for window in dataset:
... def to_numpy(ds):
... return list(ds.as_numpy_iterator())
... print(tuple(to_numpy(component) for component in window))
([1, 2], [5, 6])
([3, 4], [7, 8])
>>> dataset = tf.data.Dataset.from_tensor_slices({'a': [1, 2, 3, 4]})
>>> dataset = dataset.window(2)
>>> for window in dataset:
... def to_numpy(ds):
... return list(ds.as_numpy_iterator())
... print({'a': to_numpy(window['a'])})
{'a': [1, 2]}
{'a': [3, 4]}
Args:
size: A `tf.int64` scalar `tf.Tensor`, representing the number of elements
of the input dataset to combine into a window. Must be positive.
shift: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the
number of input elements by which the window moves in each iteration.
Defaults to `size`. Must be positive.
stride: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the
stride of the input elements in the sliding window. Must be positive.
The default value of 1 means "retain every input element".
drop_remainder: (Optional.) A `tf.bool` scalar `tf.Tensor`, representing
whether the last window should be dropped if its size is smaller than
`size`.
Returns:
Dataset: A `Dataset` of (nests of) windows -- a finite datasets of flat
elements created from the (nests of) input elements.
"""
if shift is None:
shift = size
return WindowDataset(self, size, shift, stride, drop_remainder)
def reduce(self, initial_state, reduce_func):
"""Reduces the input dataset to a single element.
The transformation calls `reduce_func` successively on every element of
the input dataset until the dataset is exhausted, aggregating information in
its internal state. The `initial_state` argument is used for the initial
state and the final state is returned as the result.
>>> tf.data.Dataset.range(5).reduce(np.int64(0), lambda x, _: x + 1).numpy()
5
>>> tf.data.Dataset.range(5).reduce(np.int64(0), lambda x, y: x + y).numpy()
10
Args:
initial_state: An element representing the initial state of the
transformation.
reduce_func: A function that maps `(old_state, input_element)` to
`new_state`. It must take two arguments and return a new element
The structure of `new_state` must match the structure of
`initial_state`.
Returns:
A dataset element corresponding to the final state of the transformation.
"""
with ops.name_scope("initial_state"):
initial_state = structure.normalize_element(initial_state)
state_structure = structure.type_spec_from_value(initial_state)
# Iteratively rerun the reduce function until reaching a fixed point on
# `state_structure`.
need_to_rerun = True
while need_to_rerun:
wrapped_func = StructuredFunctionWrapper(
reduce_func,
"reduce()",
input_structure=(state_structure, self.element_spec),
add_to_graph=False)
# Extract and validate class information from the returned values.
output_classes = wrapped_func.output_classes
state_classes = nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_classes(), # pylint: disable=protected-access
state_structure)
for new_state_class, state_class in zip(
nest.flatten(output_classes), nest.flatten(state_classes)):
if not issubclass(new_state_class, state_class):
raise TypeError(
"The element classes for the new state must match the initial "
"state. Expected %s; got %s." %
(state_classes, wrapped_func.output_classes))
# Extract and validate type information from the returned values.
output_types = wrapped_func.output_types
state_types = nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_types(), # pylint: disable=protected-access
state_structure)
for new_state_type, state_type in zip(
nest.flatten(output_types), nest.flatten(state_types)):
if new_state_type != state_type:
raise TypeError(
"The element types for the new state must match the initial "
"state. Expected %s; got %s." %
(state_types, wrapped_func.output_types))
# Extract shape information from the returned values.
output_shapes = wrapped_func.output_shapes
state_shapes = nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_shapes(), # pylint: disable=protected-access
state_structure)
flat_state_shapes = nest.flatten(state_shapes)
flat_new_state_shapes = nest.flatten(output_shapes)
weakened_state_shapes = [
original.most_specific_compatible_shape(new)
for original, new in zip(flat_state_shapes, flat_new_state_shapes)
]
need_to_rerun = False
for original_shape, weakened_shape in zip(flat_state_shapes,
weakened_state_shapes):
if original_shape.ndims is not None and (
weakened_shape.ndims is None or
original_shape.as_list() != weakened_shape.as_list()):
need_to_rerun = True
break
if need_to_rerun:
# TODO(b/110122868): Support a "most specific compatible structure"
# method for combining structures, to avoid using legacy structures
# here.
state_structure = structure.convert_legacy_structure(
state_types,
nest.pack_sequence_as(state_shapes, weakened_state_shapes),
state_classes)
reduce_func = wrapped_func.function
reduce_func.add_to_graph(ops.get_default_graph())
dataset = self._apply_options()
# pylint: disable=protected-access
return structure.from_compatible_tensor_list(
state_structure,
gen_dataset_ops.reduce_dataset(
dataset._variant_tensor,
structure.to_tensor_list(state_structure, initial_state),
reduce_func.captured_inputs,
f=reduce_func,
output_shapes=structure.get_flat_tensor_shapes(state_structure),
output_types=structure.get_flat_tensor_types(state_structure)))
def unbatch(self):
"""Splits elements of a dataset into multiple elements.
For example, if elements of the dataset are shaped `[B, a0, a1, ...]`,
where `B` may vary for each input element, then for each element in the
dataset, the unbatched dataset will contain `B` consecutive elements
of shape `[a0, a1, ...]`.
>>> elements = [ [1, 2, 3], [1, 2], [1, 2, 3, 4] ]
>>> dataset = tf.data.Dataset.from_generator(lambda: elements, tf.int64)
>>> dataset = dataset.unbatch()
>>> list(dataset.as_numpy_iterator())
[1, 2, 3, 1, 2, 1, 2, 3, 4]
Note: `unbatch` requires a data copy to slice up the batched tensor into
smaller, unbatched tensors. When optimizing performance, try to avoid
unnecessary usage of `unbatch`.
Returns:
A `Dataset`.
"""
normalized_dataset = normalize_to_dense(self)
return _UnbatchDataset(normalized_dataset)
def with_options(self, options):
"""Returns a new `tf.data.Dataset` with the given options set.
The options are "global" in the sense they apply to the entire dataset.
If options are set multiple times, they are merged as long as different
options do not use different non-default values.
>>> ds = tf.data.Dataset.range(5)
>>> ds = ds.interleave(lambda x: tf.data.Dataset.range(5),
... cycle_length=3,
... num_parallel_calls=3)
>>> options = tf.data.Options()
>>> # This will make the interleave order non-deterministic.
>>> options.experimental_deterministic = False
>>> ds = ds.with_options(options)
Args:
options: A `tf.data.Options` that identifies the options the use.
Returns:
Dataset: A `Dataset` with the given options.
Raises:
ValueError: when an option is set more than once to a non-default value
"""
return _OptionsDataset(self, options)
def cardinality(self):
"""Returns the cardinality of the dataset, if known.
`cardinality` may return `tf.data.INFINITE_CARDINALITY` if the dataset
contains an infinite number of elements or `tf.data.UNKNOWN_CARDINALITY` if
the analysis fails to determine the number of elements in the dataset
(e.g. when the dataset source is a file).
>>> dataset = tf.data.Dataset.range(42)
>>> print(dataset.cardinality().numpy())
42
>>> dataset = dataset.repeat()
>>> cardinality = dataset.cardinality()
>>> print((cardinality == tf.data.INFINITE_CARDINALITY).numpy())
True
>>> dataset = dataset.filter(lambda x: True)
>>> cardinality = dataset.cardinality()
>>> print((cardinality == tf.data.UNKNOWN_CARDINALITY).numpy())
True
Returns:
A scalar `tf.int64` `Tensor` representing the cardinality of the dataset.
If the cardinality is infinite or unknown, `cardinality` returns the
named constants `tf.data.INFINITE_CARDINALITY` and
`tf.data.UNKNOWN_CARDINALITY` respectively.
"""
return gen_dataset_ops.dataset_cardinality(self._variant_tensor)
@tf_export(v1=["data.Dataset"])
class DatasetV1(DatasetV2):
"""Represents a potentially large set of elements.
A `Dataset` can be used to represent an input pipeline as a
collection of elements and a "logical plan" of transformations that act on
those elements.
"""
def __init__(self):
try:
variant_tensor = self._as_variant_tensor()
except AttributeError as e:
if "_as_variant_tensor" in str(e):
raise AttributeError("Please use _variant_tensor instead of "
"_as_variant_tensor() to obtain the variant "
"associated with a dataset")
raise AttributeError("{}: A likely cause of this error is that the super "
"call for this dataset is not the last line of the "
"__init__ method. The base class causes the "
"_as_variant_tensor call in its constructor and "
"if that uses attributes defined in the __init__ "
"method, those attrs need to be defined before the "
"super call.".format(e))
super(DatasetV1, self).__init__(variant_tensor)
@abc.abstractmethod
def _as_variant_tensor(self):
"""Creates a scalar `tf.Tensor` of `tf.variant` representing this dataset.
Returns:
A scalar `tf.Tensor` of `tf.variant` type, which represents this dataset.
"""
raise NotImplementedError("Dataset._as_variant_tensor")
@deprecation.deprecated(
None, "This is a deprecated API that should only be used in TF 1 graph "
"mode and legacy TF 2 graph mode available through `tf.compat.v1`. In "
"all other situations -- namely, eager mode and inside `tf.function` -- "
"you can consume dataset elements using `for elem in dataset: ...` or "
"by explicitly creating iterator via `iterator = iter(dataset)` and "
"fetching its elements via `values = next(iterator)`. Furthermore, "
"this API is not available in TF 2. During the transition from TF 1 "
"to TF 2 you can use `tf.compat.v1.data.make_one_shot_iterator(dataset)` "
"to create a TF 1 graph mode style iterator for a dataset created "
"through TF 2 APIs. Note that this should be a transient state of your "
"code base as there are in general no guarantees about the "
"interoperability of TF 1 and TF 2 code.")
def make_one_shot_iterator(self):
"""Creates an iterator for elements of this dataset.
Note: The returned iterator will be initialized automatically.
A "one-shot" iterator does not currently support re-initialization. For
that see `make_initializable_iterator`.
Example:
```python
# Building graph ...
dataset = ...
next_value = dataset.make_one_shot_iterator().get_next()
# ... from within a session ...
try:
while True:
value = sess.run(next_value)
...
except tf.errors.OutOfRangeError:
pass
```
Returns:
An `tf.data.Iterator` for elements of this dataset.
"""
return self._make_one_shot_iterator()
def _make_one_shot_iterator(self): # pylint: disable=missing-docstring
if context.executing_eagerly():
with ops.device(self._variant_tensor.device):
return iterator_ops.OwnedIterator(self)
_ensure_same_dataset_graph(self)
# Now that we create datasets at python object creation time, the capture
# by value _make_dataset() function would try to capture these variant
# tensor dataset inputs, which are marked as stateful ops and would throw
# an error if we try and capture them. We therefore traverse the graph
# to find all these ops and allowlist them so that the capturing
# logic instead of throwing an error recreates these ops which is what was
# happening before.
all_ds_ops = traverse.obtain_all_variant_tensor_ops(self)
graph_level_seed, op_level_seed = core_random_seed.get_seed(None)
# NOTE(mrry): We capture by value here to ensure that `_make_dataset()` is
# a 0-argument function.
@function.Defun(capture_by_value=True, allowlisted_stateful_ops=all_ds_ops)
def _make_dataset():
"""Factory function for a dataset."""
