blob: 1fae5abd84b464e3871114ded51759389b6cb10b [file] [log] [blame]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-import-not-at-top
# pylint: disable=g-classes-have-attributes
"""Callbacks: utilities called at certain points during model training.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import copy
import csv
import io
import json
import os
import re
import time
import numpy as np
import six
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.distribute import collective_all_reduce_strategy
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import distributed_file_utils
from tensorflow.python.distribute import mirrored_strategy
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.distribute import worker_training_state
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.keras.utils import version_utils
from tensorflow.python.keras.utils.data_utils import Sequence
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.keras.utils.io_utils import path_to_string
from tensorflow.python.keras.utils.mode_keys import ModeKeys
from tensorflow.python.lib.io import file_io
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import summary_ops_v2
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.profiler import profiler_v2 as profiler
from tensorflow.python.saved_model import save_options as save_options_lib
from tensorflow.python.training import checkpoint_management
from tensorflow.python.training.saving import checkpoint_options as checkpoint_options_lib
from tensorflow.python.util import nest
from tensorflow.python.util.compat import collections_abc
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls
try:
import requests
except ImportError:
requests = None
def configure_callbacks(callbacks,
model,
do_validation=False,
batch_size=None,
epochs=None,
steps_per_epoch=None,
samples=None,
verbose=1,
count_mode='steps',
mode=ModeKeys.TRAIN):
"""Configures callbacks for use in various training loops.
Arguments:
callbacks: List of Callbacks.
model: Model being trained.
do_validation: Whether or not validation loop will be run.
batch_size: Number of samples per batch.
epochs: Number of epoch to train.
steps_per_epoch: Number of batches to run per training epoch.
samples: Number of training samples.
verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger.
count_mode: One of 'steps' or 'samples'. Per-batch or per-sample count.
mode: String. One of ModeKeys.TRAIN, ModeKeys.TEST, or ModeKeys.PREDICT.
Which loop mode to configure callbacks for.
Returns:
Instance of CallbackList used to control all Callbacks.
"""
# Check if callbacks have already been configured.
if isinstance(callbacks, CallbackList):
return callbacks
if not callbacks:
callbacks = []
# Add additional callbacks during training.
if mode == ModeKeys.TRAIN:
model.history = History()
callbacks = [BaseLogger()] + (callbacks or []) + [model.history]
if verbose:
callbacks.append(ProgbarLogger(count_mode))
callback_list = CallbackList(callbacks)
# Set callback model
callback_model = model._get_callback_model() # pylint: disable=protected-access
callback_list.set_model(callback_model)
set_callback_parameters(
callback_list,
model,
do_validation=do_validation,
batch_size=batch_size,
epochs=epochs,
steps_per_epoch=steps_per_epoch,
samples=samples,
verbose=verbose,
mode=mode)
callback_list.model.stop_training = False
return callback_list
def set_callback_parameters(callback_list,
model,
do_validation=False,
batch_size=None,
epochs=None,
steps_per_epoch=None,
samples=None,
verbose=1,
mode=ModeKeys.TRAIN):
"""Sets callback parameters.
Arguments:
callback_list: CallbackList instance.
model: Model being trained.
do_validation: Whether or not validation loop will be run.
batch_size: Number of samples per batch.
epochs: Number of epoch to train.
steps_per_epoch: Number of batches to run per training epoch.
samples: Number of training samples.
verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger.
mode: String. One of ModeKeys.TRAIN, ModeKeys.TEST, or ModeKeys.PREDICT.
Which loop mode to configure callbacks for.
"""
metric_names = model.metrics_names
for cbk in callback_list:
if isinstance(cbk, (BaseLogger, ProgbarLogger)):
cbk.stateful_metrics = metric_names[1:] # Exclude `loss`
# Set callback parameters
callback_metrics = []
# When we have deferred build scenario with iterator input, we will compile
# when we standardize first batch of data.
if mode != ModeKeys.PREDICT:
callback_metrics = copy.copy(metric_names)
if do_validation:
callback_metrics += ['val_' + n for n in metric_names]
callback_params = {
'batch_size': batch_size,
'epochs': epochs,
'steps': steps_per_epoch,
'samples': samples,
'verbose': verbose,
'do_validation': do_validation,
'metrics': callback_metrics,
}
callback_list.set_params(callback_params)
def _is_generator_like(data):
"""Checks if data is a generator, Sequence, or Iterator."""
return (hasattr(data, 'next') or hasattr(data, '__next__') or isinstance(
data, (Sequence, iterator_ops.Iterator, iterator_ops.OwnedIterator)))
def make_logs(model, logs, outputs, mode, prefix=''):
"""Computes logs for sending to `on_batch_end` methods."""
metric_names = model.metrics_names
if mode in {ModeKeys.TRAIN, ModeKeys.TEST} and metric_names:
for label, output in zip(metric_names, outputs):
logs[prefix + label] = output
else:
logs['outputs'] = outputs
return logs
@keras_export('keras.callbacks.CallbackList')
class CallbackList(object):
"""Container abstracting a list of callbacks."""
def __init__(self,
callbacks=None,
add_history=False,
add_progbar=False,
model=None,
**params):
"""Container for `Callback` instances.
This object wraps a list of `Callback` instances, making it possible
to call them all at once via a single endpoint
(e.g. `callback_list.on_epoch_end(...)`).
Arguments:
callbacks: List of `Callback` instances.
add_history: Whether a `History` callback should be added, if one does not
already exist in the `callbacks` list.
add_progbar: Whether a `ProgbarLogger` callback should be added, if one
does not already exist in the `callbacks` list.
model: The `Model` these callbacks are used with.
**params: If provided, parameters will be passed to each `Callback` via
`Callback.set_params`.
"""
self.callbacks = nest.flatten(callbacks) if callbacks else []
self._add_default_callbacks(add_history, add_progbar)
if model:
self.set_model(model)
if params:
self.set_params(params)
# Performance optimization: determines if batch hooks need to be called.
# pylint: disable=protected-access
self._should_call_train_batch_hooks = any(
cb._implements_train_batch_hooks() for cb in self.callbacks)
self._should_call_test_batch_hooks = any(
cb._implements_test_batch_hooks() for cb in self.callbacks)
self._should_call_predict_batch_hooks = any(
cb._implements_predict_batch_hooks() for cb in self.callbacks)
# pylint: enable=protected-access
# Performance check: Check batch hooks for slowness compared to batch time.
self._timing = {}
self._check_timing = False
self._batch_start_time = None
def _add_default_callbacks(self, add_history, add_progbar):
"""Adds `Callback`s that are always present."""
self._progbar = None
self._history = None
for cb in self.callbacks:
if isinstance(cb, ProgbarLogger):
self._progbar = cb
elif isinstance(cb, History):
self._history = cb
if self._progbar is None and add_progbar:
self._progbar = ProgbarLogger(count_mode='steps')
self.callbacks.append(self._progbar)
if self._history is None and add_history:
self._history = History()
self.callbacks.append(self._history)
def append(self, callback):
self.callbacks.append(callback)
def set_params(self, params):
self.params = params
for callback in self.callbacks:
callback.set_params(params)
def set_model(self, model):
self.model = model
if self._history:
model.history = self._history
for callback in self.callbacks:
callback.set_model(model)
def _call_batch_hook(self, mode, hook, batch, logs=None):
"""Helper function for all batch_{begin | end} methods."""
if not self.callbacks:
return
if hook == 'begin':
self._call_batch_begin_hook(mode, batch, logs)
elif hook == 'end':
self._call_batch_end_hook(mode, batch, logs)
else:
raise ValueError('Unrecognized hook: {}'.format(hook))
def _call_batch_begin_hook(self, mode, batch, logs):
"""Helper function for `on_*_batch_begin` methods."""
hook_name = 'on_{mode}_batch_begin'.format(mode=mode)
self._check_timing = batch == 1 and hook_name not in self._timing
self._call_batch_hook_helper(hook_name, batch, logs)
if self._check_timing:
self._batch_start_time = time.time()
def _call_batch_end_hook(self, mode, batch, logs):
"""Helper function for `on_*_batch_end` methods."""
hook_name = 'on_{mode}_batch_end'.format(mode=mode)
if self._check_timing:
batch_time = time.time() - self._batch_start_time
self._call_batch_hook_helper(hook_name, batch, logs)
if self._check_timing:
end_hook_name = hook_name
begin_hook_name = 'on_{mode}_batch_begin'.format(mode=mode)
threshold_time = 1.5 * batch_time
warning_msg = ('Callbacks method `{hook}` is slow compared to '
'the batch time (batch time: {batch_time:.4f}s vs '
'`{hook}` time: {cbk_time:.4f}s). Check your callbacks.')
if self._timing[begin_hook_name] > threshold_time:
logging.warning(warning_msg.format(
hook=begin_hook_name,
batch_time=batch_time,
cbk_time=self._timing[begin_hook_name]))
if self._timing[end_hook_name] > threshold_time:
logging.warning(warning_msg.format(
hook=end_hook_name,
batch_time=batch_time,
cbk_time=self._timing[end_hook_name]))
self._check_timing = False
self._batch_start_time = None
def _call_batch_hook_helper(self, hook_name, batch, logs):
"""Helper function for `on_*_batch_*` methods."""
logs = logs or {}
numpy_logs = None
if self._check_timing:
start_time = time.time()
for callback in self.callbacks:
hook = getattr(callback, hook_name)
if getattr(callback, '_supports_tf_logs', False):
hook(batch, logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
hook(batch, numpy_logs)
if self._check_timing:
self._timing[hook_name] = time.time() - start_time
def _call_begin_hook(self, mode):
"""Helper function for on_{train|test|predict}_begin methods."""
if mode == ModeKeys.TRAIN:
self.on_train_begin()
elif mode == ModeKeys.TEST:
self.on_test_begin()
else:
self.on_predict_begin()
def _call_end_hook(self, mode):
"""Helper function for on_{train|test|predict}_end methods."""
if mode == ModeKeys.TRAIN:
self.on_train_end()
elif mode == ModeKeys.TEST:
self.on_test_end()
else:
self.on_predict_end()
def on_batch_begin(self, batch, logs=None):
if self._should_call_train_batch_hooks:
self._call_batch_hook(ModeKeys.TRAIN, 'begin', batch, logs=logs)
def on_batch_end(self, batch, logs=None):
if self._should_call_train_batch_hooks:
self._call_batch_hook(ModeKeys.TRAIN, 'end', batch, logs=logs)
def on_epoch_begin(self, epoch, logs=None):
"""Calls the `on_epoch_begin` methods of its callbacks.
