| //===- Dialect.cpp - Toy IR Dialect registration in MLIR ------------------===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| // |
| // This file implements the dialect for the Toy IR: custom type parsing and |
| // operation verification. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "toy/Dialect.h" |
| |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/StandardTypes.h" |
| #include "mlir/Transforms/InliningUtils.h" |
| |
| using namespace mlir; |
| using namespace mlir::toy; |
| |
| //===----------------------------------------------------------------------===// |
| // ToyInlinerInterface |
| //===----------------------------------------------------------------------===// |
| |
| /// This class defines the interface for handling inlining with Toy |
| /// operations. |
| struct ToyInlinerInterface : public DialectInlinerInterface { |
| using DialectInlinerInterface::DialectInlinerInterface; |
| |
| //===--------------------------------------------------------------------===// |
| // Analysis Hooks |
| //===--------------------------------------------------------------------===// |
| |
| /// All operations within toy can be inlined. |
| bool isLegalToInline(Operation *, Region *, |
| BlockAndValueMapping &) const final { |
| return true; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Transformation Hooks |
| //===--------------------------------------------------------------------===// |
| |
| /// Handle the given inlined terminator(toy.return) by replacing it with a new |
| /// operation as necessary. |
| void handleTerminator(Operation *op, |
| ArrayRef<Value *> valuesToRepl) const final { |
| // Only "toy.return" needs to be handled here. |
| auto returnOp = cast<ReturnOp>(op); |
| |
| // Replace the values directly with the return operands. |
| assert(returnOp.getNumOperands() == valuesToRepl.size()); |
| for (const auto &it : llvm::enumerate(returnOp.getOperands())) |
| valuesToRepl[it.index()]->replaceAllUsesWith(it.value()); |
| } |
| |
| /// Attempts to materialize a conversion for a type mismatch between a call |
| /// from this dialect, and a callable region. This method should generate an |
| /// operation that takes 'input' as the only operand, and produces a single |
| /// result of 'resultType'. If a conversion can not be generated, nullptr |
| /// should be returned. |
| Operation *materializeCallConversion(OpBuilder &builder, Value *input, |
| Type resultType, |
| Location conversionLoc) const final { |
| return builder.create<CastOp>(conversionLoc, resultType, input); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // ToyDialect |
| //===----------------------------------------------------------------------===// |
| |
| /// Dialect creation, the instance will be owned by the context. This is the |
| /// point of registration of custom types and operations for the dialect. |
| ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) { |
| addOperations< |
| #define GET_OP_LIST |
| #include "toy/Ops.cpp.inc" |
| >(); |
| addInterfaces<ToyInlinerInterface>(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Toy Operations |
| //===----------------------------------------------------------------------===// |
| |
| /// Build a constant operation. |
| /// The builder is passed as an argument, so is the state that this method is |
| /// expected to fill in order to build the operation. |
| static void buildConstantOp(mlir::Builder *builder, mlir::OperationState &state, |
| double value) { |
| auto dataType = RankedTensorType::get({}, builder->getF64Type()); |
| auto dataAttribute = DenseElementsAttr::get(dataType, value); |
| ConstantOp::build(builder, state, dataType, dataAttribute); |
| } |
| |
| /// Infer the output shape of the CastOp, this is required by the shape |
| /// inference interface. |
| void CastOp::inferShapes() { getResult()->setType(getOperand()->getType()); } |
| |
| /// Verifier for the constant operation. This corresponds to the `::verify(...)` |
| /// in the op definition. |
| static mlir::LogicalResult verify(ConstantOp op) { |
| // If the return type of the constant is not an unranked tensor, the shape |
| // must match the shape of the attribute holding the data. |
| auto resultType = op.getResult()->getType().cast<RankedTensorType>(); |
| if (!resultType) |
| return success(); |
| |
| // Check that the rank of the attribute type matches the rank of the constant |
| // result type. |
| auto attrType = op.value().getType().cast<mlir::TensorType>(); |
| if (attrType.getRank() != resultType.getRank()) { |
| return op.emitOpError( |
| "return type must match the one of the attached value " |
| "attribute: ") |
| << attrType.getRank() << " != " << resultType.getRank(); |
| } |
| |