# NOTE(mrry): `Defun` does not capture the graph-level seed from the
# enclosing graph, so if a graph-level seed is present we set the local
# graph seed based on a combination of the graph- and op-level seeds.
if graph_level_seed is not None:
assert op_level_seed is not None
core_random_seed.set_random_seed(
(graph_level_seed + 87654321 * op_level_seed) % (2 ** 63 - 1))
dataset = self._apply_options()
return dataset._variant_tensor # pylint: disable=protected-access
try:
_make_dataset.add_to_graph(ops.get_default_graph())
except ValueError as err:
if "Cannot capture a stateful node" in str(err):
raise ValueError(
"Failed to create a one-shot iterator for a dataset. "
"`Dataset.make_one_shot_iterator()` does not support datasets that "
"capture stateful objects, such as a `Variable` or `LookupTable`. "
"In these cases, use `Dataset.make_initializable_iterator()`. "
"(Original error: %s)" % err)
else:
six.reraise(ValueError, err)
with ops.device(self._variant_tensor.device):
# pylint: disable=protected-access
return iterator_ops.Iterator(
gen_dataset_ops.one_shot_iterator(
dataset_factory=_make_dataset, **self._flat_structure), None,
get_legacy_output_types(self), get_legacy_output_shapes(self),
get_legacy_output_classes(self))
@deprecation.deprecated(
None, "This is a deprecated API that should only be used in TF 1 graph "
"mode and legacy TF 2 graph mode available through `tf.compat.v1`. "
"In all other situations -- namely, eager mode and inside `tf.function` "
"-- you can consume dataset elements using `for elem in dataset: ...` "
"or by explicitly creating iterator via `iterator = iter(dataset)` "
"and fetching its elements via `values = next(iterator)`. "
"Furthermore, this API is not available in TF 2. During the transition "
"from TF 1 to TF 2 you can use "
"`tf.compat.v1.data.make_initializable_iterator(dataset)` to create a TF "
"1 graph mode style iterator for a dataset created through TF 2 APIs. "
"Note that this should be a transient state of your code base as there "
"are in general no guarantees about the interoperability of TF 1 and TF "
"2 code.")
def make_initializable_iterator(self, shared_name=None):
"""Creates an iterator for elements of this dataset.
Note: The returned iterator will be in an uninitialized state,
and you must run the `iterator.initializer` operation before using it:
```python
# Building graph ...
dataset = ...
iterator = dataset.make_initializable_iterator()
next_value = iterator.get_next() # This is a Tensor.
# ... from within a session ...
sess.run(iterator.initializer)
try:
while True:
value = sess.run(next_value)
...
except tf.errors.OutOfRangeError:
pass
```
Args:
shared_name: (Optional.) If non-empty, the returned iterator will be
shared under the given name across multiple sessions that share the same
devices (e.g. when using a remote server).
Returns:
A `tf.data.Iterator` for elements of this dataset.
Raises:
RuntimeError: If eager execution is enabled.
"""
return self._make_initializable_iterator(shared_name)
def _make_initializable_iterator(self, shared_name=None): # pylint: disable=missing-docstring
if context.executing_eagerly():
raise RuntimeError(
"dataset.make_initializable_iterator is not supported when eager "
"execution is enabled. Use `for element in dataset` instead.")
_ensure_same_dataset_graph(self)
dataset = self._apply_options()
if shared_name is None:
shared_name = ""
with ops.device(self._variant_tensor.device):
iterator_resource = gen_dataset_ops.iterator_v2(
container="", shared_name=shared_name, **self._flat_structure)
initializer = gen_dataset_ops.make_iterator(
dataset._variant_tensor, # pylint: disable=protected-access
iterator_resource)
# pylint: disable=protected-access
return iterator_ops.Iterator(iterator_resource, initializer,
get_legacy_output_types(dataset),
get_legacy_output_shapes(dataset),
get_legacy_output_classes(dataset))
@property
@deprecation.deprecated(
None, "Use `tf.compat.v1.data.get_output_classes(dataset)`.")
def output_classes(self):
"""Returns the class of each component of an element of this dataset.
Returns:
A nested structure of Python `type` objects corresponding to each
component of an element of this dataset.
"""
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_classes(), # pylint: disable=protected-access
self.element_spec)
@property
@deprecation.deprecated(
None, "Use `tf.compat.v1.data.get_output_shapes(dataset)`.")
def output_shapes(self):
"""Returns the shape of each component of an element of this dataset.
Returns:
A nested structure of `tf.TensorShape` objects corresponding to each
component of an element of this dataset.
"""
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_shapes(), # pylint: disable=protected-access
self.element_spec)
@property
@deprecation.deprecated(
None, "Use `tf.compat.v1.data.get_output_types(dataset)`.")
def output_types(self):
"""Returns the type of each component of an element of this dataset.
Returns:
A nested structure of `tf.DType` objects corresponding to each component
of an element of this dataset.
"""
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_types(), # pylint: disable=protected-access
self.element_spec)
@property
def element_spec(self):
# TODO(b/110122868): Remove this override once all `Dataset` instances
# implement `element_structure`.
return structure.convert_legacy_structure(
self.output_types, self.output_shapes, self.output_classes)
@staticmethod
@functools.wraps(DatasetV2.from_tensors)
def from_tensors(tensors):
return DatasetV1Adapter(DatasetV2.from_tensors(tensors))
@staticmethod
@functools.wraps(DatasetV2.from_tensor_slices)
def from_tensor_slices(tensors):
return DatasetV1Adapter(DatasetV2.from_tensor_slices(tensors))
@staticmethod
@deprecation.deprecated(None, "Use `tf.data.Dataset.from_tensor_slices()`.")
def from_sparse_tensor_slices(sparse_tensor):
"""Splits each rank-N `tf.sparse.SparseTensor` in this dataset row-wise.
Args:
sparse_tensor: A `tf.sparse.SparseTensor`.
Returns:
Dataset: A `Dataset` of rank-(N-1) sparse tensors.
"""
return DatasetV1Adapter(SparseTensorSliceDataset(sparse_tensor))
@staticmethod
@functools.wraps(DatasetV2.from_generator)
def from_generator(generator,
output_types=None,
output_shapes=None,
args=None,
output_signature=None):
return DatasetV1Adapter(
DatasetV2.from_generator(generator, output_types, output_shapes, args,
output_signature))
@staticmethod
@functools.wraps(DatasetV2.range)
def range(*args, **kwargs):
return DatasetV1Adapter(DatasetV2.range(*args, **kwargs))
@staticmethod
@functools.wraps(DatasetV2.zip)
def zip(datasets):
return DatasetV1Adapter(DatasetV2.zip(datasets))
@functools.wraps(DatasetV2.concatenate)
def concatenate(self, dataset):
return DatasetV1Adapter(super(DatasetV1, self).concatenate(dataset))
@functools.wraps(DatasetV2.prefetch)
def prefetch(self, buffer_size):
return DatasetV1Adapter(super(DatasetV1, self).prefetch(buffer_size))
@staticmethod
@functools.wraps(DatasetV2.list_files)
def list_files(file_pattern, shuffle=None, seed=None):
return DatasetV1Adapter(DatasetV2.list_files(file_pattern, shuffle, seed))
@functools.wraps(DatasetV2.repeat)
def repeat(self, count=None):
return DatasetV1Adapter(super(DatasetV1, self).repeat(count))
@functools.wraps(DatasetV2.shuffle)
def shuffle(self, buffer_size, seed=None, reshuffle_each_iteration=None):
return DatasetV1Adapter(super(DatasetV1, self).shuffle(
buffer_size, seed, reshuffle_each_iteration))
@functools.wraps(DatasetV2.cache)
def cache(self, filename=""):
return DatasetV1Adapter(super(DatasetV1, self).cache(filename))
@functools.wraps(DatasetV2.take)
def take(self, count):
return DatasetV1Adapter(super(DatasetV1, self).take(count))
@functools.wraps(DatasetV2.skip)
def skip(self, count):
return DatasetV1Adapter(super(DatasetV1, self).skip(count))
@functools.wraps(DatasetV2.shard)
def shard(self, num_shards, index):
return DatasetV1Adapter(super(DatasetV1, self).shard(num_shards, index))
@functools.wraps(DatasetV2.batch)
def batch(self, batch_size, drop_remainder=False):
return DatasetV1Adapter(super(DatasetV1, self).batch(
batch_size, drop_remainder))
@functools.wraps(DatasetV2.padded_batch)
def padded_batch(self,
batch_size,
padded_shapes=None,
padding_values=None,
drop_remainder=False):
return DatasetV1Adapter(
super(DatasetV1, self).padded_batch(batch_size, padded_shapes,
padding_values, drop_remainder))
@functools.wraps(DatasetV2.map)
def map(self, map_func, num_parallel_calls=None, deterministic=None):
if num_parallel_calls is None:
return DatasetV1Adapter(
MapDataset(self, map_func, preserve_cardinality=False))
else:
return DatasetV1Adapter(
ParallelMapDataset(
self,
map_func,
num_parallel_calls,
deterministic,
preserve_cardinality=False))
@deprecation.deprecated(None, "Use `tf.data.Dataset.map()")
def map_with_legacy_function(self,
map_func,
num_parallel_calls=None,
deterministic=None):
"""Maps `map_func` across the elements of this dataset.
Note: This is an escape hatch for existing uses of `map` that do not work
with V2 functions. New uses are strongly discouraged and existing uses
should migrate to `map` as this method will be removed in V2.
Args:
map_func: A function mapping a nested structure of tensors (having shapes
and types defined by `self.output_shapes` and `self.output_types`) to
another nested structure of tensors.
num_parallel_calls: (Optional.) A `tf.int32` scalar `tf.Tensor`,
representing the number elements to process asynchronously in parallel.
If not specified, elements will be processed sequentially. If the value
`tf.data.AUTOTUNE` is used, then the number of parallel
calls is set dynamically based on available CPU.
deterministic: (Optional.) A boolean controlling whether determinism
should be traded for performance by allowing elements to be produced out
of order. If `deterministic` is `None`, the
`tf.data.Options.experimental_deterministic` dataset option (`True` by
default) is used to decide whether to produce elements
deterministically.
Returns:
Dataset: A `Dataset`.
"""
if num_parallel_calls is None:
return DatasetV1Adapter(
MapDataset(
self,
map_func,
preserve_cardinality=False,
use_legacy_function=True))
else:
return DatasetV1Adapter(
ParallelMapDataset(
self,
map_func,
num_parallel_calls,
deterministic,
preserve_cardinality=False,
use_legacy_function=True))
@functools.wraps(DatasetV2.flat_map)
def flat_map(self, map_func):
return DatasetV1Adapter(super(DatasetV1, self).flat_map(map_func))
@functools.wraps(DatasetV2.interleave)
def interleave(self,
map_func,
cycle_length=None,
block_length=None,
num_parallel_calls=None,
deterministic=None):
return DatasetV1Adapter(
super(DatasetV1, self).interleave(map_func, cycle_length, block_length,
num_parallel_calls, deterministic))
@functools.wraps(DatasetV2.filter)
def filter(self, predicate):
return DatasetV1Adapter(super(DatasetV1, self).filter(predicate))
@deprecation.deprecated(None, "Use `tf.data.Dataset.filter()")
def filter_with_legacy_function(self, predicate):
"""Filters this dataset according to `predicate`.
Note: This is an escape hatch for existing uses of `filter` that do not work
with V2 functions. New uses are strongly discouraged and existing uses
should migrate to `filter` as this method will be removed in V2.