This function should only be called during TRAIN mode.
Arguments:
epoch: Integer, index of epoch.
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
numpy_logs = None
for callback in self.callbacks:
if getattr(callback, '_supports_tf_logs', False):
callback.on_epoch_begin(epoch, logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
callback.on_epoch_begin(epoch, numpy_logs)
def on_epoch_end(self, epoch, logs=None):
"""Calls the `on_epoch_end` methods of its callbacks.
This function should only be called during TRAIN mode.
Arguments:
epoch: Integer, index of epoch.
logs: Dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys
are prefixed with `val_`.
"""
logs = logs or {}
numpy_logs = None
for callback in self.callbacks:
if getattr(callback, '_supports_tf_logs', False):
callback.on_epoch_end(epoch, logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
callback.on_epoch_end(epoch, numpy_logs)
def on_train_batch_begin(self, batch, logs=None):
"""Calls the `on_train_batch_begin` methods of its callbacks.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
# TODO(b/150629188): Make ProgBarLogger callback not use batch hooks
# when verbose != 1
if self._should_call_train_batch_hooks:
self._call_batch_hook(ModeKeys.TRAIN, 'begin', batch, logs=logs)
def on_train_batch_end(self, batch, logs=None):
"""Calls the `on_train_batch_end` methods of its callbacks.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Aggregated metric results up until this batch.
"""
if self._should_call_train_batch_hooks:
self._call_batch_hook(ModeKeys.TRAIN, 'end', batch, logs=logs)
def on_test_batch_begin(self, batch, logs=None):
"""Calls the `on_test_batch_begin` methods of its callbacks.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
if self._should_call_test_batch_hooks:
self._call_batch_hook(ModeKeys.TEST, 'begin', batch, logs=logs)
def on_test_batch_end(self, batch, logs=None):
"""Calls the `on_test_batch_end` methods of its callbacks.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Aggregated metric results up until this batch.
"""
if self._should_call_test_batch_hooks:
self._call_batch_hook(ModeKeys.TEST, 'end', batch, logs=logs)
def on_predict_batch_begin(self, batch, logs=None):
"""Calls the `on_predict_batch_begin` methods of its callbacks.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
if self._should_call_predict_batch_hooks:
self._call_batch_hook(ModeKeys.PREDICT, 'begin', batch, logs=logs)
def on_predict_batch_end(self, batch, logs=None):
"""Calls the `on_predict_batch_end` methods of its callbacks.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Aggregated metric results up until this batch.
"""
if self._should_call_predict_batch_hooks:
self._call_batch_hook(ModeKeys.PREDICT, 'end', batch, logs=logs)
def on_train_begin(self, logs=None):
"""Calls the `on_train_begin` methods of its callbacks.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
numpy_logs = None
for callback in self.callbacks:
if getattr(callback, '_supports_tf_logs', False):
callback.on_train_begin(logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
callback.on_train_begin(numpy_logs)
def on_train_end(self, logs=None):
"""Calls the `on_train_end` methods of its callbacks.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
numpy_logs = None
for callback in self.callbacks:
if getattr(callback, '_supports_tf_logs', False):
callback.on_train_end(logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
callback.on_train_end(numpy_logs)
def on_test_begin(self, logs=None):
"""Calls the `on_test_begin` methods of its callbacks.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
numpy_logs = None
for callback in self.callbacks:
if getattr(callback, '_supports_tf_logs', False):
callback.on_test_begin(logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
callback.on_test_begin(numpy_logs)
def on_test_end(self, logs=None):
"""Calls the `on_test_end` methods of its callbacks.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
numpy_logs = None
for callback in self.callbacks:
if getattr(callback, '_supports_tf_logs', False):
callback.on_test_end(logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
callback.on_test_end(numpy_logs)
def on_predict_begin(self, logs=None):
"""Calls the 'on_predict_begin` methods of its callbacks.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
numpy_logs = None
for callback in self.callbacks:
if getattr(callback, '_supports_tf_logs', False):
callback.on_predict_begin(logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
callback.on_predict_begin(numpy_logs)
def on_predict_end(self, logs=None):
"""Calls the `on_predict_end` methods of its callbacks.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
logs = logs or {}
numpy_logs = None
for callback in self.callbacks:
if getattr(callback, '_supports_tf_logs', False):
callback.on_predict_end(logs)
else:
if numpy_logs is None: # Only convert once.
numpy_logs = tf_utils.to_numpy_or_python_type(logs)
callback.on_predict_end(numpy_logs)
def __iter__(self):
return iter(self.callbacks)
@keras_export('keras.callbacks.Callback')
class Callback(object):
"""Abstract base class used to build new callbacks.
Attributes:
params: Dict. Training parameters
(eg. verbosity, batch size, number of epochs...).
model: Instance of `keras.models.Model`.
Reference of the model being trained.
The `logs` dictionary that callback methods
take as argument will contain keys for quantities relevant to
the current batch or epoch (see method-specific docstrings).
"""
def __init__(self):
self.validation_data = None # pylint: disable=g-missing-from-attributes
self.model = None
# Whether this Callback should only run on the chief worker in a
# Multi-Worker setting.
# TODO(omalleyt): Make this attr public once solution is stable.
self._chief_worker_only = None
self._supports_tf_logs = False
def set_params(self, params):
self.params = params
def set_model(self, model):
self.model = model
@doc_controls.for_subclass_implementers
@generic_utils.default
def on_batch_begin(self, batch, logs=None):
"""A backwards compatibility alias for `on_train_batch_begin`."""
@doc_controls.for_subclass_implementers
@generic_utils.default
def on_batch_end(self, batch, logs=None):
"""A backwards compatibility alias for `on_train_batch_end`."""
@doc_controls.for_subclass_implementers
def on_epoch_begin(self, epoch, logs=None):
"""Called at the start of an epoch.
Subclasses should override for any actions to run. This function should only
be called during TRAIN mode.
Arguments:
epoch: Integer, index of epoch.
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
@doc_controls.for_subclass_implementers
def on_epoch_end(self, epoch, logs=None):
"""Called at the end of an epoch.
Subclasses should override for any actions to run. This function should only
be called during TRAIN mode.
Arguments:
epoch: Integer, index of epoch.
logs: Dict, metric results for this training epoch, and for the
validation epoch if validation is performed. Validation result keys
are prefixed with `val_`.
"""
@doc_controls.for_subclass_implementers
@generic_utils.default
def on_train_batch_begin(self, batch, logs=None):
"""Called at the beginning of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
# For backwards compatibility.
self.on_batch_begin(batch, logs=logs)
@doc_controls.for_subclass_implementers
@generic_utils.default
def on_train_batch_end(self, batch, logs=None):
"""Called at the end of a training batch in `fit` methods.
Subclasses should override for any actions to run.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Aggregated metric results up until this batch.
"""
# For backwards compatibility.
self.on_batch_end(batch, logs=logs)
@doc_controls.for_subclass_implementers
@generic_utils.default
def on_test_batch_begin(self, batch, logs=None):
"""Called at the beginning of a batch in `evaluate` methods.
Also called at the beginning of a validation batch in the `fit`
methods, if validation data is provided.
Subclasses should override for any actions to run.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
@doc_controls.for_subclass_implementers
@generic_utils.default
def on_test_batch_end(self, batch, logs=None):
"""Called at the end of a batch in `evaluate` methods.
Also called at the end of a validation batch in the `fit`
methods, if validation data is provided.
Subclasses should override for any actions to run.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Aggregated metric results up until this batch.
"""
@doc_controls.for_subclass_implementers
@generic_utils.default
def on_predict_batch_begin(self, batch, logs=None):
"""Called at the beginning of a batch in `predict` methods.
Subclasses should override for any actions to run.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Has keys `batch` and `size` representing the current batch
number and the size of the batch.
"""
@doc_controls.for_subclass_implementers
@generic_utils.default
def on_predict_batch_end(self, batch, logs=None):
"""Called at the end of a batch in `predict` methods.
Subclasses should override for any actions to run.
Arguments:
batch: Integer, index of batch within the current epoch.
logs: Dict. Aggregated metric results up until this batch.
"""
@doc_controls.for_subclass_implementers
def on_train_begin(self, logs=None):
"""Called at the beginning of training.