| // Check that each of the dimensions match between the two types. |
| for (int dim = 0, dimE = attrType.getRank(); dim < dimE; ++dim) { |
| if (attrType.getShape()[dim] != resultType.getShape()[dim]) { |
| return op.emitOpError( |
| "return type shape mismatches its attribute at dimension ") |
| << dim << ": " << attrType.getShape()[dim] |
| << " != " << resultType.getShape()[dim]; |
| } |
| } |
| return mlir::success(); |
| } |
| |
| static void buildAddOp(mlir::Builder *builder, mlir::OperationState &state, |
| mlir::Value *lhs, mlir::Value *rhs) { |
| state.addTypes(UnrankedTensorType::get(builder->getF64Type())); |
| state.addOperands({lhs, rhs}); |
| } |
| |
| /// Infer the output shape of the AddOp, this is required by the shape inference |
| /// interface. |
| void AddOp::inferShapes() { getResult()->setType(getOperand(0)->getType()); } |
| |
| static void buildGenericCallOp(mlir::Builder *builder, |
| mlir::OperationState &state, StringRef callee, |
| ArrayRef<mlir::Value *> arguments) { |
| // Generic call always returns an unranked Tensor initially. |
| state.addTypes(UnrankedTensorType::get(builder->getF64Type())); |
| state.addOperands(arguments); |
| state.addAttribute("callee", builder->getSymbolRefAttr(callee)); |
| } |
| |
| /// Return the callee of the generic call operation, this is required by the |
| /// call interface. |
| CallInterfaceCallable GenericCallOp::getCallableForCallee() { |
| return getAttrOfType<SymbolRefAttr>("callee"); |
| } |
| |
| /// Get the argument operands to the called function, this is required by the |
| /// call interface. |
| Operation::operand_range GenericCallOp::getArgOperands() { return inputs(); } |
| |
| static void buildMulOp(mlir::Builder *builder, mlir::OperationState &state, |
| mlir::Value *lhs, mlir::Value *rhs) { |
| state.addTypes(UnrankedTensorType::get(builder->getF64Type())); |
| state.addOperands({lhs, rhs}); |
| } |
| |
| /// Infer the output shape of the MulOp, this is required by the shape inference |
| /// interface. |
| void MulOp::inferShapes() { getResult()->setType(getOperand(0)->getType()); } |
| |
| static mlir::LogicalResult verify(ReturnOp op) { |
| // We know that the parent operation is a function, because of the 'HasParent' |
| // trait attached to the operation definition. |
| auto function = cast<FuncOp>(op.getParentOp()); |
| |
| /// ReturnOps can only have a single optional operand. |
| if (op.getNumOperands() > 1) |
| return op.emitOpError() << "expects at most 1 return operand"; |
| |
| // The operand number and types must match the function signature. |
| const auto &results = function.getType().getResults(); |
| if (op.getNumOperands() != results.size()) |
| return op.emitOpError() |
| << "does not return the same number of values (" |
| << op.getNumOperands() << ") as the enclosing function (" |
| << results.size() << ")"; |
| |
| // If the operation does not have an input, we are done. |
| if (!op.hasOperand()) |
| return mlir::success(); |
| |
| auto inputType = *op.operand_type_begin(); |
| auto resultType = results.front(); |
| |
| // Check that the result type of the function matches the operand type. |
| if (inputType == resultType || inputType.isa<mlir::UnrankedTensorType>() || |
| resultType.isa<mlir::UnrankedTensorType>()) |
| return mlir::success(); |
| |
| return op.emitError() << "type of return operand (" |
| << *op.operand_type_begin() |
| << ") doesn't match function result type (" |
| << results.front() << ")"; |
| } |
| |
| static void buildTransposeOp(mlir::Builder *builder, |
| mlir::OperationState &state, mlir::Value *value) { |
| state.addTypes(UnrankedTensorType::get(builder->getF64Type())); |
| state.addOperands(value); |
| } |
| |
| void TransposeOp::inferShapes() { |
| auto arrayTy = getOperand()->getType().cast<RankedTensorType>(); |
| SmallVector<int64_t, 2> dims(llvm::reverse(arrayTy.getShape())); |
| getResult()->setType(RankedTensorType::get(dims, arrayTy.getElementType())); |
| } |
| |
| static mlir::LogicalResult verify(TransposeOp op) { |
| auto inputType = op.getOperand()->getType().dyn_cast<RankedTensorType>(); |
| auto resultType = op.getType().dyn_cast<RankedTensorType>(); |
| if (!inputType || !resultType) |
| return mlir::success(); |
| |
| auto inputShape = inputType.getShape(); |
| if (!std::equal(inputShape.begin(), inputShape.end(), |
| resultType.getShape().rbegin())) { |
| return op.emitError() |
| << "expected result shape to be a transpose of the input"; |
| } |
| return mlir::success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TableGen'd op method definitions |
| //===----------------------------------------------------------------------===// |
| |
| #define GET_OP_CLASSES |
| #include "toy/Ops.cpp.inc" |