Args:
predicate: A function mapping a nested structure of tensors (having shapes
and types defined by `self.output_shapes` and `self.output_types`) to a
scalar `tf.bool` tensor.
Returns:
Dataset: The `Dataset` containing the elements of this dataset for which
`predicate` is `True`.
"""
return FilterDataset(self, predicate, use_legacy_function=True)
@functools.wraps(DatasetV2.apply)
def apply(self, transformation_func):
return DatasetV1Adapter(super(DatasetV1, self).apply(transformation_func))
@functools.wraps(DatasetV2.window)
def window(self, size, shift=None, stride=1, drop_remainder=False):
return DatasetV1Adapter(super(DatasetV1, self).window(
size, shift, stride, drop_remainder))
@functools.wraps(DatasetV2.unbatch)
def unbatch(self):
return DatasetV1Adapter(super(DatasetV1, self).unbatch())
@functools.wraps(DatasetV2.with_options)
def with_options(self, options):
return DatasetV1Adapter(super(DatasetV1, self).with_options(options))
if tf2.enabled():
Dataset = DatasetV2
else:
Dataset = DatasetV1
class DatasetV1Adapter(DatasetV1):
"""Wraps a V2 `Dataset` object in the `tf.compat.v1.data.Dataset` API."""
def __init__(self, dataset):
self._dataset = dataset
super(DatasetV1Adapter, self).__init__()
def _as_variant_tensor(self):
return self._dataset._variant_tensor # pylint: disable=protected-access
def _has_captured_ref(self):
return self._dataset._has_captured_ref() # pylint: disable=protected-access
def _inputs(self):
return self._dataset._inputs() # pylint: disable=protected-access
def _functions(self):
return self._dataset._functions() # pylint: disable=protected-access
def options(self):
return self._dataset.options()
@property
def element_spec(self):
return self._dataset.element_spec # pylint: disable=protected-access
def __iter__(self):
return iter(self._dataset)
def _ensure_same_dataset_graph(dataset):
"""Walks the dataset graph to ensure all datasets come from the same graph."""
# pylint: disable=protected-access
current_graph = ops.get_default_graph()
bfs_q = Queue.Queue()
bfs_q.put(dataset)
visited = []
while not bfs_q.empty():
ds = bfs_q.get()
visited.append(ds)
ds_graph = ds._graph
if current_graph != ds_graph:
raise ValueError(
"The graph (" + str(current_graph) + ") of the iterator is different "
"from the graph (" + str(ds_graph) + ") the dataset: " +
str(ds._variant_tensor) + " was created in. If you are using the "
"Estimator API, make sure that no part of the dataset returned by "
"the `input_fn` function is defined outside the `input_fn` function. "
"Please ensure that all datasets in the pipeline are created in the "
"same graph as the iterator.")
for input_ds in ds._inputs():
if input_ds not in visited:
bfs_q.put(input_ds)
@tf_export(v1=["data.make_one_shot_iterator"])
def make_one_shot_iterator(dataset):
"""Creates an iterator for elements of `dataset`.
Note: The returned iterator will be initialized automatically.
A "one-shot" iterator does not support re-initialization.
Args:
dataset: A `tf.data.Dataset`.
Returns:
A `tf.data.Iterator` for elements of `dataset`.
"""
try:
# Call the defined `_make_one_shot_iterator()` if there is one, because some
# datasets (e.g. for prefetching) override its behavior.
return dataset._make_one_shot_iterator() # pylint: disable=protected-access
except AttributeError:
return DatasetV1Adapter(dataset)._make_one_shot_iterator() # pylint: disable=protected-access
@tf_export(v1=["data.make_initializable_iterator"])
def make_initializable_iterator(dataset, shared_name=None):
"""Creates an iterator for elements of `dataset`.
Note: The returned iterator will be in an uninitialized state,
and you must run the `iterator.initializer` operation before using it:
```python
dataset = ...
iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
# ...
sess.run(iterator.initializer)
```
Args:
dataset: A `tf.data.Dataset`.
shared_name: (Optional.) If non-empty, the returned iterator will be shared
under the given name across multiple sessions that share the same devices
(e.g. when using a remote server).
Returns:
A `tf.data.Iterator` for elements of `dataset`.
Raises:
RuntimeError: If eager execution is enabled.
"""
try:
# Call the defined `_make_initializable_iterator()` if there is one, because
# some datasets (e.g. for prefetching) override its behavior.
return dataset._make_initializable_iterator(shared_name) # pylint: disable=protected-access
except AttributeError:
return DatasetV1Adapter(dataset)._make_initializable_iterator(shared_name) # pylint: disable=protected-access
@tf_export("data.experimental.get_structure")
def get_structure(dataset_or_iterator):
"""Returns the type signature for elements of the input dataset / iterator.
Args:
dataset_or_iterator: A `tf.data.Dataset` or an `tf.data.Iterator`.
Returns:
A nested structure of `tf.TypeSpec` objects matching the structure of an
element of `dataset_or_iterator` and specifying the type of individual
components.
Raises:
TypeError: If input is not a `tf.data.Dataset` or an `tf.data.Iterator`
object.
"""
try:
return dataset_or_iterator.element_spec # pylint: disable=protected-access
except AttributeError:
raise TypeError("`dataset_or_iterator` must be a `tf.data.Dataset` or "
"tf.data.Iterator object, but got %s." %
type(dataset_or_iterator))
@tf_export(v1=["data.get_output_classes"])
def get_legacy_output_classes(dataset_or_iterator):
"""Returns the output classes for elements of the input dataset / iterator.
Args:
dataset_or_iterator: A `tf.data.Dataset` or `tf.data.Iterator`.
Returns:
A nested structure of Python `type` objects matching the structure of the
dataset / iterator elements and specifying the class of the individual
components.
"""
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_classes(), # pylint: disable=protected-access
get_structure(dataset_or_iterator))
@tf_export(v1=["data.get_output_shapes"])
def get_legacy_output_shapes(dataset_or_iterator):
"""Returns the output shapes for elements of the input dataset / iterator.
Args:
dataset_or_iterator: A `tf.data.Dataset` or `tf.data.Iterator`.
Returns:
A nested structure of `tf.TensorShape` objects matching the structure of
the dataset / iterator elements and specifying the shape of the individual
components.
"""
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_shapes(), # pylint: disable=protected-access
get_structure(dataset_or_iterator))
@tf_export(v1=["data.get_output_types"])
def get_legacy_output_types(dataset_or_iterator):
"""Returns the output shapes for elements of the input dataset / iterator.
Args:
dataset_or_iterator: A `tf.data.Dataset` or `tf.data.Iterator`.
Returns:
A nested structure of `tf.DType` objects objects matching the structure of
dataset / iterator elements and specifying the shape of the individual
components.
"""
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_types(), # pylint: disable=protected-access
get_structure(dataset_or_iterator))
@tf_export("data.Options")
class Options(options_lib.OptionsBase):
"""Represents options for `tf.data.Dataset`.
A `tf.data.Options` object can be, for instance, used to control which static
optimizations to apply to the input pipeline graph or whether to use
performance modeling to dynamically tune the parallelism of operations such as
`tf.data.Dataset.map` or `tf.data.Dataset.interleave`.
The options are set for the entire dataset and are carried over to datasets
created through tf.data transformations.
The options can be set either by mutating the object returned by
`tf.data.Dataset.options()` or by constructing an `Options` object and using
the `tf.data.Dataset.with_options(options)` transformation, which returns a
dataset with the options set.
>>> dataset = tf.data.Dataset.range(42)
>>> dataset.options().experimental_deterministic = False
>>> print(dataset.options().experimental_deterministic)
False
>>> dataset = tf.data.Dataset.range(42)
>>> options = tf.data.Options()
>>> options.experimental_deterministic = False
>>> dataset = dataset.with_options(options)
>>> print(dataset.options().experimental_deterministic)
False
Note: A known limitation of the `tf.data.Options` implementation is that the
options are not preserved across tf.function boundaries. In particular, to
set options for a dataset that is iterated within a tf.function, the options
need to be set within the same tf.function.
"""
experimental_deterministic = options_lib.create_option(
name="experimental_deterministic",
ty=bool,
docstring=
"Whether the outputs need to be produced in deterministic order. If None,"
" defaults to True.")
experimental_distribute = options_lib.create_option(
name="experimental_distribute",
ty=distribute_options.DistributeOptions,
docstring=
"The distribution strategy options associated with the dataset. See "
"`tf.data.experimental.DistributeOptions` for more details.",
default_factory=distribute_options.DistributeOptions)
experimental_optimization = options_lib.create_option(
name="experimental_optimization",
ty=optimization_options.OptimizationOptions,
docstring=
"The optimization options associated with the dataset. See "
"`tf.data.experimental.OptimizationOptions` for more details.",
default_factory=optimization_options.OptimizationOptions)
experimental_slack = options_lib.create_option(
name="experimental_slack",
ty=bool,
docstring="Whether to introduce 'slack' in the last `prefetch` of the "
"input pipeline, if it exists. This may reduce CPU contention with "
"accelerator host-side activity at the start of a step. The slack "
"frequency is determined by the number of devices attached to this "
"input pipeline. If None, defaults to False.")
experimental_stats = options_lib.create_option(
name="experimental_stats",
ty=stats_options.StatsOptions,
docstring=
"The statistics options associated with the dataset. See "
"`tf.data.experimental.StatsOptions` for more details.",
default_factory=stats_options.StatsOptions)
experimental_threading = options_lib.create_option(
name="experimental_threading",
ty=threading_options.ThreadingOptions,
docstring=
"The threading options associated with the dataset. See "
"`tf.data.experimental.ThreadingOptions` for more details.",
default_factory=threading_options.ThreadingOptions)
experimental_external_state_policy = options_lib.create_option(
name="experimental_external_state_policy",
ty=distribute_options.ExternalStatePolicy,
docstring="This option can be used to override the default policy for "
"how to handle external state when serializing a dataset or "
"checkpointing its iterator. There are three settings available - "
"IGNORE: in which we completely ignore any state; WARN: We warn the "
"user that some state might be thrown away; FAIL: We fail if any state "
"is being captured.")
def _graph_rewrites(self):
"""Produces lists of enabled, disabled, default static graph rewrites.
Returns:
result: a namedtuple with three attributes. `result.enabled` is the list
of user enabled graph rewrites. `result.disabled` is the list of user
disabled graph rewrites. `result.default` is the list of graph
rewrites that are enabled by default (the user has not explicitly
enabled or disabled them).