Subclasses should override for any actions to run.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
@doc_controls.for_subclass_implementers
def on_train_end(self, logs=None):
"""Called at the end of training.
Subclasses should override for any actions to run.
Arguments:
logs: Dict. Currently the output of the last call to `on_epoch_end()`
is passed to this argument for this method but that may change in
the future.
"""
@doc_controls.for_subclass_implementers
def on_test_begin(self, logs=None):
"""Called at the beginning of evaluation or validation.
Subclasses should override for any actions to run.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
@doc_controls.for_subclass_implementers
def on_test_end(self, logs=None):
"""Called at the end of evaluation or validation.
Subclasses should override for any actions to run.
Arguments:
logs: Dict. Currently the output of the last call to
`on_test_batch_end()` is passed to this argument for this method
but that may change in the future.
"""
@doc_controls.for_subclass_implementers
def on_predict_begin(self, logs=None):
"""Called at the beginning of prediction.
Subclasses should override for any actions to run.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
@doc_controls.for_subclass_implementers
def on_predict_end(self, logs=None):
"""Called at the end of prediction.
Subclasses should override for any actions to run.
Arguments:
logs: Dict. Currently no data is passed to this argument for this method
but that may change in the future.
"""
def _implements_train_batch_hooks(self):
"""Determines if this Callback should be called for each train batch."""
return (not generic_utils.is_default(self.on_batch_begin) or
not generic_utils.is_default(self.on_batch_end) or
not generic_utils.is_default(self.on_train_batch_begin) or
not generic_utils.is_default(self.on_train_batch_end))
def _implements_test_batch_hooks(self):
"""Determines if this Callback should be called for each test batch."""
return (not generic_utils.is_default(self.on_test_batch_begin) or
not generic_utils.is_default(self.on_test_batch_end))
def _implements_predict_batch_hooks(self):
"""Determines if this Callback should be called for each predict batch."""
return (not generic_utils.is_default(self.on_predict_batch_begin) or
not generic_utils.is_default(self.on_predict_batch_end))
@keras_export('keras.callbacks.BaseLogger')
class BaseLogger(Callback):
"""Callback that accumulates epoch averages of metrics.
This callback is automatically applied to every Keras model.
Arguments:
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over an epoch.
Metrics in this list will be logged as-is in `on_epoch_end`.
All others will be averaged in `on_epoch_end`.
"""
def __init__(self, stateful_metrics=None):
super(BaseLogger, self).__init__()
self.stateful_metrics = set(stateful_metrics or [])
def on_epoch_begin(self, epoch, logs=None):
self.seen = 0
self.totals = {}
def on_batch_end(self, batch, logs=None):
logs = logs or {}
batch_size = logs.get('size', 0)
# In case of distribution strategy we can potentially run multiple steps
# at the same time, we should account for that in the `seen` calculation.
num_steps = logs.get('num_steps', 1)
self.seen += batch_size * num_steps
for k, v in logs.items():
if k in self.stateful_metrics:
self.totals[k] = v
else:
if k in self.totals:
self.totals[k] += v * batch_size
else:
self.totals[k] = v * batch_size
def on_epoch_end(self, epoch, logs=None):
if logs is not None:
for k in self.params['metrics']:
if k in self.totals:
# Make value available to next callbacks.
if k in self.stateful_metrics:
logs[k] = self.totals[k]
else:
logs[k] = self.totals[k] / self.seen
@keras_export('keras.callbacks.TerminateOnNaN')
class TerminateOnNaN(Callback):
"""Callback that terminates training when a NaN loss is encountered.
"""
def on_batch_end(self, batch, logs=None):
logs = logs or {}
loss = logs.get('loss')
if loss is not None:
if np.isnan(loss) or np.isinf(loss):
print('Batch %d: Invalid loss, terminating training' % (batch))
self.model.stop_training = True
@keras_export('keras.callbacks.ProgbarLogger')
class ProgbarLogger(Callback):
"""Callback that prints metrics to stdout.
Arguments:
count_mode: One of `"steps"` or `"samples"`.
Whether the progress bar should
count samples seen or steps (batches) seen.
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over an epoch.
Metrics in this list will be logged as-is.
All others will be averaged over time (e.g. loss, etc).
If not provided, defaults to the `Model`'s metrics.
Raises:
ValueError: In case of invalid `count_mode`.
"""
def __init__(self, count_mode='samples', stateful_metrics=None):
super(ProgbarLogger, self).__init__()
self._supports_tf_logs = True
if count_mode == 'samples':
self.use_steps = False
elif count_mode == 'steps':
self.use_steps = True
else:
raise ValueError('Unknown `count_mode`: ' + str(count_mode))
# Defaults to all Model's metrics except for loss.
self.stateful_metrics = set(stateful_metrics) if stateful_metrics else None
self.seen = 0
self.progbar = None
self.target = None
self.verbose = 1
self.epochs = 1
self._called_in_fit = False
def set_params(self, params):
self.verbose = params['verbose']
self.epochs = params['epochs']
if self.use_steps and 'steps' in params:
self.target = params['steps']
elif not self.use_steps and 'samples' in params:
self.target = params['samples']
else:
self.target = None # Will be inferred at the end of the first epoch.
def on_train_begin(self, logs=None):
# When this logger is called inside `fit`, validation is silent.
self._called_in_fit = True
def on_test_begin(self, logs=None):
if not self._called_in_fit:
self._reset_progbar()
def on_predict_begin(self, logs=None):
self._reset_progbar()
def on_epoch_begin(self, epoch, logs=None):
self._reset_progbar()
if self.verbose and self.epochs > 1:
print('Epoch %d/%d' % (epoch + 1, self.epochs))
def on_train_batch_end(self, batch, logs=None):
self._batch_update_progbar(batch, logs)
def on_test_batch_end(self, batch, logs=None):
if not self._called_in_fit:
self._batch_update_progbar(batch, logs)
def on_predict_batch_end(self, batch, logs=None):
# Don't pass prediction results.
self._batch_update_progbar(batch, None)
def on_epoch_end(self, epoch, logs=None):
self._finalize_progbar(logs)
def on_test_end(self, logs=None):
if not self._called_in_fit:
self._finalize_progbar(logs)
def on_predict_end(self, logs=None):
self._finalize_progbar(logs)
def _reset_progbar(self):
self.seen = 0
self.progbar = None
def _maybe_init_progbar(self):
if self.stateful_metrics is None:
if self.model:
self.stateful_metrics = (set(m.name for m in self.model.metrics))
else:
self.stateful_metrics = set()
if self.progbar is None:
self.progbar = Progbar(
target=self.target,
verbose=self.verbose,
stateful_metrics=self.stateful_metrics,
unit_name='step' if self.use_steps else 'sample')
def _batch_update_progbar(self, batch, logs=None):
"""Updates the progbar."""
logs = logs or {}
self._maybe_init_progbar()
if self.use_steps:
self.seen = batch + 1 # One-indexed.
else:
# v1 path only.
logs = copy.copy(logs)
batch_size = logs.pop('size', 0)
num_steps = logs.pop('num_steps', 1)
logs.pop('batch', None)
add_seen = num_steps * batch_size
self.seen += add_seen
if self.verbose == 1:
# Only block async when verbose = 1.
logs = tf_utils.to_numpy_or_python_type(logs)
self.progbar.update(self.seen, list(logs.items()), finalize=False)
def _finalize_progbar(self, logs):
logs = logs or {}
self._maybe_init_progbar()
if self.target is None:
self.target = self.seen
self.progbar.target = self.seen
logs = tf_utils.to_numpy_or_python_type(logs)
self.progbar.update(self.seen, list(logs.items()), finalize=True)
@keras_export('keras.callbacks.History')
class History(Callback):
"""Callback that records events into a `History` object.
This callback is automatically applied to
every Keras model. The `History` object
gets returned by the `fit` method of models.
"""
def __init__(self):
super(History, self).__init__()
self.history = {}
def on_train_begin(self, logs=None):
self.epoch = []
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epoch.append(epoch)
for k, v in logs.items():
self.history.setdefault(k, []).append(v)
# Set the history attribute on the model after the epoch ends. This will
# make sure that the state which is set is the latest one.
self.model.history = self
@keras_export('keras.callbacks.ModelCheckpoint')
class ModelCheckpoint(Callback):
"""Callback to save the Keras model or model weights at some frequency.
`ModelCheckpoint` callback is used in conjunction with training using
`model.fit()` to save a model or weights (in a checkpoint file) at some
interval, so the model or weights can be loaded later to continue the training
from the state saved.
A few options this callback provides include:
- Whether to only keep the model that has achieved the "best performance" so
far, or whether to save the model at the end of every epoch regardless of
performance.
- Definition of 'best'; which quantity to monitor and whether it should be
maximized or minimized.
- The frequency it should save at. Currently, the callback supports saving at
the end of every epoch, or after a fixed number of training batches.
- Whether only weights are saved, or the whole model is saved.
Example:
```python
EPOCHS = 10
checkpoint_filepath = '/tmp/checkpoint'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
save_weights_only=True,
monitor='val_acc',
mode='max',
save_best_only=True)
# Model weights are saved at the end of every epoch, if it's the best seen
# so far.
model.fit(epochs=EPOCHS, callbacks=[model_checkpoint_callback])
# The model weights (that are considered the best) are loaded into the model.
model.load_weights(checkpoint_filepath)
```
Arguments:
filepath: string or `PathLike`, path to save the model file. `filepath`
can contain named formatting options, which will be filled the value of
`epoch` and keys in `logs` (passed in `on_epoch_end`). For example: if
`filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`, then the model
checkpoints will be saved with the epoch number and the validation loss
in the filename.
monitor: quantity to monitor.
verbose: verbosity mode, 0 or 1.
save_best_only: if `save_best_only=True`, the latest best model according
to the quantity monitored will not be overwritten.
If `filepath` doesn't contain formatting options like `{epoch}` then
`filepath` will be overwritten by each new better model.
mode: one of {auto, min, max}. If `save_best_only=True`, the decision to
overwrite the current save file is made based on either the maximization
or the minimization of the monitored quantity. For `val_acc`, this
should be `max`, for `val_loss` this should be `min`, etc. In `auto`
mode, the direction is automatically inferred from the name of the
monitored quantity.
save_weights_only: if True, then only the model's weights will be saved
(`model.save_weights(filepath)`), else the full model is saved
(`model.save(filepath)`).
save_freq: `'epoch'` or integer. When using `'epoch'`, the callback saves
the model after each epoch. When using integer, the callback saves the
model at end of this many batches. If the `Model` is compiled with
`experimental_steps_per_execution=N`, then the saving criteria will be
checked every Nth batch. Note that if the saving isn't aligned to
epochs, the monitored metric may potentially be less reliable (it
could reflect as little as 1 batch, since the metrics get reset every
epoch). Defaults to `'epoch'`.
options: Optional `tf.train.CheckpointOptions` object if
`save_weights_only` is true or optional `tf.saved_model.SavedOptions`
object if `save_weights_only` is false.
**kwargs: Additional arguments for backwards compatibility. Possible key
is `period`.
"""
def __init__(self,
filepath,
monitor='val_loss',
verbose=0,
save_best_only=False,
save_weights_only=False,
mode='auto',
save_freq='epoch',
options=None,
**kwargs):
super(ModelCheckpoint, self).__init__()
self._supports_tf_logs = True
self.monitor = monitor
self.verbose = verbose
self.filepath = path_to_string(filepath)
self.save_best_only = save_best_only
self.save_weights_only = save_weights_only
self.save_freq = save_freq
self.epochs_since_last_save = 0
self._batches_seen_since_last_saving = 0
self._last_batch_seen = 0
if save_weights_only:
if options is None or isinstance(
options, checkpoint_options_lib.CheckpointOptions):
self._options = options or checkpoint_options_lib.CheckpointOptions()
else:
raise TypeError('If save_weights_only is True, then `options` must be'
'either None or a tf.train.CheckpointOptions')
else:
if options is None or isinstance(options, save_options_lib.SaveOptions):
self._options = options or save_options_lib.SaveOptions()
else:
raise TypeError('If save_weights_only is False, then `options` must be'
'either None or a tf.saved_model.SaveOptions')
# Deprecated field `load_weights_on_restart` is for loading the checkpoint
# file from `filepath` at the start of `model.fit()`
# TODO(rchao): Remove the arg during next breaking release.
if 'load_weights_on_restart' in kwargs:
self.load_weights_on_restart = kwargs['load_weights_on_restart']
logging.warning('`load_weights_on_restart` argument is deprecated. '
'Please use `model.load_weights()` for loading weights '
'before the start of `model.fit()`.')
else:
self.load_weights_on_restart = False
# Deprecated field `period` is for the number of epochs between which
# the model is saved.
if 'period' in kwargs:
self.period = kwargs['period']
logging.warning('`period` argument is deprecated. Please use `save_freq` '
'to specify the frequency in number of batches seen.')
else:
self.period = 1
if mode not in ['auto', 'min', 'max']:
logging.warning('ModelCheckpoint mode %s is unknown, '
'fallback to auto mode.', mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
if self.save_freq != 'epoch' and not isinstance(self.save_freq, int):
raise ValueError('Unrecognized save_freq: {}'.format(self.save_freq))
# Only the chief worker writes model checkpoints, but all workers
# restore checkpoint at on_train_begin().
self._chief_worker_only = False
def set_model(self, model):
self.model = model
# Use name matching rather than `isinstance` to avoid circular dependencies.
if (not self.save_weights_only and
not model._is_graph_network and # pylint: disable=protected-access
model.__class__.__name__ != 'Sequential'):
self.save_weights_only = True
def on_train_begin(self, logs=None):
if self.load_weights_on_restart:
filepath_to_load = (
self._get_most_recently_modified_file_matching_pattern(self.filepath))
if (filepath_to_load is not None and
self._checkpoint_exists(filepath_to_load)):
try:
# `filepath` may contain placeholders such as `{epoch:02d}`, and
# thus it attempts to load the most recently modified file with file
# name matching the pattern.
self.model.load_weights(filepath_to_load)
except (IOError, ValueError) as e:
raise ValueError('Error loading file from {}. Reason: {}'.format(
filepath_to_load, e))
def on_train_batch_end(self, batch, logs=None):
if self._should_save_on_batch(batch):
self._save_model(epoch=self._current_epoch, logs=logs)
def on_epoch_begin(self, epoch, logs=None):
self._current_epoch = epoch
def on_epoch_end(self, epoch, logs=None):
self.epochs_since_last_save += 1
# pylint: disable=protected-access
if self.save_freq == 'epoch':
self._save_model(epoch=epoch, logs=logs)
def _should_save_on_batch(self, batch):
"""Handles batch-level saving logic, supports steps_per_execution."""
if self.save_freq == 'epoch':
return False
if batch <= self._last_batch_seen: # New epoch.
add_batches = batch + 1 # batches are zero-indexed.
else:
add_batches = batch - self._last_batch_seen
self._batches_seen_since_last_saving += add_batches
self._last_batch_seen = batch
if self._batches_seen_since_last_saving >= self.save_freq:
self._batches_seen_since_last_saving = 0
return True
return False
def _save_model(self, epoch, logs):
"""Saves the model.
Arguments:
epoch: the epoch this iteration is in.
logs: the `logs` dict passed in to `on_batch_end` or `on_epoch_end`.
"""
logs = logs or {}
if isinstance(self.save_freq,
int) or self.epochs_since_last_save >= self.period:
# Block only when saving interval is reached.
logs = tf_utils.to_numpy_or_python_type(logs)
self.epochs_since_last_save = 0
filepath = self._get_file_path(epoch, logs)
try:
if self.save_best_only:
current = logs.get(self.monitor)
if current is None:
logging.warning('Can save best model only with %s available, '
'skipping.', self.monitor)
else:
if self.monitor_op(current, self.best):
if self.verbose > 0:
print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
' saving model to %s' % (epoch + 1, self.monitor,
self.best, current, filepath))
self.best = current
if self.save_weights_only:
self.model.save_weights(
filepath, overwrite=True, options=self._options)
else:
self.model.save(filepath, overwrite=True, options=self._options)
else:
if self.verbose > 0:
print('\nEpoch %05d: %s did not improve from %0.5f' %
(epoch + 1, self.monitor, self.best))
else:
if self.verbose > 0:
print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
if self.save_weights_only:
self.model.save_weights(
filepath, overwrite=True, options=self._options)
else:
self.model.save(filepath, overwrite=True, options=self._options)
self._maybe_remove_file()
except IOError as e:
# `e.errno` appears to be `None` so checking the content of `e.args[0]`.
if 'is a directory' in six.ensure_str(e.args[0]).lower():
raise IOError('Please specify a non-directory filepath for '
'ModelCheckpoint. Filepath used is an existing '
'directory: {}'.format(filepath))
def _get_file_path(self, epoch, logs):
"""Returns the file path for checkpoint."""
# pylint: disable=protected-access
try:
# `filepath` may contain placeholders such as `{epoch:02d}` and
# `{mape:.2f}`. A mismatch between logged metrics and the path's
# placeholders can cause formatting to fail.
file_path = self.filepath.format(epoch=epoch + 1, **logs)
except KeyError as e:
raise KeyError('Failed to format this callback filepath: "{}". '
'Reason: {}'.format(self.filepath, e))
self._write_filepath = distributed_file_utils.write_filepath(
file_path, self.model.distribute_strategy)
return self._write_filepath
def _maybe_remove_file(self):
# Remove the checkpoint directory in multi-worker training where this worker
# should not checkpoint. It is a dummy directory previously saved for sync
# distributed training.
distributed_file_utils.remove_temp_dir_with_filepath(
self._write_filepath, self.model.distribute_strategy)
def _checkpoint_exists(self, filepath):
"""Returns whether the checkpoint `filepath` refers to exists."""
if filepath.endswith('.h5'):
return file_io.file_exists(filepath)
tf_saved_model_exists = file_io.file_exists(filepath)
tf_weights_only_checkpoint_exists = file_io.file_exists(filepath + '.index')
return tf_saved_model_exists or tf_weights_only_checkpoint_exists
def _get_most_recently_modified_file_matching_pattern(self, pattern):
"""Returns the most recently modified filepath matching pattern.
Pattern may contain python formatting placeholder. If
`tf.train.latest_checkpoint()` does not return None, use that; otherwise,
check for most recently modified one that matches the pattern.
In the rare case where there are more than one pattern-matching file having
the same modified time that is most recent among all, return the filepath
that is largest (by `>` operator, lexicographically using the numeric
equivalents). This provides a tie-breaker when multiple files are most
recent. Note that a larger `filepath` can sometimes indicate a later time of
modification (for instance, when epoch/batch is used as formatting option),
but not necessarily (when accuracy or loss is used). The tie-breaker is
put in the logic as best effort to return the most recent, and to avoid
undeterministic result.