"""
if self.experimental_optimization is not None:
result = self.experimental_optimization._graph_rewrites() # pylint: disable=protected-access
else:
# Apply default options
result = optimization_options.OptimizationOptions()._graph_rewrites() # pylint: disable=protected-access
if self.experimental_deterministic is False: # pylint: disable=g-bool-id-comparison
result.enabled.append("make_sloppy")
elif self.experimental_deterministic is True: # pylint: disable=g-bool-id-comparison
result.disabled.append("make_sloppy")
if self.experimental_stats:
if self.experimental_stats.latency_all_edges is True: # pylint: disable=g-bool-id-comparison
result.enabled.append("latency_all_edges")
elif self.experimental_stats.latency_all_edges is False: # pylint: disable=g-bool-id-comparison
result.disabled.append("latency_all_edges")
if self.experimental_slack is True: # pylint: disable=g-bool-id-comparison
result.enabled.append("slack")
elif self.experimental_slack is False: # pylint: disable=g-bool-id-comparison
result.disabled.append("slack")
graph_rewrites = options_lib.graph_rewrites()
return graph_rewrites(enabled=list(set(result.enabled)),
disabled=list(set(result.disabled)),
default=list(set(result.default)))
def _graph_rewrite_configs(self):
"""Produces the list of configurations for enabled graph optimizations."""
result = []
if self.experimental_optimization:
result.extend(self.experimental_optimization._graph_rewrite_configs()) # pylint: disable=protected-access
if self.experimental_slack:
num_devices = self.experimental_distribute.num_devices
if num_devices is None:
num_devices = 1
result.append("slack:slack_period:%d" % num_devices)
return result
def _autotune_settings(self):
if self.experimental_optimization is not None:
return self.experimental_optimization._autotune_settings() # pylint: disable=protected-access
# Return default autotune options
return optimization_options.OptimizationOptions()._autotune_settings() # pylint: disable=protected-access
def merge(self, options):
"""Merges itself with the given `tf.data.Options`.
If this object and the `options` to merge set an option differently, a
warning is generated and this object's value is updated with the `options`
object's value.
Args:
options: a `tf.data.Options` to merge with
Returns:
New `tf.data.Options` object which is the result of merging self with
the input `tf.data.Options`.
"""
return options_lib.merge_options(self, options)
class DatasetSource(DatasetV2):
"""Abstract class representing a dataset with no inputs."""
def _inputs(self):
return []
class UnaryDataset(DatasetV2):
"""Abstract class representing a dataset with one input."""
def __init__(self, input_dataset, variant_tensor):
self._input_dataset = input_dataset
super(UnaryDataset, self).__init__(variant_tensor)
def _inputs(self):
return [self._input_dataset]
class UnaryUnchangedStructureDataset(UnaryDataset):
"""Represents a unary dataset with the same input and output structure."""
def __init__(self, input_dataset, variant_tensor):
self._input_dataset = input_dataset
super(UnaryUnchangedStructureDataset, self).__init__(
input_dataset, variant_tensor)
@property
def element_spec(self):
return self._input_dataset.element_spec
class TensorDataset(DatasetSource):
"""A `Dataset` with a single element."""
def __init__(self, element):
"""See `Dataset.from_tensors()` for details."""
element = structure.normalize_element(element)
self._structure = structure.type_spec_from_value(element)
self._tensors = structure.to_tensor_list(self._structure, element)
variant_tensor = gen_dataset_ops.tensor_dataset(
self._tensors,
output_shapes=structure.get_flat_tensor_shapes(self._structure))
super(TensorDataset, self).__init__(variant_tensor)
@property
def element_spec(self):
return self._structure
class TensorSliceDataset(DatasetSource):
"""A `Dataset` of slices from a dataset element."""
def __init__(self, element):
"""See `Dataset.from_tensor_slices()` for details."""
element = structure.normalize_element(element)
batched_spec = structure.type_spec_from_value(element)
self._tensors = structure.to_batched_tensor_list(batched_spec, element)
self._structure = nest.map_structure(
lambda component_spec: component_spec._unbatch(), batched_spec) # pylint: disable=protected-access
batch_dim = tensor_shape.Dimension(tensor_shape.dimension_value(
self._tensors[0].get_shape()[0]))
for t in self._tensors[1:]:
batch_dim.assert_is_compatible_with(tensor_shape.Dimension(
tensor_shape.dimension_value(t.get_shape()[0])))
variant_tensor = gen_dataset_ops.tensor_slice_dataset(
self._tensors,
output_shapes=structure.get_flat_tensor_shapes(self._structure))
super(TensorSliceDataset, self).__init__(variant_tensor)
@property
def element_spec(self):
return self._structure
class SparseTensorSliceDataset(DatasetSource):
"""A `Dataset` that splits a rank-N `tf.sparse.SparseTensor` into its rows."""
def __init__(self, sparse_tensor):
"""See `Dataset.from_sparse_tensor_slices()` for details."""
if not isinstance(sparse_tensor, sparse_tensor_lib.SparseTensor):
raise TypeError(
"`sparse_tensor` must be a `tf.sparse.SparseTensor` object."
"Was {}.".format(sparse_tensor))
self._sparse_tensor = sparse_tensor
indices_shape = self._sparse_tensor.indices.get_shape()
shape_shape = self._sparse_tensor.dense_shape.get_shape()
rank = (indices_shape.dims[1] - 1).merge_with(shape_shape.dims[0] - 1)
self._structure = (tensor_spec.TensorSpec([None, rank], dtypes.int64),
tensor_spec.TensorSpec([None],
self._sparse_tensor.dtype),
tensor_spec.TensorSpec([rank], dtypes.int64))
variant_tensor = gen_dataset_ops.sparse_tensor_slice_dataset(
self._sparse_tensor.indices, self._sparse_tensor.values,
self._sparse_tensor.dense_shape)
super(SparseTensorSliceDataset, self).__init__(variant_tensor)
@property
def element_spec(self):
return self._structure
class _VariantDataset(DatasetV2):
"""A Dataset wrapper around a `tf.variant`-typed function argument."""
def __init__(self, dataset_variant, structure):
self._structure = structure
super(_VariantDataset, self).__init__(dataset_variant)
def _inputs(self):
return []
@property
def element_spec(self):
return self._structure
class _NestedVariant(composite_tensor.CompositeTensor):
def __init__(self, variant_tensor, element_spec, dataset_shape):
self._variant_tensor = variant_tensor
self._element_spec = element_spec
self._dataset_shape = dataset_shape
@property
def _type_spec(self):
return DatasetSpec(self._element_spec, self._dataset_shape)
@tf_export("data.experimental.from_variant")
def from_variant(variant, structure):
"""Constructs a dataset from the given variant and structure.
Args:
variant: A scalar `tf.variant` tensor representing a dataset.
structure: A `tf.data.experimental.Structure` object representing the
structure of each element in the dataset.
Returns:
A `tf.data.Dataset` instance.
"""
return _VariantDataset(variant, structure) # pylint: disable=protected-access
@tf_export("data.experimental.to_variant")
def to_variant(dataset):
"""Returns a variant representing the given dataset.
Args:
dataset: A `tf.data.Dataset`.
Returns:
A scalar `tf.variant` tensor representing the given dataset.
"""
return dataset._variant_tensor # pylint: disable=protected-access
@tf_export(
"data.DatasetSpec",
v1=["data.DatasetSpec", "data.experimental.DatasetStructure"])
class DatasetSpec(type_spec.BatchableTypeSpec):
"""Type specification for `tf.data.Dataset`.
See `tf.TypeSpec` for more information about TensorFlow type specifications.
>>> dataset = tf.data.Dataset.range(3)
>>> tf.data.DatasetSpec.from_value(dataset)
DatasetSpec(TensorSpec(shape=(), dtype=tf.int64, name=None), TensorShape([]))
"""
__slots__ = ["_element_spec", "_dataset_shape"]
def __init__(self, element_spec, dataset_shape=()):
self._element_spec = element_spec
self._dataset_shape = tensor_shape.as_shape(dataset_shape)
@property
def value_type(self):
return Dataset
def _serialize(self):
return (self._element_spec, self._dataset_shape)
@property
def _component_specs(self):
return tensor_spec.TensorSpec(self._dataset_shape, dtypes.variant)
def _to_components(self, value):
return value._variant_tensor # pylint: disable=protected-access
def _from_components(self, components):
# pylint: disable=protected-access
if self._dataset_shape.ndims == 0:
return _VariantDataset(components, self._element_spec)
else:
return _NestedVariant(components, self._element_spec, self._dataset_shape)
def _to_tensor_list(self, value):
return [
ops.convert_to_tensor(
tf_nest.map_structure(lambda x: x._variant_tensor, value)) # pylint: disable=protected-access
]
@staticmethod
def from_value(value):
"""Creates a `DatasetSpec` for the given `tf.data.Dataset` value."""
return DatasetSpec(value.element_spec) # pylint: disable=protected-access
def _batch(self, batch_size):
return DatasetSpec(
self._element_spec,
tensor_shape.TensorShape([batch_size]).concatenate(self._dataset_shape))
def _unbatch(self):
if self._dataset_shape.ndims == 0:
raise ValueError("Unbatching a dataset is only supported for rank >= 1")
return DatasetSpec(self._element_spec, self._dataset_shape[1:])
def _to_batched_tensor_list(self, value):
if self._dataset_shape.ndims == 0:
raise ValueError("Unbatching a dataset is only supported for rank >= 1")
return self._to_tensor_list(value)
def _to_legacy_output_types(self):
return self
def _to_legacy_output_shapes(self):
return self
def _to_legacy_output_classes(self):
return self
class StructuredFunctionWrapper(object):
"""A function wrapper that supports structured arguments and return values."""
def __init__(self,
func,
transformation_name,
dataset=None,
input_classes=None,
input_shapes=None,
input_types=None,
input_structure=None,
add_to_graph=True,
use_legacy_function=False,
defun_kwargs=None):
"""Creates a new `StructuredFunctionWrapper` for the given function.
Args:
func: A function from a nested structure to another nested structure.
transformation_name: Human-readable name of the transformation in which
this function is being instantiated, for error messages.
dataset: (Optional.) A `tf.data.Dataset`. If given, the structure of this
dataset will be assumed as the structure for `func` arguments; otherwise
`input_classes`, `input_shapes`, and `input_types` must be defined.
input_classes: (Optional.) A nested structure of `type`. If given, this
argument defines the Python types for `func` arguments.
input_shapes: (Optional.) A nested structure of `tf.TensorShape`. If
given, this argument defines the shapes and structure for `func`
arguments.
input_types: (Optional.) A nested structure of `tf.DType`. If given, this
argument defines the element types and structure for `func` arguments.
input_structure: (Optional.) A `Structure` object. If given, this argument
defines the element types and structure for `func` arguments.
add_to_graph: (Optional.) If `True`, the function will be added to the
default graph, if it exists.
use_legacy_function: (Optional.) A boolean that determines whether the
function be created using `tensorflow.python.eager.function.defun`
(default behavior) or `tensorflow.python.framework.function.Defun`
(legacy behavior).
defun_kwargs: (Optional.) A dictionary mapping string argument names to
values. If supplied, will be passed to `function` as keyword arguments.
Raises:
ValueError: If an invalid combination of `dataset`, `input_classes`,
`input_shapes`, and `input_types` is passed.
"""
# pylint: disable=protected-access
if input_structure is None:
if dataset is None:
if input_classes is None or input_shapes is None or input_types is None:
raise ValueError("Either `dataset`, `input_structure` or all of "
"`input_classes`, `input_shapes`, and `input_types` "
"must be specified.")
self._input_structure = structure.convert_legacy_structure(
input_types, input_shapes, input_classes)
else:
if not (input_classes is None and input_shapes is None and
input_types is None):
raise ValueError("Either `dataset`, `input_structure` or all of "
"`input_classes`, `input_shapes`, and `input_types` "
"must be specified.")
self._input_structure = dataset.element_spec
else:
if not (dataset is None and input_classes is None and input_shapes is None
and input_types is None):
raise ValueError("Either `dataset`, `input_structure`, or all of "
"`input_classes`, `input_shapes`, and `input_types` "
"must be specified.")
self._input_structure = input_structure
self._func = func
# There is no graph to add in eager mode.
add_to_graph &= not context.executing_eagerly()
# There are some lifetime issues when a legacy function is not added to a
# out-living graph. It's already deprecated so de-prioritizing the fix.
add_to_graph |= use_legacy_function
if defun_kwargs is None:
defun_kwargs = {}
readable_transformation_name = transformation_name.replace(
".", "_")[:-2] if len(transformation_name) > 2 else ""
func_name = "_".join(
[readable_transformation_name,
function_utils.get_func_name(func)])
# Sanitize function name to remove symbols that interfere with graph
# construction.
for symbol in ["<", ">", "\\", "'", " "]:
func_name = func_name.replace(symbol, "")
ag_ctx = autograph_ctx.control_status_ctx()
def _warn_if_collections(transformation_name):
"""Prints a warning if the given graph uses common graph collections.