Modified time of a file is obtained with `os.path.getmtime()`.
This utility function is best demonstrated via an example:
```python
file_pattern = 'f.batch{batch:02d}epoch{epoch:02d}.h5'
test_dir = self.get_temp_dir()
path_pattern = os.path.join(test_dir, file_pattern)
file_paths = [
os.path.join(test_dir, file_name) for file_name in
['f.batch03epoch02.h5', 'f.batch02epoch02.h5', 'f.batch01epoch01.h5']
]
for file_path in file_paths:
# Write something to each of the files
self.assertEqual(
_get_most_recently_modified_file_matching_pattern(path_pattern),
file_paths[-1])
```
Arguments:
pattern: The file pattern that may optionally contain python placeholder
such as `{epoch:02d}`.
Returns:
The most recently modified file's full filepath matching `pattern`. If
`pattern` does not contain any placeholder, this returns the filepath
that
exactly matches `pattern`. Returns `None` if no match is found.
"""
dir_name = os.path.dirname(pattern)
base_name = os.path.basename(pattern)
base_name_regex = '^' + re.sub(r'{.*}', r'.*', base_name) + '$'
# If tf.train.latest_checkpoint tells us there exists a latest checkpoint,
# use that as it is more robust than `os.path.getmtime()`.
latest_tf_checkpoint = checkpoint_management.latest_checkpoint(dir_name)
if latest_tf_checkpoint is not None and re.match(
base_name_regex, os.path.basename(latest_tf_checkpoint)):
return latest_tf_checkpoint
latest_mod_time = 0
file_path_with_latest_mod_time = None
n_file_with_latest_mod_time = 0
file_path_with_largest_file_name = None
if file_io.file_exists(dir_name):
for file_name in os.listdir(dir_name):
# Only consider if `file_name` matches the pattern.
if re.match(base_name_regex, file_name):
file_path = os.path.join(dir_name, file_name)
mod_time = os.path.getmtime(file_path)
if (file_path_with_largest_file_name is None or
file_path > file_path_with_largest_file_name):
file_path_with_largest_file_name = file_path
if mod_time > latest_mod_time:
latest_mod_time = mod_time
file_path_with_latest_mod_time = file_path
# In the case a file with later modified time is found, reset
# the counter for the number of files with latest modified time.
n_file_with_latest_mod_time = 1
elif mod_time == latest_mod_time:
# In the case a file has modified time tied with the most recent,
# increment the counter for the number of files with latest modified
# time by 1.
n_file_with_latest_mod_time += 1
if n_file_with_latest_mod_time == 1:
# Return the sole file that has most recent modified time.
return file_path_with_latest_mod_time
else:
# If there are more than one file having latest modified time, return
# the file path with the largest file name.
return file_path_with_largest_file_name
@keras_export('keras.callbacks.experimental.BackupAndRestore', v1=[])
class BackupAndRestore(Callback):
"""Callback to back up and restore the training state.
`BackupAndRestore` callback is intended to recover from interruptions that
happened in the middle of a model.fit execution by backing up the
training states in a temporary checkpoint file (based on TF CheckpointManager)
at the end of each epoch. If training restarted before completion, the
training state and model are restored to the most recently saved state at the
beginning of a new model.fit() run.
Note that user is responsible to bring jobs back up.
This callback is important for the backup and restore mechanism for fault
tolerance purpose. And the model to be restored from an previous checkpoint is
expected to be the same as the one used to back up. If user changes arguments
passed to compile or fit, the checkpoint saved for fault tolerance can become
invalid.
Note:
1. This callback is not compatible with disabling eager execution.
2. A checkpoint is saved at the end of each epoch, when restoring we'll redo
any partial work from an unfinished epoch in which the training got restarted
(so the work done before a interruption doesn't affect the final model state).
3. This works for both single worker and multi-worker mode, only
MirroredStrategy and MultiWorkerMirroredStrategy are supported for now.
Example:
>>> class InterruptingCallback(tf.keras.callbacks.Callback):
... def on_epoch_begin(self, epoch, logs=None):
... if epoch == 4:
... raise RuntimeError('Interrupting!')
>>> callback = tf.keras.callbacks.experimental.BackupAndRestore(
... backup_dir="/tmp")
>>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> model.compile(tf.keras.optimizers.SGD(), loss='mse')
>>> try:
... model.fit(np.arange(100).reshape(5, 20), np.zeros(5), epochs=10,
... batch_size=1, callbacks=[callback, InterruptingCallback()],
... verbose=0)
... except:
... pass
>>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5), epochs=10,
... batch_size=1, callbacks=[callback], verbose=0)
>>> # Only 6 more epochs are run, since first trainning got interrupted at
>>> # zero-indexed epoch 4, second training will continue from 4 to 9.
>>> len(history.history['loss'])
6
Arguments:
backup_dir: String, path to save the model file. This is the directory in
which the system stores temporary files to recover the model from jobs
terminated unexpectedly. The directory cannot be reused elsewhere to
store other checkpoints, e.g. by BackupAndRestore callback of another
training, or by another callback (ModelCheckpoint) of the same training.
"""
def __init__(self, backup_dir):
super(BackupAndRestore, self).__init__()
self.backup_dir = backup_dir
self._supports_tf_logs = True
self._supported_strategies = (
distribute_lib._DefaultDistributionStrategy,
mirrored_strategy.MirroredStrategy,
collective_all_reduce_strategy.CollectiveAllReduceStrategy)
if not context.executing_eagerly():
if ops.inside_function():
raise ValueError('This Callback\'s method contains Python state and '
'should be called outside of `tf.function`s.')
else: # Legacy graph mode:
raise ValueError(
'BackupAndRestore only supports eager mode. In graph '
'mode, consider using ModelCheckpoint to manually save '
'and restore weights with `model.load_weights()` and by '
'providing `initial_epoch` in `model.fit()` for fault tolerance.')
# Only the chief worker writes model checkpoints, but all workers
# restore checkpoint at on_train_begin().
self._chief_worker_only = False
def set_model(self, model):
self.model = model
def on_train_begin(self, logs=None):
# TrainingState is used to manage the training state needed for
# failure-recovery of a worker in training.
# pylint: disable=protected-access
if not isinstance(self.model.distribute_strategy,
self._supported_strategies):
raise NotImplementedError(
'Currently only support empty strategy, MirroredStrategy and '
'MultiWorkerMirroredStrategy.')
self.model._training_state = (
worker_training_state.WorkerTrainingState(self.model, self.backup_dir))
self._training_state = self.model._training_state
self._training_state.restore()
def on_train_end(self, logs=None):
# pylint: disable=protected-access
# On exit of training, delete the training state backup file that was saved
# for the purpose of worker recovery.
self._training_state.delete_backup()
# Clean up the training state.
del self._training_state
del self.model._training_state
def on_epoch_end(self, epoch, logs=None):
# Back up the model and current epoch for possible future recovery.
self._training_state.back_up(epoch)
@keras_export('keras.callbacks.EarlyStopping')
class EarlyStopping(Callback):
"""Stop training when a monitored metric has stopped improving.
Assuming the goal of a training is to minimize the loss. With this, the
metric to be monitored would be `'loss'`, and mode would be `'min'`. A
`model.fit()` training loop will check at end of every epoch whether
the loss is no longer decreasing, considering the `min_delta` and
`patience` if applicable. Once it's found no longer decreasing,
`model.stop_training` is marked True and the training terminates.
The quantity to be monitored needs to be available in `logs` dict.
To make it so, pass the loss or metrics at `model.compile()`.
Arguments:
monitor: Quantity to be monitored.
min_delta: Minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than min_delta, will count as no
improvement.
patience: Number of epochs with no improvement
after which training will be stopped.
verbose: verbosity mode.
mode: One of `{"auto", "min", "max"}`. In `min` mode,
training will stop when the quantity
monitored has stopped decreasing; in `"max"`
mode it will stop when the quantity
monitored has stopped increasing; in `"auto"`
mode, the direction is automatically inferred
from the name of the monitored quantity.
baseline: Baseline value for the monitored quantity.
Training will stop if the model doesn't show improvement over the
baseline.
restore_best_weights: Whether to restore model weights from
the epoch with the best value of the monitored quantity.
If False, the model weights obtained at the last step of
training are used.
Example:
>>> callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)
>>> # This callback will stop the training when there is no improvement in
>>> # the validation loss for three consecutive epochs.
>>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> model.compile(tf.keras.optimizers.SGD(), loss='mse')
>>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5),
... epochs=10, batch_size=1, callbacks=[callback],
... verbose=0)
>>> len(history.history['loss']) # Only 4 epochs are run.