NOTE(mrry): Currently a warning is only generated for resources. Any
variables created will be automatically hoisted out to the outermost scope
using `init_scope()`. Some collections (such as for control-flow contexts)
are benign and should not generate a warning.
Args:
transformation_name: A human-readable name for the transformation.
"""
warnings.warn("Creating resources inside a function passed to %s "
"is not supported. Create each resource outside the "
"function, and capture it inside the function to use it." %
transformation_name, stacklevel=5)
def _wrapper_helper(*args):
"""Wrapper for passing nested structures to and from tf.data functions."""
nested_args = structure.from_compatible_tensor_list(
self._input_structure, args)
if not _should_unpack_args(nested_args):
nested_args = (nested_args,)
ret = autograph.tf_convert(func, ag_ctx)(*nested_args)
# If `func` returns a list of tensors, `nest.flatten()` and
# `ops.convert_to_tensor()` would conspire to attempt to stack
# those tensors into a single tensor, because the customized
# version of `nest.flatten()` does not recurse into lists. Since
# it is more likely that the list arose from returning the
# result of an operation (such as `tf.numpy_function()`) that returns a
# list of not-necessarily-stackable tensors, we treat the
# returned value is a `tuple` instead. A user wishing to pack
# the return value into a single tensor can use an explicit
# `tf.stack()` before returning.
if isinstance(ret, list):
ret = tuple(ret)
try:
self._output_structure = structure.type_spec_from_value(ret)
except (ValueError, TypeError):
six.reraise(
TypeError,
TypeError("Unsupported return value from function passed to "
"%s: %s." % (transformation_name, ret)),
sys.exc_info()[2])
return ret
if use_legacy_function:
func_name = func_name + "_" + str(ops.uid())
@function.Defun(
*structure.get_flat_tensor_types(self._input_structure),
func_name=func_name,
**defun_kwargs)
def wrapper_fn(*args):
ret = _wrapper_helper(*args)
# _warn_if_collections(transformation_name, ops.get_default_graph(), 0)
return structure.to_tensor_list(self._output_structure, ret)
self._function = wrapper_fn
resource_tracker = tracking.ResourceTracker()
with tracking.resource_tracker_scope(resource_tracker):
if add_to_graph:
self._function.add_to_graph(ops.get_default_graph())
else:
# Use the private method that will execute `wrapper_fn` but delay
# adding it to the graph in case (e.g.) we need to rerun the function.
self._function._create_definition_if_needed()
if resource_tracker.resources:
_warn_if_collections(transformation_name)
else:
if def_function.functions_run_eagerly():
warnings.warn(
"Even though the tf.config.experimental_run_functions_eagerly "
"option is set, this option does not apply to tf.data functions. "
"tf.data functions are still traced and executed as graphs.")
defun_kwargs.update({"func_name": func_name})
defun_kwargs.update({"_tf_data_function": True})
# Note: _wrapper_helper will apply autograph based on context.
@eager_function.defun_with_attributes(
input_signature=structure.get_flat_tensor_specs(
self._input_structure),
autograph=False,
attributes=defun_kwargs)
def wrapper_fn(*args): # pylint: disable=missing-docstring
ret = _wrapper_helper(*args)
ret = structure.to_tensor_list(self._output_structure, ret)
return [ops.convert_to_tensor(t) for t in ret]
resource_tracker = tracking.ResourceTracker()
with tracking.resource_tracker_scope(resource_tracker):
# TODO(b/141462134): Switch to using garbage collection.
self._function = wrapper_fn.get_concrete_function()
if add_to_graph:
self._function.add_to_graph(ops.get_default_graph())
if resource_tracker.resources:
_warn_if_collections(transformation_name)
outer_graph_seed = ops.get_default_graph().seed
if outer_graph_seed and self._function.graph.seed == outer_graph_seed:
if self._function.graph._seed_used:
warnings.warn(
"Seed %s from outer graph might be getting used by function %s, "
"if the random op has not been provided any seed. Explicitly set "
"the seed in the function if this is not the intended behavior."
%(outer_graph_seed, func_name), stacklevel=4)
@property
def output_structure(self):
return self._output_structure
@property
def output_classes(self):
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_classes(), # pylint: disable=protected-access
self._output_structure)
@property
def output_shapes(self):
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_shapes(), # pylint: disable=protected-access
self._output_structure)
@property
def output_types(self):
return nest.map_structure(
lambda component_spec: component_spec._to_legacy_output_types(), # pylint: disable=protected-access
self._output_structure)
@property
def function(self):
return self._function
class _GeneratorDataset(DatasetSource):
"""A `Dataset` that generates elements by invoking a function."""
def __init__(self, init_args, init_func, next_func, finalize_func,
output_signature):
"""Constructs a `_GeneratorDataset`.
Args:
init_args: A nested structure representing the arguments to `init_func`.
init_func: A TensorFlow function that will be called on `init_args` each
time a C++ iterator over this dataset is constructed. Returns a nested
structure representing the "state" of the dataset.
next_func: A TensorFlow function that will be called on the result of
`init_func` to produce each element, and that raises `OutOfRangeError`
to terminate iteration.
finalize_func: A TensorFlow function that will be called on the result of
`init_func` immediately before a C++ iterator over this dataset is
destroyed. The return value is ignored.
output_signature: A nested structure of `tf.TypeSpec` objects describing
the output of `next_func`.
"""
self._init_args = init_args
self._init_structure = structure.type_spec_from_value(init_args)
self._init_func = StructuredFunctionWrapper(
init_func,
self._transformation_name(),
input_structure=self._init_structure)
self._next_func = StructuredFunctionWrapper(
next_func,
self._transformation_name(),
input_structure=self._init_func.output_structure)
self._finalize_func = StructuredFunctionWrapper(
finalize_func,
self._transformation_name(),
input_structure=self._init_func.output_structure)
self._output_signature = output_signature
variant_tensor = gen_dataset_ops.generator_dataset(
structure.to_tensor_list(self._init_structure, self._init_args) +
self._init_func.function.captured_inputs,
self._next_func.function.captured_inputs,
self._finalize_func.function.captured_inputs,
init_func=self._init_func.function,
next_func=self._next_func.function,
finalize_func=self._finalize_func.function,
**self._flat_structure)
super(_GeneratorDataset, self).__init__(variant_tensor)
@property
def element_spec(self):
return self._output_signature
def _transformation_name(self):
return "Dataset.from_generator()"
class ZipDataset(DatasetV2):
"""A `Dataset` that zips its inputs together."""
def __init__(self, datasets):
"""See `Dataset.zip()` for details."""
for ds in nest.flatten(datasets):
if not isinstance(ds, DatasetV2):
if isinstance(ds, list):
message = ("The argument to `Dataset.zip()` must be a nested "
"structure of `Dataset` objects. Nested structures do not "
"support Python lists; please use a tuple instead.")
else:
message = ("The argument to `Dataset.zip()` must be a nested "
"structure of `Dataset` objects.")
raise TypeError(message)
self._datasets = datasets
self._structure = nest.pack_sequence_as(
self._datasets,
[ds.element_spec for ds in nest.flatten(self._datasets)])
variant_tensor = gen_dataset_ops.zip_dataset(
[ds._variant_tensor for ds in nest.flatten(self._datasets)],
**self._flat_structure)
super(ZipDataset, self).__init__(variant_tensor)
def _inputs(self):
return nest.flatten(self._datasets)
@property
def element_spec(self):
return self._structure
class ConcatenateDataset(DatasetV2):
"""A `Dataset` that concatenates its input with given dataset."""
def __init__(self, input_dataset, dataset_to_concatenate):
"""See `Dataset.concatenate()` for details."""
self._input_dataset = input_dataset
self._dataset_to_concatenate = dataset_to_concatenate
output_types = get_legacy_output_types(input_dataset)
if output_types != get_legacy_output_types(dataset_to_concatenate):
raise TypeError(
"Two datasets to concatenate have different types %s and %s" %
(output_types, get_legacy_output_types(dataset_to_concatenate)))
output_classes = get_legacy_output_classes(input_dataset)
if output_classes != get_legacy_output_classes(dataset_to_concatenate):
raise TypeError(
"Two datasets to concatenate have different classes %s and %s" %
(output_classes, get_legacy_output_classes(dataset_to_concatenate)))
input_shapes = get_legacy_output_shapes(self._input_dataset)
output_shapes = nest.pack_sequence_as(input_shapes, [
ts1.most_specific_compatible_shape(ts2)
for (ts1, ts2) in zip(
nest.flatten(input_shapes),
nest.flatten(get_legacy_output_shapes(
self._dataset_to_concatenate)))
])
self._structure = structure.convert_legacy_structure(
output_types, output_shapes, output_classes)
self._input_datasets = [input_dataset, dataset_to_concatenate]
# pylint: disable=protected-access
variant_tensor = gen_dataset_ops.concatenate_dataset(
input_dataset._variant_tensor, dataset_to_concatenate._variant_tensor,
**self._flat_structure)
# pylint: enable=protected-access
super(ConcatenateDataset, self).__init__(variant_tensor)
def _inputs(self):
return self._input_datasets
@property
def element_spec(self):
return self._structure
class RepeatDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that repeats its input several times."""
def __init__(self, input_dataset, count):
"""See `Dataset.repeat()` for details."""
self._input_dataset = input_dataset
if count is None:
self._count = constant_op.constant(-1, dtype=dtypes.int64, name="count")
else:
self._count = ops.convert_to_tensor(
count, dtype=dtypes.int64, name="count")
variant_tensor = gen_dataset_ops.repeat_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
count=self._count,
**self._flat_structure)
super(RepeatDataset, self).__init__(input_dataset, variant_tensor)
class RangeDataset(DatasetSource):
"""A `Dataset` of a step separated range of values."""
def __init__(self, *args, **kwargs):
"""See `Dataset.range()` for details."""
self._parse_args(*args, **kwargs)
self._structure = tensor_spec.TensorSpec([], self._output_type)
variant_tensor = gen_dataset_ops.range_dataset(
start=self._start,
stop=self._stop,
step=self._step,
**self._flat_structure)
super(RangeDataset, self).__init__(variant_tensor)
def _parse_args(self, *args, **kwargs):
"""Parse arguments according to the same rules as the `range()` builtin."""
if len(args) == 1:
self._start = self._build_tensor(0, "start")
self._stop = self._build_tensor(args[0], "stop")
self._step = self._build_tensor(1, "step")
elif len(args) == 2:
self._start = self._build_tensor(args[0], "start")
self._stop = self._build_tensor(args[1], "stop")
self._step = self._build_tensor(1, "step")
elif len(args) == 3:
self._start = self._build_tensor(args[0], "start")
self._stop = self._build_tensor(args[1], "stop")
self._step = self._build_tensor(args[2], "step")
else:
raise ValueError("Invalid arguments to RangeDataset: %s" % str(args))
if "output_type" in kwargs:
self._output_type = kwargs["output_type"]
else:
self._output_type = dtypes.int64
def _build_tensor(self, int64_value, name):
return ops.convert_to_tensor(int64_value, dtype=dtypes.int64, name=name)
@property
def element_spec(self):
return self._structure
class CacheDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that caches elements of its input."""
def __init__(self, input_dataset, filename):
"""See `Dataset.cache()` for details."""
self._input_dataset = input_dataset
self._filename = ops.convert_to_tensor(
filename, dtype=dtypes.string, name="filename")
if tf2.enabled() and (context.executing_eagerly() or ops.inside_function()):
variant_tensor = gen_dataset_ops.cache_dataset_v2(
input_dataset._variant_tensor, # pylint: disable=protected-access
filename=self._filename,
cache=gen_dataset_ops.dummy_memory_cache(),
**self._flat_structure)
else:
variant_tensor = gen_dataset_ops.cache_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
filename=self._filename,
**self._flat_structure)
super(CacheDataset, self).__init__(input_dataset, variant_tensor)
class ShuffleDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that randomly shuffles the elements of its input."""
def __init__(self,
input_dataset,
buffer_size,
seed=None,
reshuffle_each_iteration=None):
"""Randomly shuffles the elements of this dataset.