4
"""
def __init__(self,
monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False):
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.baseline = baseline
self.min_delta = abs(min_delta)
self.wait = 0
self.stopped_epoch = 0
self.restore_best_weights = restore_best_weights
self.best_weights = None
if mode not in ['auto', 'min', 'max']:
logging.warning('EarlyStopping mode %s is unknown, '
'fallback to auto mode.', mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
elif mode == 'max':
self.monitor_op = np.greater
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
else:
self.monitor_op = np.less
if self.monitor_op == np.greater:
self.min_delta *= 1
else:
self.min_delta *= -1
def on_train_begin(self, logs=None):
# Allow instances to be re-used
self.wait = 0
self.stopped_epoch = 0
if self.baseline is not None:
self.best = self.baseline
else:
self.best = np.Inf if self.monitor_op == np.less else -np.Inf
self.best_weights = None
def on_epoch_end(self, epoch, logs=None):
current = self.get_monitor_value(logs)
if current is None:
return
if self.monitor_op(current - self.min_delta, self.best):
self.best = current
self.wait = 0
if self.restore_best_weights:
self.best_weights = self.model.get_weights()
else:
self.wait += 1
if self.wait >= self.patience:
self.stopped_epoch = epoch
self.model.stop_training = True
if self.restore_best_weights:
if self.verbose > 0:
print('Restoring model weights from the end of the best epoch.')
self.model.set_weights(self.best_weights)
def on_train_end(self, logs=None):
if self.stopped_epoch > 0 and self.verbose > 0:
print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))
def get_monitor_value(self, logs):
logs = logs or {}
monitor_value = logs.get(self.monitor)
if monitor_value is None:
logging.warning('Early stopping conditioned on metric `%s` '
'which is not available. Available metrics are: %s',
self.monitor, ','.join(list(logs.keys())))
return monitor_value
@keras_export('keras.callbacks.RemoteMonitor')
class RemoteMonitor(Callback):
"""Callback used to stream events to a server.
Requires the `requests` library.
Events are sent to `root + '/publish/epoch/end/'` by default. Calls are
HTTP POST, with a `data` argument which is a
JSON-encoded dictionary of event data.
If `send_as_json=True`, the content type of the request will be
`"application/json"`.
Otherwise the serialized JSON will be sent within a form.
Arguments:
root: String; root url of the target server.
path: String; path relative to `root` to which the events will be sent.
field: String; JSON field under which the data will be stored.
The field is used only if the payload is sent within a form
(i.e. send_as_json is set to False).
headers: Dictionary; optional custom HTTP headers.
send_as_json: Boolean; whether the request should be
sent as `"application/json"`.
"""
def __init__(self,
root='http://localhost:9000',
path='/publish/epoch/end/',
field='data',
headers=None,
send_as_json=False):
super(RemoteMonitor, self).__init__()
self.root = root
self.path = path
self.field = field
self.headers = headers
self.send_as_json = send_as_json
def on_epoch_end(self, epoch, logs=None):
if requests is None:
raise ImportError('RemoteMonitor requires the `requests` library.')
logs = logs or {}
send = {}
send['epoch'] = epoch
for k, v in logs.items():
# np.ndarray and np.generic are not scalar types
# therefore we must unwrap their scalar values and
# pass to the json-serializable dict 'send'
if isinstance(v, (np.ndarray, np.generic)):
send[k] = v.item()
else:
send[k] = v
try:
if self.send_as_json:
requests.post(self.root + self.path, json=send, headers=self.headers)
else:
requests.post(
self.root + self.path, {self.field: json.dumps(send)},
headers=self.headers)
except requests.exceptions.RequestException:
logging.warning('Warning: could not reach RemoteMonitor '
'root server at ' + str(self.root))
@keras_export('keras.callbacks.LearningRateScheduler')
class LearningRateScheduler(Callback):
"""Learning rate scheduler.
At the beginning of every epoch, this callback gets the updated learning rate
value from `schedule` function provided at `__init__`, with the current epoch
and current learning rate, and applies the updated learning rate
on the optimizer.
Arguments:
schedule: a function that takes an epoch index (integer, indexed from 0)
and current learning rate (float) as inputs and returns a new
learning rate as output (float).
verbose: int. 0: quiet, 1: update messages.
Example:
>>> # This function keeps the initial learning rate for the first ten epochs
>>> # and decreases it exponentially after that.
>>> def scheduler(epoch, lr):
... if epoch < 10:
... return lr
... else:
... return lr * tf.math.exp(-0.1)
>>>
>>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> model.compile(tf.keras.optimizers.SGD(), loss='mse')
>>> round(model.optimizer.lr.numpy(), 5)
0.01
>>> callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
>>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5),
... epochs=15, callbacks=[callback], verbose=0)
>>> round(model.optimizer.lr.numpy(), 5)
0.00607
"""
def __init__(self, schedule, verbose=0):
super(LearningRateScheduler, self).__init__()
self.schedule = schedule
self.verbose = verbose
def on_epoch_begin(self, epoch, logs=None):
if not hasattr(self.model.optimizer, 'lr'):
raise ValueError('Optimizer must have a "lr" attribute.')
try: # new API
lr = float(K.get_value(self.model.optimizer.lr))
lr = self.schedule(epoch, lr)
except TypeError: # Support for old API for backward compatibility
lr = self.schedule(epoch)
if not isinstance(lr, (ops.Tensor, float, np.float32, np.float64)):
raise ValueError('The output of the "schedule" function '
'should be float.')
if isinstance(lr, ops.Tensor) and not lr.dtype.is_floating:
raise ValueError('The dtype of Tensor should be float')
K.set_value(self.model.optimizer.lr, K.get_value(lr))
if self.verbose > 0:
print('\nEpoch %05d: LearningRateScheduler reducing learning '
'rate to %s.' % (epoch + 1, lr))
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
@keras_export('keras.callbacks.TensorBoard', v1=[])
class TensorBoard(Callback, version_utils.TensorBoardVersionSelector):
# pylint: disable=line-too-long
"""Enable visualizations for TensorBoard.
TensorBoard is a visualization tool provided with TensorFlow.
This callback logs events for TensorBoard, including:
* Metrics summary plots
* Training graph visualization
* Activation histograms
* Sampled profiling
If you have installed TensorFlow with pip, you should be able
to launch TensorBoard from the command line:
```
tensorboard --logdir=path_to_your_logs
```
You can find more information about TensorBoard
[here](https://www.tensorflow.org/get_started/summaries_and_tensorboard).
Example (Basic):
```python
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs")
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
# run the tensorboard command to view the visualizations.
```
Example (Profile):
```python
# profile a single batch, e.g. the 5th batch.
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='./logs',
profile_batch=5)
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
# Now run the tensorboard command to view the visualizations (profile plugin).
# profile a range of batches, e.g. from 10 to 20.
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='./logs',
profile_batch='10,20')
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
# Now run the tensorboard command to view the visualizations (profile plugin).
```
Arguments:
log_dir: the path of the directory where to save the log files to be
parsed by TensorBoard.
histogram_freq: frequency (in epochs) at which to compute activation and
weight histograms for the layers of the model. If set to 0, histograms
won't be computed. Validation data (or split) must be specified for
histogram visualizations.
write_graph: whether to visualize the graph in TensorBoard. The log file
can become quite large when write_graph is set to True.
write_images: whether to write model weights to visualize as image in
TensorBoard.
update_freq: `'batch'` or `'epoch'` or integer. When using `'batch'`,
writes the losses and metrics to TensorBoard after each batch. The same
applies for `'epoch'`. If using an integer, let's say `1000`, the
callback will write the metrics and losses to TensorBoard every 1000
batches. Note that writing too frequently to TensorBoard can slow down
your training.
profile_batch: Profile the batch(es) to sample compute characteristics.
profile_batch must be a non-negative integer or a tuple of integers.
A pair of positive integers signify a range of batches to profile.
By default, it will profile the second batch. Set profile_batch=0
to disable profiling.
embeddings_freq: frequency (in epochs) at which embedding layers will be
visualized. If set to 0, embeddings won't be visualized.
embeddings_metadata: a dictionary which maps layer name to a file name in
which metadata for this embedding layer is saved. See the
[details](
https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
about metadata files format. In case if the same metadata file is
used for all embedding layers, string can be passed.
Raises:
ValueError: If histogram_freq is set and no validation data is provided.
"""
# pylint: enable=line-too-long
def __init__(self,
log_dir='logs',
histogram_freq=0,
write_graph=True,
write_images=False,
update_freq='epoch',
profile_batch=2,
embeddings_freq=0,
embeddings_metadata=None,
**kwargs):
super(TensorBoard, self).__init__()
self._supports_tf_logs = True
self._validate_kwargs(kwargs)
self.log_dir = path_to_string(log_dir)
self.histogram_freq = histogram_freq
self.write_graph = write_graph
self.write_images = write_images
self.update_freq = 1 if update_freq == 'batch' else update_freq
self.embeddings_freq = embeddings_freq
self.embeddings_metadata = embeddings_metadata
self._init_profile_batch(profile_batch)
self._epoch = 0
self._global_train_batch = 0
# Lazily initialized in order to avoid creating event files when
# not needed.
self._writers = {}
# Used to restore any existing `SummaryWriter` after training ends.
self._prev_summary_state = []
def _validate_kwargs(self, kwargs):
"""Handle arguments were supported in V1."""
if kwargs.get('write_grads', False):
logging.warning('`write_grads` will be ignored in TensorFlow 2.0 '
'for the `TensorBoard` Callback.')
if kwargs.get('batch_size', False):
logging.warning('`batch_size` is no longer needed in the '
'`TensorBoard` Callback and will be ignored '
'in TensorFlow 2.0.')
if kwargs.get('embeddings_layer_names', False):
logging.warning('`embeddings_layer_names` is not supported in '
'TensorFlow 2.0. Instead, all `Embedding` layers '
'will be visualized.')
if kwargs.get('embeddings_data', False):
logging.warning('`embeddings_data` is not supported in TensorFlow '
'2.0. Instead, all `Embedding` variables will be '
'visualized.')
unrecognized_kwargs = set(kwargs.keys()) - {
'write_grads', 'embeddings_layer_names', 'embeddings_data', 'batch_size'
}
# Only allow kwargs that were supported in V1.
if unrecognized_kwargs:
raise ValueError('Unrecognized arguments in `TensorBoard` '
'Callback: ' + str(unrecognized_kwargs))
def set_model(self, model):
"""Sets Keras model and writes graph if specified."""
self.model = model
self._log_write_dir = self._get_log_write_dir()
self._train_dir = os.path.join(self._log_write_dir, 'train')
self._train_step = self.model._train_counter # pylint: disable=protected-access
self._val_dir = os.path.join(self._log_write_dir, 'validation')
self._val_step = self.model._test_counter # pylint: disable=protected-access
self._writers = {} # Resets writers.
if self.write_graph:
self._write_keras_model_graph()
if self.embeddings_freq:
self._configure_embeddings()
@property
def _train_writer(self):
if 'train' not in self._writers:
self._writers['train'] = summary_ops_v2.create_file_writer_v2(
self._train_dir)
return self._writers['train']
@property
def _val_writer(self):
if 'val' not in self._writers:
self._writers['val'] = summary_ops_v2.create_file_writer_v2(self._val_dir)
return self._writers['val']
def _get_log_write_dir(self):
"""For multi-worker, only chief should write, others write to '/tmp'."""
return distributed_file_utils.write_dirpath(self.log_dir,
self.model.distribute_strategy)
def _delete_tmp_write_dir(self):
"""Deletes tmp write directories for multi-worker."""
distributed_file_utils.remove_temp_dirpath(self.log_dir,
self.model.distribute_strategy)
def _write_keras_model_graph(self):
"""Writes Keras graph networks to TensorBoard."""
with self._train_writer.as_default():
with summary_ops_v2.always_record_summaries():
if not self.model.run_eagerly:
summary_ops_v2.graph(K.get_graph(), step=0)
summary_writable = (
self.model._is_graph_network or # pylint: disable=protected-access
self.model.__class__.__name__ == 'Sequential') # pylint: disable=protected-access
if summary_writable:
summary_ops_v2.keras_model('keras', self.model, step=0)
def _configure_embeddings(self):
"""Configure the Projector for embeddings."""
# TODO(omalleyt): Add integration tests.
from google.protobuf import text_format
from tensorflow.python.keras.layers import embeddings
from tensorflow.python.keras.protobuf import projector_config_pb2
config = projector_config_pb2.ProjectorConfig()
for layer in self.model.layers:
if isinstance(layer, embeddings.Embedding):
embedding = config.embeddings.add()
# Embeddings are always the first layer, so this naming should be
# consistent in any keras models checkpoints.
name = 'layer_with_weights-0/embeddings/.ATTRIBUTES/VARIABLE_VALUE'
embedding.tensor_name = name
if self.embeddings_metadata is not None:
if isinstance(self.embeddings_metadata, str):
embedding.metadata_path = self.embeddings_metadata
else:
if layer.name in self.embeddings_metadata.keys():
embedding.metadata_path = self.embeddings_metadata.pop(layer.name)
if self.embeddings_metadata and not isinstance(self.embeddings_metadata,
str):
raise ValueError('Unrecognized `Embedding` layer names passed to '
'`keras.callbacks.TensorBoard` `embeddings_metadata` '
'argument: ' + str(self.embeddings_metadata.keys()))
config_pbtxt = text_format.MessageToString(config)
path = os.path.join(self._log_write_dir, 'projector_config.pbtxt')
with open(path, 'w') as f:
f.write(config_pbtxt)
def _push_writer(self, writer, step):
"""Sets the default writer for custom batch-level summaries."""
if self.update_freq == 'epoch':
return
summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access
self._prev_summary_state.append({
'is_recording': summary_state.is_recording,
'writer': summary_state.writer,
'step': summary_state.step
})
if self.update_freq == 'epoch':
should_record = False
writer = None
else:
should_record = lambda: math_ops.equal(step % self.update_freq, 0)
summary_state.is_recording = should_record
summary_state.writer = writer
# TODO(b/151339474): Fix deadlock when not using .value() here.
summary_ops_v2.set_step(step.value())
def _pop_writer(self):
"""Pops the current writer."""
if self.update_freq == 'epoch':
return
prev_state = self._prev_summary_state.pop()
summary_state = summary_ops_v2._summary_state # pylint: disable=protected-access
summary_state.is_recording = prev_state['is_recording']
summary_state.writer = prev_state['writer']
summary_ops_v2.set_step(prev_state['step'])
def _close_writers(self):
for writer in self._writers.values():
writer.close()
def _init_profile_batch(self, profile_batch):
"""Validate profile_batch value and set the range of batches to profile.
Arguments:
profile_batch: The range of batches to profile. Should be a non-negative
integer or a comma separated string of pair of positive integers. A pair
of positive integers signify a range of batches to profile.
Returns:
A pair of non-negative integers specifying the start and stop batch to
profile.
Raises:
ValueError: If profile_batch is not an integer or a comma seperated pair
of positive integers.
"""
profile_batch_error_message = (
'profile_batch must be a non-negative integer or 2-tuple of positive '
'integers. A pair of positive integers signifies a range of batches '
'to profile. Found: {}'.format(profile_batch))
# Support legacy way of specifying "start,stop" or "start" as str.
if isinstance(profile_batch, six.string_types):
profile_batch = str(profile_batch).split(',')
profile_batch = nest.map_structure(int, profile_batch)
if isinstance(profile_batch, int):
self._start_batch = profile_batch
self._stop_batch = profile_batch
elif isinstance(profile_batch, (tuple, list)) and len(profile_batch) == 2:
self._start_batch, self._stop_batch = profile_batch
else:
raise ValueError(profile_batch_error_message)
if self._start_batch < 0 or self._stop_batch < self._start_batch:
raise ValueError(profile_batch_error_message)
if self._start_batch > 0:
profiler.warmup() # Improve the profiling accuracy.
# True when a trace is running.
self._is_tracing = False
# Setting `profile_batch=0` disables profiling.
self._should_trace = not (self._start_batch == 0 and self._stop_batch == 0)
def on_train_begin(self, logs=None):
self._global_train_batch = 0
self._push_writer(self._train_writer, self._train_step)
def on_train_end(self, logs=None):
self._pop_writer()
if self._is_tracing:
self._stop_trace()
self._close_writers()
self._delete_tmp_write_dir()
def on_test_begin(self, logs=None):
self._push_writer(self._val_writer, self._val_step)
def on_test_end(self, logs=None):
self._pop_writer()
def on_train_batch_begin(self, batch, logs=None):
self._global_train_batch += 1
if not self._should_trace:
return
if self._global_train_batch == self._start_batch:
self._start_trace()
def on_train_batch_end(self, batch, logs=None):
if not self._should_trace:
return
if self._is_tracing and self._global_train_batch >= self._stop_batch:
self._stop_trace()
def on_epoch_begin(self, epoch, logs=None):
# Keeps track of epoch for profiling.
self._epoch = epoch
def on_epoch_end(self, epoch, logs=None):
"""Runs metrics and histogram summaries at epoch end."""
self._log_epoch_metrics(epoch, logs)
if self.histogram_freq and epoch % self.histogram_freq == 0:
self._log_weights(epoch)
if self.embeddings_freq and epoch % self.embeddings_freq == 0:
self._log_embeddings(epoch)
def _start_trace(self):
summary_ops_v2.trace_on(graph=True, profiler=False)
profiler.start(logdir=self._train_dir)
self._is_tracing = True
def _stop_trace(self, batch=None):
"""Logs the trace graph to TensorBoard."""
if batch is None:
batch = self._stop_batch
with self._train_writer.as_default():
with summary_ops_v2.always_record_summaries():
# TODO(b/126388999): Remove step info in the summary name.
summary_ops_v2.trace_export(name='batch_%d' % batch, step=batch)
profiler.stop()
self._is_tracing = False
def _log_epoch_metrics(self, epoch, logs):
"""Writes epoch metrics out as scalar summaries.
Arguments:
epoch: Int. The global step to use for TensorBoard.
logs: Dict. Keys are scalar summary names, values are scalars.