Args:
input_dataset: The input dataset.
buffer_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
elements from this dataset from which the new dataset will sample.
seed: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the random
seed that will be used to create the distribution. See
`tf.random.set_seed` for behavior.
reshuffle_each_iteration: (Optional.) A boolean, which if true indicates
that the dataset should be pseudorandomly reshuffled each time it is
iterated over. (Defaults to `True`.)
Returns:
A `Dataset`.
Raises:
ValueError: if invalid arguments are provided.
"""
self._input_dataset = input_dataset
self._buffer_size = ops.convert_to_tensor(
buffer_size, dtype=dtypes.int64, name="buffer_size")
self._seed, self._seed2 = random_seed.get_seed(seed)
if reshuffle_each_iteration is None:
reshuffle_each_iteration = True
self._reshuffle_each_iteration = reshuffle_each_iteration
if (tf2.enabled() and
(context.executing_eagerly() or ops.inside_function())):
variant_tensor = gen_dataset_ops.shuffle_dataset_v3(
input_dataset._variant_tensor, # pylint: disable=protected-access
buffer_size=self._buffer_size,
seed=self._seed,
seed2=self._seed2,
seed_generator=gen_dataset_ops.dummy_seed_generator(),
reshuffle_each_iteration=self._reshuffle_each_iteration,
**self._flat_structure)
else:
variant_tensor = gen_dataset_ops.shuffle_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
buffer_size=self._buffer_size,
seed=self._seed,
seed2=self._seed2,
reshuffle_each_iteration=self._reshuffle_each_iteration,
**self._flat_structure)
super(ShuffleDataset, self).__init__(input_dataset, variant_tensor)
class TakeDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` containing the first `count` elements from its input."""
def __init__(self, input_dataset, count):
"""See `Dataset.take()` for details."""
self._input_dataset = input_dataset
self._count = ops.convert_to_tensor(count, dtype=dtypes.int64, name="count")
variant_tensor = gen_dataset_ops.take_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
count=self._count,
**self._flat_structure)
super(TakeDataset, self).__init__(input_dataset, variant_tensor)
class SkipDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` skipping the first `count` elements from its input."""
def __init__(self, input_dataset, count):
"""See `Dataset.skip()` for details."""
self._input_dataset = input_dataset
self._count = ops.convert_to_tensor(count, dtype=dtypes.int64, name="count")
variant_tensor = gen_dataset_ops.skip_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
count=self._count,
**self._flat_structure)
super(SkipDataset, self).__init__(input_dataset, variant_tensor)
class ShardDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` for sharding its input."""
def __init__(self, input_dataset, num_shards, index):
"""See `Dataset.shard()` for details."""
self._input_dataset = input_dataset
self._num_shards = ops.convert_to_tensor(
num_shards, dtype=dtypes.int64, name="num_shards")
self._index = ops.convert_to_tensor(index, dtype=dtypes.int64, name="index")
variant_tensor = gen_dataset_ops.shard_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
num_shards=self._num_shards,
index=self._index,
**self._flat_structure)
super(ShardDataset, self).__init__(input_dataset, variant_tensor)
class BatchDataset(UnaryDataset):
"""A `Dataset` that batches contiguous elements from its input."""
def __init__(self, input_dataset, batch_size, drop_remainder):
"""See `Dataset.batch()` for details."""
self._input_dataset = input_dataset
self._batch_size = ops.convert_to_tensor(
batch_size, dtype=dtypes.int64, name="batch_size")
self._drop_remainder = ops.convert_to_tensor(
drop_remainder, dtype=dtypes.bool, name="drop_remainder")
constant_drop_remainder = tensor_util.constant_value(self._drop_remainder)
# pylint: disable=protected-access
if constant_drop_remainder:
# NOTE(mrry): `constant_drop_remainder` may be `None` (unknown statically)
# or `False` (explicitly retaining the remainder).
# pylint: disable=g-long-lambda
constant_batch_size = tensor_util.constant_value(self._batch_size)
self._structure = nest.map_structure(
lambda component_spec: component_spec._batch(constant_batch_size),
input_dataset.element_spec)
else:
self._structure = nest.map_structure(
lambda component_spec: component_spec._batch(None),
input_dataset.element_spec)
variant_tensor = gen_dataset_ops.batch_dataset_v2(
input_dataset._variant_tensor,
batch_size=self._batch_size,
drop_remainder=self._drop_remainder,
**self._flat_structure)
super(BatchDataset, self).__init__(input_dataset, variant_tensor)
@property
def element_spec(self):
return self._structure
class _NumpyIterator(object):
"""Iterator over a dataset with elements converted to numpy."""
__slots__ = ["_iterator"]
def __init__(self, dataset):
self._iterator = iter(dataset)
def __iter__(self):
return self
def __next__(self):
return nest.map_structure(lambda x: x.numpy(), next(self._iterator))
def next(self):
return self.__next__()
class _VariantTracker(tracking.CapturableResource):
"""Allows export of functions capturing a Dataset in SavedModels.
When saving a SavedModel, `tf.saved_model.save` traverses the object
graph. Since Datasets reference _VariantTracker objects, that traversal will
find a _VariantTracker for each Dataset and so know how to save and restore
functions which reference the Dataset's variant Tensor.
"""
def __init__(self, variant_tensor, resource_creator):
"""Record that `variant_tensor` is associated with `resource_creator`.
Args:
variant_tensor: The variant-dtype Tensor associated with the Dataset. This
Tensor will be a captured input to functions which use the Dataset, and
is used by saving code to identify the corresponding _VariantTracker.
resource_creator: A zero-argument function which creates a new
variant-dtype Tensor. This function will be included in SavedModels and
run to re-create the Dataset's variant Tensor on restore.
"""
super(_VariantTracker, self).__init__(device="CPU")
self._resource_handle = variant_tensor
self._create_resource = resource_creator
def _is_padded_shape_compatible_with(padded_shape, input_component_shape):
"""Returns `True` if `input_component_shape` can be padded to `padded_shape`.
Args:
padded_shape: A `tf.TensorShape`.
input_component_shape: A `tf.TensorShape`.
Returns:
`True` if `input_component_shape` can be padded to `padded_shape`, otherwise
`False`.
"""
if padded_shape.dims is None or input_component_shape.dims is None:
return True
if len(padded_shape.dims) != len(input_component_shape.dims):
return False
for padded_dim, input_dim in zip(
padded_shape.dims, input_component_shape.dims):
if (padded_dim.value is not None and input_dim.value is not None
and padded_dim.value < input_dim.value):
return False
return True
def _padded_shape_to_tensor(padded_shape, input_component_shape):
"""Converts `padded_shape` to a `tf.Tensor` representing that shape.
Args:
padded_shape: A shape-like object, which may be a `tf.TensorShape`, a Python
sequence, or a 1-D `tf.Tensor` of `tf.int64` elements.
input_component_shape: A `tf.TensorShape`, with which `padded_shape` must
be compatible.
Returns:
A 1-D `tf.Tensor` of `tf.int64` elements, representing `padded_shape`.
Raises:
ValueError: If `padded_shape` is not a shape or not compatible with
`input_component_shape`.
TypeError: If `padded_shape` is not convertible to a `tf.int64` tensor.
"""
try:
# Try to convert the `padded_shape` to a `tf.TensorShape`
padded_shape_as_shape = tensor_shape.as_shape(padded_shape)
# We will return the "canonical" tensor representation, which uses
# `-1` in place of `None`.
ret = ops.convert_to_tensor(
[dim if dim is not None else -1
for dim in padded_shape_as_shape.as_list()], dtype=dtypes.int64)
except (TypeError, ValueError):
# The argument was not trivially convertible to a
# `tf.TensorShape`, so fall back on the conversion to tensor
# machinery.
ret = ops.convert_to_tensor(padded_shape, preferred_dtype=dtypes.int64)
if ret.shape.dims is not None and len(ret.shape.dims) != 1:
six.reraise(ValueError, ValueError(
"Padded shape %s must be a 1-D tensor of tf.int64 values, but its "
"shape was %s." % (padded_shape, ret.shape)), sys.exc_info()[2])
if ret.dtype != dtypes.int64:
six.reraise(
TypeError,
TypeError(
"Padded shape %s must be a 1-D tensor of tf.int64 values, but "
"its element type was %s." % (padded_shape, ret.dtype.name)),
sys.exc_info()[2])
padded_shape_as_shape = tensor_util.constant_value_as_shape(ret)
if not _is_padded_shape_compatible_with(padded_shape_as_shape,
input_component_shape):
raise ValueError("The padded shape %s is not compatible with the "
"corresponding input component shape %s."
% (padded_shape_as_shape, input_component_shape))
return ret
def _padding_value_to_tensor(value, output_type):
"""Converts the padding value to a tensor.
Args:
value: The padding value.
output_type: Its expected dtype.
Returns:
A scalar `Tensor`.
Raises:
ValueError: if the padding value is not a scalar.
TypeError: if the padding value's type does not match `output_type`.
"""
value = ops.convert_to_tensor(value, name="padding_value")
if not value.shape.is_compatible_with(tensor_shape.TensorShape([])):
raise ValueError("Padding value should be a scalar, but is not: %s" % value)
if value.dtype != output_type:
raise TypeError("Padding value tensor (%s) does not match output type: %s" %
(value, output_type))
return value
def _padding_values_or_default(padding_values, input_dataset):
"""Returns padding values with None elements replaced with default values."""
def make_zero(t):
if t.base_dtype == dtypes.string:
return ""
elif t.base_dtype == dtypes.variant:
error_msg = ("Unable to create padding for field of type 'variant' "
"because t.base_type == dtypes.variant == "
"{}.".format(t.base_dtype))
raise TypeError(error_msg)
elif t.base_dtype == dtypes.bfloat16:
# Special case `bfloat16` because it is not supported by NumPy.
return constant_op.constant(0, dtype=dtypes.bfloat16)
else:
return np.zeros_like(t.as_numpy_dtype())
def value_or_default(value, default):
return default if value is None else value
default_padding = nest.map_structure(
make_zero,
get_legacy_output_types(input_dataset))
return nest.map_structure_up_to(padding_values, value_or_default,
padding_values, default_padding)
class PaddedBatchDataset(UnaryDataset):
"""A `Dataset` that batches and pads contiguous elements from its input."""
def __init__(self, input_dataset, batch_size, padded_shapes, padding_values,
drop_remainder):
"""See `Dataset.batch()` for details."""
self._input_dataset = input_dataset
def check_types(component_spec):
if not isinstance(component_spec, tensor_spec.TensorSpec):
raise TypeError("Padded batching of components of type ",
type(component_spec), " is not supported.")
nest.map_structure(check_types, input_dataset.element_spec)
self._input_dataset = input_dataset
self._batch_size = ops.convert_to_tensor(
batch_size, dtype=dtypes.int64, name="batch_size")
padding_values = _padding_values_or_default(padding_values, input_dataset)
input_shapes = get_legacy_output_shapes(input_dataset)
flat_padded_shapes = nest.flatten_up_to(input_shapes, padded_shapes)
flat_padded_shapes_as_tensors = []
for input_component_shape, padded_shape in zip(
nest.flatten(input_shapes), flat_padded_shapes):
flat_padded_shapes_as_tensors.append(
_padded_shape_to_tensor(padded_shape, input_component_shape))
self._padded_shapes = nest.pack_sequence_as(input_shapes,
flat_padded_shapes_as_tensors)
# If padding_values is a single element and input_shapes is a structure,
# "broadcast" padding_values to the same structure as input_shapes.
if nest.is_sequence(input_shapes) and not nest.is_sequence(padding_values):
padding_values = nest.map_structure(lambda _: padding_values,
input_shapes)
self._padding_values = nest.map_structure_up_to(
input_shapes, _padding_value_to_tensor, padding_values,
get_legacy_output_types(input_dataset))
self._drop_remainder = ops.convert_to_tensor(
drop_remainder, dtype=dtypes.bool, name="drop_remainder")
def _padded_shape_to_batch_shape(s):
return tensor_shape.TensorShape([
tensor_util.constant_value(self._batch_size)
if smart_cond.smart_constant_value(self._drop_remainder) else None
]).concatenate(tensor_util.constant_value_as_shape(s))
output_shapes = nest.map_structure(
_padded_shape_to_batch_shape, self._padded_shapes)
self._structure = structure.convert_legacy_structure(
get_legacy_output_types(self._input_dataset), output_shapes,
get_legacy_output_classes(self._input_dataset))
# pylint: disable=protected-access
# TODO(jsimsa): Switch to using v2 only any time after 6/30/2018.
if smart_cond.smart_constant_value(self._drop_remainder) is False:
variant_tensor = gen_dataset_ops.padded_batch_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
batch_size=self._batch_size,
padded_shapes=[
ops.convert_to_tensor(s, dtype=dtypes.int64)
for s in nest.flatten(self._padded_shapes)
],
padding_values=nest.flatten(self._padding_values),
output_shapes=structure.get_flat_tensor_shapes(self._structure))
else:
variant_tensor = gen_dataset_ops.padded_batch_dataset_v2(
input_dataset._variant_tensor, # pylint: disable=protected-access
batch_size=self._batch_size,
padded_shapes=[
ops.convert_to_tensor(s, dtype=dtypes.int64)
for s in nest.flatten(self._padded_shapes)
],
padding_values=nest.flatten(self._padding_values),
drop_remainder=self._drop_remainder,
output_shapes=structure.get_flat_tensor_shapes(self._structure))
super(PaddedBatchDataset, self).__init__(input_dataset, variant_tensor)
@property
def element_spec(self):
return self._structure
def _should_unpack_args(args):
"""Returns `True` if `args` should be `*args` when passed to a callable."""
return type(args) is tuple # pylint: disable=unidiomatic-typecheck
class MapDataset(UnaryDataset):
"""A `Dataset` that maps a function over elements in its input."""
def __init__(self,
input_dataset,
map_func,
use_inter_op_parallelism=True,
preserve_cardinality=False,
use_legacy_function=False):
"""See `Dataset.map()` for details."""
self._input_dataset = input_dataset
self._use_inter_op_parallelism = use_inter_op_parallelism
self._preserve_cardinality = preserve_cardinality
self._map_func = StructuredFunctionWrapper(
map_func,
self._transformation_name(),
dataset=input_dataset,
use_legacy_function=use_legacy_function)
variant_tensor = gen_dataset_ops.map_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
f=self._map_func.function,
use_inter_op_parallelism=self._use_inter_op_parallelism,
preserve_cardinality=self._preserve_cardinality,
**self._flat_structure)
super(MapDataset, self).__init__(input_dataset, variant_tensor)
def _functions(self):
return [self._map_func]
@property
def element_spec(self):
return self._map_func.output_structure
def _transformation_name(self):
return "Dataset.map()"
class ParallelMapDataset(UnaryDataset):
"""A `Dataset` that maps a function over elements in its input in parallel."""
def __init__(self,
input_dataset,
map_func,
num_parallel_calls,
deterministic,
use_inter_op_parallelism=True,
preserve_cardinality=False,
use_legacy_function=False):
"""See `Dataset.map()` for details."""
self._input_dataset = input_dataset
self._use_inter_op_parallelism = use_inter_op_parallelism
self._map_func = StructuredFunctionWrapper(
map_func,
self._transformation_name(),
dataset=input_dataset,
use_legacy_function=use_legacy_function)
if deterministic is None:
self._deterministic = "default"
elif deterministic:
self._deterministic = "true"
else:
self._deterministic = "false"
self._preserve_cardinality = preserve_cardinality
self._num_parallel_calls = ops.convert_to_tensor(
num_parallel_calls, dtype=dtypes.int64, name="num_parallel_calls")
variant_tensor = gen_dataset_ops.parallel_map_dataset_v2(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
f=self._map_func.function,
num_parallel_calls=self._num_parallel_calls,
deterministic=self._deterministic,
use_inter_op_parallelism=self._use_inter_op_parallelism,
preserve_cardinality=self._preserve_cardinality,
**self._flat_structure)
super(ParallelMapDataset, self).__init__(input_dataset, variant_tensor)
def _functions(self):
return [self._map_func]
@property
def element_spec(self):
return self._map_func.output_structure
def _transformation_name(self):
return "Dataset.map()"
class FlatMapDataset(UnaryDataset):
"""A `Dataset` that maps a function over its input and flattens the result."""
def __init__(self, input_dataset, map_func):
"""See `Dataset.flat_map()` for details."""
self._input_dataset = input_dataset
self._map_func = StructuredFunctionWrapper(
map_func, self._transformation_name(), dataset=input_dataset)
if not isinstance(self._map_func.output_structure, DatasetSpec):
raise TypeError(
"`map_func` must return a `Dataset` object. Got {}".format(
type(self._map_func.output_structure)))
self._structure = self._map_func.output_structure._element_spec # pylint: disable=protected-access
variant_tensor = gen_dataset_ops.flat_map_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
f=self._map_func.function,
**self._flat_structure)
super(FlatMapDataset, self).__init__(input_dataset, variant_tensor)
def _functions(self):
return [self._map_func]
@property
def element_spec(self):
return self._structure
def _transformation_name(self):
return "Dataset.flat_map()"
class InterleaveDataset(UnaryDataset):
"""A `Dataset` that interleaves the result of transformed inputs."""
def __init__(self, input_dataset, map_func, cycle_length, block_length):
"""See `Dataset.interleave()` for details."""
self._input_dataset = input_dataset
self._map_func = StructuredFunctionWrapper(
map_func, self._transformation_name(), dataset=input_dataset)
if not isinstance(self._map_func.output_structure, DatasetSpec):
raise TypeError(
"`map_func` must return a `Dataset` object. Got {}".format(
type(self._map_func.output_structure)))
self._structure = self._map_func.output_structure._element_spec # pylint: disable=protected-access
self._cycle_length = ops.convert_to_tensor(
cycle_length, dtype=dtypes.int64, name="cycle_length")
self._block_length = ops.convert_to_tensor(
block_length, dtype=dtypes.int64, name="block_length")
variant_tensor = gen_dataset_ops.interleave_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs, # pylint: disable=protected-access
self._cycle_length,
self._block_length,
f=self._map_func.function,
**self._flat_structure)
super(InterleaveDataset, self).__init__(input_dataset, variant_tensor)
def _functions(self):
return [self._map_func]
@property
def element_spec(self):
return self._structure
def _transformation_name(self):
return "Dataset.interleave()"
class ParallelInterleaveDataset(UnaryDataset):
"""A `Dataset` that maps a function over its input and interleaves the result."""
def __init__(self,
input_dataset,
map_func,
cycle_length,
block_length,
num_parallel_calls,
buffer_output_elements=AUTOTUNE,
prefetch_input_elements=AUTOTUNE,
deterministic=None):
"""See `Dataset.interleave()` for details."""
self._input_dataset = input_dataset
self._map_func = StructuredFunctionWrapper(
map_func, self._transformation_name(), dataset=input_dataset)
if not isinstance(self._map_func.output_structure, DatasetSpec):
raise TypeError(
"`map_func` must return a `Dataset` object. Got {}".format(
type(self._map_func.output_structure)))
self._structure = self._map_func.output_structure._element_spec # pylint: disable=protected-access
self._cycle_length = ops.convert_to_tensor(
cycle_length, dtype=dtypes.int64, name="cycle_length")
self._block_length = ops.convert_to_tensor(
block_length, dtype=dtypes.int64, name="block_length")
self._buffer_output_elements = ops.convert_to_tensor(
buffer_output_elements,
dtype=dtypes.int64,
name="buffer_output_elements")
self._prefetch_input_elements = ops.convert_to_tensor(
prefetch_input_elements,
dtype=dtypes.int64,
name="prefetch_input_elements")
self._num_parallel_calls = ops.convert_to_tensor(
num_parallel_calls, dtype=dtypes.int64, name="num_parallel_calls")
if deterministic is None:
deterministic_string = "default"
elif deterministic:
deterministic_string = "true"
else:
deterministic_string = "false"
variant_tensor = gen_dataset_ops.parallel_interleave_dataset_v4(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs, # pylint: disable=protected-access
self._cycle_length,
self._block_length,
self._buffer_output_elements,
self._prefetch_input_elements,
self._num_parallel_calls,
f=self._map_func.function,
deterministic=deterministic_string,
**self._flat_structure)
super(ParallelInterleaveDataset, self).__init__(input_dataset,
variant_tensor)
def _functions(self):
return [self._map_func]
@property
def element_spec(self):
return self._structure
def _transformation_name(self):
return "Dataset.interleave()"
class FilterDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that filters its input according to a predicate function."""
def __init__(self, input_dataset, predicate, use_legacy_function=False):
"""See `Dataset.filter()` for details."""
self._input_dataset = input_dataset
wrapped_func = StructuredFunctionWrapper(
predicate,
self._transformation_name(),
dataset=input_dataset,
use_legacy_function=use_legacy_function)
if not wrapped_func.output_structure.is_compatible_with(
tensor_spec.TensorSpec([], dtypes.bool)):
error_msg = ("`predicate` return type must be convertible to a scalar "
"boolean tensor. Was {}.").format(
wrapped_func.output_structure)
raise ValueError(error_msg)
self._predicate = wrapped_func
variant_tensor = gen_dataset_ops.filter_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
other_arguments=self._predicate.function.captured_inputs,
predicate=self._predicate.function,
**self._flat_structure)
super(FilterDataset, self).__init__(input_dataset, variant_tensor)
def _functions(self):
return [self._predicate]
def _transformation_name(self):
return "Dataset.filter()"
class PrefetchDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that asynchronously prefetches its input."""
def __init__(self, input_dataset, buffer_size, slack_period=None):
"""See `Dataset.prefetch()` for details.