"""
if not logs:
return
train_logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
val_logs = {k: v for k, v in logs.items() if k.startswith('val_')}
with summary_ops_v2.always_record_summaries():
if train_logs:
with self._train_writer.as_default():
for name, value in train_logs.items():
summary_ops_v2.scalar('epoch_' + name, value, step=epoch)
if val_logs:
with self._val_writer.as_default():
for name, value in val_logs.items():
name = name[4:] # Remove 'val_' prefix.
summary_ops_v2.scalar('epoch_' + name, value, step=epoch)
def _log_weights(self, epoch):
"""Logs the weights of the Model to TensorBoard."""
with self._train_writer.as_default():
with summary_ops_v2.always_record_summaries():
for layer in self.model.layers:
for weight in layer.weights:
weight_name = weight.name.replace(':', '_')
summary_ops_v2.histogram(weight_name, weight, step=epoch)
if self.write_images:
self._log_weight_as_image(weight, weight_name, epoch)
self._train_writer.flush()
def _log_weight_as_image(self, weight, weight_name, epoch):
"""Logs a weight as a TensorBoard image."""
w_img = array_ops.squeeze(weight)
shape = K.int_shape(w_img)
if len(shape) == 1: # Bias case
w_img = array_ops.reshape(w_img, [1, shape[0], 1, 1])
elif len(shape) == 2: # Dense layer kernel case
if shape[0] > shape[1]:
w_img = array_ops.transpose(w_img)
shape = K.int_shape(w_img)
w_img = array_ops.reshape(w_img, [1, shape[0], shape[1], 1])
elif len(shape) == 3: # ConvNet case
if K.image_data_format() == 'channels_last':
# Switch to channels_first to display every kernel as a separate
# image.
w_img = array_ops.transpose(w_img, perm=[2, 0, 1])
shape = K.int_shape(w_img)
w_img = array_ops.reshape(w_img, [shape[0], shape[1], shape[2], 1])
shape = K.int_shape(w_img)
# Not possible to handle 3D convnets etc.
if len(shape) == 4 and shape[-1] in [1, 3, 4]:
summary_ops_v2.image(weight_name, w_img, step=epoch)
def _log_embeddings(self, epoch):
embeddings_ckpt = os.path.join(self._log_write_dir, 'train',
'keras_embedding.ckpt-{}'.format(epoch))
self.model.save_weights(embeddings_ckpt)
@keras_export('keras.callbacks.ReduceLROnPlateau')
class ReduceLROnPlateau(Callback):
"""Reduce learning rate when a metric has stopped improving.
Models often benefit from reducing the learning rate by a factor
of 2-10 once learning stagnates. This callback monitors a
quantity and if no improvement is seen for a 'patience' number
of epochs, the learning rate is reduced.
Example:
```python
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=5, min_lr=0.001)
model.fit(X_train, Y_train, callbacks=[reduce_lr])
```
Arguments:
monitor: quantity to be monitored.
factor: factor by which the learning rate will be reduced.
`new_lr = lr * factor`.
patience: number of epochs with no improvement after which learning rate
will be reduced.
verbose: int. 0: quiet, 1: update messages.
mode: one of `{'auto', 'min', 'max'}`. In `'min'` mode,
the learning rate will be reduced when the
quantity monitored has stopped decreasing; in `'max'` mode it will be
reduced when the quantity monitored has stopped increasing; in `'auto'`
mode, the direction is automatically inferred from the name of the
monitored quantity.
min_delta: threshold for measuring the new optimum, to only focus on
significant changes.
cooldown: number of epochs to wait before resuming normal operation after
lr has been reduced.
min_lr: lower bound on the learning rate.
"""
def __init__(self,
monitor='val_loss',
factor=0.1,
patience=10,
verbose=0,
mode='auto',
min_delta=1e-4,
cooldown=0,
min_lr=0,
**kwargs):
super(ReduceLROnPlateau, self).__init__()
self.monitor = monitor
if factor >= 1.0:
raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.')
if 'epsilon' in kwargs:
min_delta = kwargs.pop('epsilon')
logging.warning('`epsilon` argument is deprecated and '
'will be removed, use `min_delta` instead.')
self.factor = factor
self.min_lr = min_lr
self.min_delta = min_delta
self.patience = patience
self.verbose = verbose
self.cooldown = cooldown
self.cooldown_counter = 0 # Cooldown counter.
self.wait = 0
self.best = 0
self.mode = mode
self.monitor_op = None
self._reset()
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
logging.warning('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.', self.mode)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.min_delta)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
def on_train_begin(self, logs=None):
self._reset()
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
current = logs.get(self.monitor)
if current is None:
logging.warning('Reduce LR on plateau conditioned on metric `%s` '
'which is not available. Available metrics are: %s',
self.monitor, ','.join(list(logs.keys())))
else:
if self.in_cooldown():
self.cooldown_counter -= 1
self.wait = 0
if self.monitor_op(current, self.best):
self.best = current
self.wait = 0
elif not self.in_cooldown():
self.wait += 1
if self.wait >= self.patience:
old_lr = float(K.get_value(self.model.optimizer.lr))
if old_lr > self.min_lr:
new_lr = old_lr * self.factor
new_lr = max(new_lr, self.min_lr)
K.set_value(self.model.optimizer.lr, new_lr)
if self.verbose > 0:
print('\nEpoch %05d: ReduceLROnPlateau reducing learning '
'rate to %s.' % (epoch + 1, new_lr))
self.cooldown_counter = self.cooldown
self.wait = 0
def in_cooldown(self):
return self.cooldown_counter > 0
@keras_export('keras.callbacks.CSVLogger')
class CSVLogger(Callback):
"""Callback that streams epoch results to a CSV file.
Supports all values that can be represented as a string,
including 1D iterables such as `np.ndarray`.
Example:
```python
csv_logger = CSVLogger('training.log')
model.fit(X_train, Y_train, callbacks=[csv_logger])
```
Arguments:
filename: Filename of the CSV file, e.g. `'run/log.csv'`.
separator: String used to separate elements in the CSV file.
append: Boolean. True: append if file exists (useful for continuing
training). False: overwrite existing file.
"""
def __init__(self, filename, separator=',', append=False):
self.sep = separator
self.filename = path_to_string(filename)
self.append = append
self.writer = None
self.keys = None
self.append_header = True
if six.PY2:
self.file_flags = 'b'
self._open_args = {}
else:
self.file_flags = ''
self._open_args = {'newline': '\n'}
super(CSVLogger, self).__init__()
def on_train_begin(self, logs=None):
if self.append:
if file_io.file_exists(self.filename):
with open(self.filename, 'r' + self.file_flags) as f:
self.append_header = not bool(len(f.readline()))
mode = 'a'
else:
mode = 'w'
self.csv_file = io.open(self.filename,
mode + self.file_flags,
**self._open_args)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
def handle_value(k):
is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0
if isinstance(k, six.string_types):
return k
elif isinstance(k, collections_abc.Iterable) and not is_zero_dim_ndarray:
return '"[%s]"' % (', '.join(map(str, k)))
else:
return k
if self.keys is None:
self.keys = sorted(logs.keys())
if self.model.stop_training:
# We set NA so that csv parsers do not fail for this last epoch.
logs = dict((k, logs[k]) if k in logs else (k, 'NA') for k in self.keys)
if not self.writer:
class CustomDialect(csv.excel):
delimiter = self.sep
fieldnames = ['epoch'] + self.keys
if six.PY2:
fieldnames = [unicode(x) for x in fieldnames]
self.writer = csv.DictWriter(
self.csv_file,
fieldnames=fieldnames,
dialect=CustomDialect)
if self.append_header:
self.writer.writeheader()
row_dict = collections.OrderedDict({'epoch': epoch})
row_dict.update((key, handle_value(logs[key])) for key in self.keys)
self.writer.writerow(row_dict)
self.csv_file.flush()
def on_train_end(self, logs=None):
self.csv_file.close()
self.writer = None
@keras_export('keras.callbacks.LambdaCallback')
class LambdaCallback(Callback):
r"""Callback for creating simple, custom callbacks on-the-fly.
This callback is constructed with anonymous functions that will be called
at the appropriate time. Note that the callbacks expects positional
arguments, as:
- `on_epoch_begin` and `on_epoch_end` expect two positional arguments:
`epoch`, `logs`
- `on_batch_begin` and `on_batch_end` expect two positional arguments:
`batch`, `logs`
- `on_train_begin` and `on_train_end` expect one positional argument:
`logs`
Arguments:
on_epoch_begin: called at the beginning of every epoch.
on_epoch_end: called at the end of every epoch.
on_batch_begin: called at the beginning of every batch.
on_batch_end: called at the end of every batch.
on_train_begin: called at the beginning of model training.
on_train_end: called at the end of model training.
Example:
```python
# Print the batch number at the beginning of every batch.
batch_print_callback = LambdaCallback(
on_batch_begin=lambda batch,logs: print(batch))
# Stream the epoch loss to a file in JSON format. The file content
# is not well-formed JSON but rather has a JSON object per line.
import json
json_log = open('loss_log.json', mode='wt', buffering=1)
json_logging_callback = LambdaCallback(
on_epoch_end=lambda epoch, logs: json_log.write(
json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'),
on_train_end=lambda logs: json_log.close()
)
# Terminate some processes after having finished model training.
processes = ...
cleanup_callback = LambdaCallback(
on_train_end=lambda logs: [
p.terminate() for p in processes if p.is_alive()])
model.fit(...,
callbacks=[batch_print_callback,
json_logging_callback,
cleanup_callback])
```
"""
def __init__(self,
on_epoch_begin=None,
on_epoch_end=None,
on_batch_begin=None,
on_batch_end=None,
on_train_begin=None,
on_train_end=None,
**kwargs):
super(LambdaCallback, self).__init__()
self.__dict__.update(kwargs)
if on_epoch_begin is not None:
self.on_epoch_begin = on_epoch_begin
else:
self.on_epoch_begin = lambda epoch, logs: None
if on_epoch_end is not None:
self.on_epoch_end = on_epoch_end
else:
self.on_epoch_end = lambda epoch, logs: None
if on_batch_begin is not None:
self.on_batch_begin = on_batch_begin
else:
self.on_batch_begin = lambda batch, logs: None
if on_batch_end is not None:
self.on_batch_end = on_batch_end
else:
self.on_batch_end = lambda batch, logs: None
if on_train_begin is not None:
self.on_train_begin = on_train_begin
else:
self.on_train_begin = lambda logs: None
if on_train_end is not None:
self.on_train_end = on_train_end
else:
self.on_train_end = lambda logs: None