Args:
input_dataset: The input dataset.
buffer_size: See `Dataset.prefetch()` for details.
slack_period: (Optional.) An integer. If non-zero, determines the number
of GetNext calls before injecting slack into the execution. This may
reduce CPU contention at the start of a step. Note that a tensorflow
user should not have to set this manually; enable this behavior
automatically via `tf.data.Options.experimental_slack` instead. Defaults
to None.
"""
self._input_dataset = input_dataset
if buffer_size is None:
buffer_size = AUTOTUNE
self._buffer_size = ops.convert_to_tensor(
buffer_size, dtype=dtypes.int64, name="buffer_size")
# pylint: disable=protected-access
# We colocate the prefetch dataset with its input as this collocation only
# happens automatically in graph mode.
with ops.device(input_dataset._variant_tensor.device):
variant_tensor = gen_dataset_ops.prefetch_dataset(
input_dataset._variant_tensor,
buffer_size=self._buffer_size,
slack_period=slack_period,
**self._flat_structure)
super(PrefetchDataset, self).__init__(input_dataset, variant_tensor)
class WindowDataset(UnaryDataset):
"""A dataset that creates window datasets from the input elements."""
def __init__(self, input_dataset, size, shift, stride, drop_remainder):
"""See `window_dataset()` for more details."""
self._input_dataset = input_dataset
self._size = ops.convert_to_tensor(size, dtype=dtypes.int64, name="size")
self._shift = ops.convert_to_tensor(shift, dtype=dtypes.int64, name="shift")
self._stride = ops.convert_to_tensor(
stride, dtype=dtypes.int64, name="stride")
self._drop_remainder = ops.convert_to_tensor(
drop_remainder, dtype=dtypes.bool, name="drop_remainder")
self._structure = nest.pack_sequence_as(
get_legacy_output_classes(input_dataset), [
DatasetSpec( # pylint: disable=g-complex-comprehension
structure.convert_legacy_structure(
output_type, output_shape, output_class))
for output_class, output_shape, output_type in zip(
nest.flatten(get_legacy_output_classes(input_dataset)),
nest.flatten(get_legacy_output_shapes(input_dataset)),
nest.flatten(get_legacy_output_types(input_dataset)))
])
variant_tensor = gen_dataset_ops.window_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._size,
self._shift,
self._stride,
self._drop_remainder,
**self._flat_structure)
super(WindowDataset, self).__init__(input_dataset, variant_tensor)
@property
def element_spec(self):
return self._structure
class _OptionsDataset(UnaryUnchangedStructureDataset):
"""An identity `Dataset` that stores options."""
def __init__(self, input_dataset, options):
self._input_dataset = input_dataset
variant_tensor = input_dataset._variant_tensor # pylint: disable=protected-access
super(_OptionsDataset, self).__init__(input_dataset, variant_tensor)
if self._options_attr:
self._options_attr = self._options_attr.merge(options)
else:
self._options_attr = options
def options(self):
return self._options_attr
class _ModelDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that acts as an identity, and models performance."""
def __init__(self, input_dataset, algorithm, cpu_budget, ram_budget):
self._input_dataset = input_dataset
variant_tensor = gen_dataset_ops.model_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
algorithm=algorithm.value,
cpu_budget=cpu_budget,
ram_budget=ram_budget,
**self._flat_structure)
super(_ModelDataset, self).__init__(input_dataset, variant_tensor)
class _OptimizeDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that acts as an identity, and applies optimizations."""
def __init__(self,
input_dataset,
optimizations_enabled,
optimizations_disabled,
optimizations_default,
optimization_configs=None):
self._input_dataset = input_dataset
if optimization_configs is None:
optimization_configs = []
self._optimizations_enabled = convert.optional_param_to_tensor(
argument_name="optimizations_enabled",
argument_value=optimizations_enabled,
argument_default=[],
argument_dtype=dtypes.string)
self._optimizations_disabled = convert.optional_param_to_tensor(
argument_name="optimizations_disabled",
argument_value=optimizations_disabled,
argument_default=[],
argument_dtype=dtypes.string)
self._optimizations_default = convert.optional_param_to_tensor(
argument_name="optimizations_default",
argument_value=optimizations_default,
argument_default=[],
argument_dtype=dtypes.string)
variant_tensor = gen_dataset_ops.optimize_dataset_v2(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._optimizations_enabled,
self._optimizations_disabled,
self._optimizations_default,
optimization_configs=optimization_configs,
**self._flat_structure)
super(_OptimizeDataset, self).__init__(input_dataset, variant_tensor)
class _SetStatsAggregatorDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that acts as an identity, and sets a stats aggregator."""
def __init__(self, input_dataset, aggregator, prefix, counter_prefix):
self._input_dataset = input_dataset
self._stats_aggregator = aggregator
self._prefix = prefix
self._counter_prefix = counter_prefix
variant_tensor = ged_ops.set_stats_aggregator_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._stats_aggregator._resource, # pylint: disable=protected-access
self._prefix,
self._counter_prefix,
**self._flat_structure)
super(_SetStatsAggregatorDataset, self).__init__(input_dataset,
variant_tensor)
class _MaxIntraOpParallelismDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that acts as an identity, overriding intra-op parallelism."""
def __init__(self, input_dataset, max_intra_op_parallelism):
self._input_dataset = input_dataset
self._max_intra_op_parallelism = ops.convert_to_tensor(
max_intra_op_parallelism,
dtype=dtypes.int64,
name="max_intra_op_parallelism")
variant_tensor = ged_ops.max_intra_op_parallelism_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._max_intra_op_parallelism,
**self._flat_structure)
super(_MaxIntraOpParallelismDataset, self).__init__(input_dataset,
variant_tensor)
class _PrivateThreadPoolDataset(UnaryUnchangedStructureDataset):
"""A `Dataset` that acts as an identity, setting a private threadpool."""
def __init__(self, input_dataset, num_threads):
self._input_dataset = input_dataset
self._num_threads = ops.convert_to_tensor(
num_threads, dtype=dtypes.int64, name="num_threads")
variant_tensor = ged_ops.private_thread_pool_dataset(
input_dataset._variant_tensor, # pylint: disable=protected-access
self._num_threads,
**self._flat_structure)
super(_PrivateThreadPoolDataset, self).__init__(input_dataset,
variant_tensor)
def normalize_to_dense(dataset):
"""Normalizes non-tensor components in a dataset to dense representations.
This is necessary for dataset transformations that slice along the batch
dimension and are oblivious to non-tensors, e.g. `unbatch`, `rebatch`.
Args:
dataset: Dataset to normalize.
Returns:
A dataset whose sparse and ragged tensors have been normalized to their
dense representations.
"""
# NOTE(mrry): This leads to a somewhat inefficient re-encoding step for all
# non-tensor components.
#
# TODO(mrry): Consider optimizing this if it turns out to be a bottleneck.
if _should_unpack_args(dataset.element_spec):
def normalize(*args):
return structure.to_batched_tensor_list(dataset.element_spec, tuple(args))
else:
def normalize(arg):
return structure.to_batched_tensor_list(dataset.element_spec, arg)
normalized_dataset = dataset.map(normalize)
# NOTE(mrry): Our `map()` has lost information about the structure of
# non-tensor components, so re-apply the structure of the original dataset.
return _RestructuredDataset(normalized_dataset, dataset.element_spec)
class _RestructuredDataset(UnaryDataset):
"""An internal helper for changing the structure and shape of a dataset."""
def __init__(self, dataset, structure):
self._input_dataset = dataset
self._structure = structure
variant_tensor = self._input_dataset._variant_tensor # pylint: disable=protected-access
super(_RestructuredDataset, self).__init__(dataset, variant_tensor)
@property
def element_spec(self):
return self._structure
class _UnbatchDataset(UnaryDataset):
"""A dataset that splits the elements of its input into multiple elements."""
def __init__(self, input_dataset):
"""See `unbatch()` for more details."""
flat_shapes = input_dataset._flat_shapes # pylint: disable=protected-access
if any(s.ndims == 0 for s in flat_shapes):
raise ValueError("Cannot unbatch an input with scalar components.")
known_batch_dim = tensor_shape.Dimension(None)
for s in flat_shapes:
try:
known_batch_dim = known_batch_dim.merge_with(s[0])
except ValueError:
raise ValueError("Cannot unbatch an input whose components have "
"different batch sizes.")
self._input_dataset = input_dataset
self._structure = nest.map_structure(
lambda component_spec: component_spec._unbatch(), # pylint: disable=protected-access
get_structure(input_dataset))
variant_tensor = ged_ops.unbatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
**self._flat_structure)
super(_UnbatchDataset, self).__init__(input_dataset, variant_tensor)
@property
def element_spec(self):
return self._structure
def _collect_resource_inputs(op):
"""Collects resource inputs for the given ops (and its variant inputs)."""
def _process(op_queue, seen_ops):
"""Processes the next element of the op queue.
Args:
op_queue: Queue of Dataset operations to process.
seen_ops: Already processed set of Operations.
Returns:
A 2-tuple containing sets of resource handles. The first tuple entry
contains read-only handles and the second entry contains read-write
handles.
"""
reads = []
writes = []
op = op_queue.pop()
if op in seen_ops:
return reads, writes
seen_ops.add(op)
# TODO(b/150139257): All resource inputs are in writes right now since we
# have not updated the functional ops to set the special attribute that ACD
# uses to figure out which of the op's inputs are read-only.
reads, writes = acd_utils.get_read_write_resource_inputs(op)
# Conservatively assume that any variant inputs are datasets.
op_queue.extend(t.op for t in op.inputs if t.dtype == dtypes.variant)
return reads, writes
op_queue = [op]
seen_ops = set()
all_reads = []
all_writes = []
while op_queue:
reads, writes = _process(op_queue, seen_ops)
all_reads.extend(reads)
all_writes.extend(writes)
return all_reads, all_writes
@auto_control_deps.register_acd_resource_resolver
def _resource_resolver(op, resource_reads, resource_writes):
"""Updates resource inputs for tf.data ops with indirect dependencies."""
updated = False
if op.type in [
"DatasetToSingleElement", "DatasetToTFRecord", "ReduceDataset"
]:
reads, writes = _collect_resource_inputs(op)
for inp in reads:
if inp not in resource_reads:
updated = True
resource_reads.add(inp)
for inp in writes:
if inp not in resource_writes:
updated = True
resource_writes.add(inp)
if op.type in [
"IteratorGetNext", "IteratorGetNextSync", "IteratorGetNextAsOptional"
]:
iterator_resource = op.inputs[0]
make_iterator_ops = [
op for op in iterator_resource.consumers() if op.type == "MakeIterator"
]
if len(make_iterator_ops) == 1:
reads, writes = _collect_resource_inputs(make_iterator_ops[0])
for inp in reads:
if inp not in resource_reads:
updated = True
resource_reads.add(inp)
for inp in writes:
if inp not in resource_writes:
updated = True
resource_writes.add(inp)
return updated