blob: 01278aad8af2ce719027b6cae7fca24338a72dd5 [file] [log] [blame]
//===- ExecutionEngine.cpp - MLIR Execution engine and utils --------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the execution engine for MLIR modules based on LLVM Orc
// JIT engine.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Target/LLVMIR.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/TargetRegistry.h"
using namespace mlir;
using llvm::Error;
using llvm::Expected;
namespace {
// Memory manager for the JIT's objectLayer. Its main goal is to fallback to
// resolving functions in the current process if they cannot be resolved in the
// JIT-compiled modules.
class MemoryManager : public llvm::SectionMemoryManager {
public:
MemoryManager(llvm::orc::ExecutionSession &execSession)
: session(execSession) {}
// Resolve the named symbol. First, try looking it up in the main library of
// the execution session. If there is no such symbol, try looking it up in
// the current process (for example, if it is a standard library function).
// Return `nullptr` if lookup fails.
llvm::JITSymbol findSymbol(const std::string &name) override {
auto mainLibSymbol = session.lookup({&session.getMainJITDylib()}, name);
if (mainLibSymbol)
return mainLibSymbol.get();
auto address = llvm::RTDyldMemoryManager::getSymbolAddressInProcess(name);
if (!address) {
llvm::errs() << "Could not look up: " << name << '\n';
return nullptr;
}
return llvm::JITSymbol(address, llvm::JITSymbolFlags::Exported);
}
private:
llvm::orc::ExecutionSession &session;
};
} // end anonymous namespace
namespace mlir {
namespace impl {
// Simple layered Orc JIT compilation engine.
class OrcJIT {
public:
using IRTransformer = std::function<Error(llvm::Module *)>;
// Construct a JIT engine for the target host defined by `machineBuilder`,
// using the data layout provided as `dataLayout`.
// Setup the object layer to use our custom memory manager in order to resolve
// calls to library functions present in the process.
OrcJIT(llvm::orc::JITTargetMachineBuilder machineBuilder,
llvm::DataLayout layout, IRTransformer transform)
: irTransformer(transform),
objectLayer(
session,
[this]() { return llvm::make_unique<MemoryManager>(session); }),
compileLayer(
session, objectLayer,
llvm::orc::ConcurrentIRCompiler(std::move(machineBuilder))),
transformLayer(session, compileLayer, makeIRTransformFunction()),
dataLayout(layout), mangler(session, this->dataLayout),
threadSafeCtx(llvm::make_unique<llvm::LLVMContext>()) {
session.getMainJITDylib().setGenerator(
cantFail(llvm::orc::DynamicLibrarySearchGenerator::GetForCurrentProcess(
layout)));
}
// Create a JIT engine for the current host.
static Expected<std::unique_ptr<OrcJIT>>
createDefault(IRTransformer transformer) {
auto machineBuilder = llvm::orc::JITTargetMachineBuilder::detectHost();
if (!machineBuilder)
return machineBuilder.takeError();
auto dataLayout = machineBuilder->getDefaultDataLayoutForTarget();
if (!dataLayout)
return dataLayout.takeError();
return llvm::make_unique<OrcJIT>(std::move(*machineBuilder),
std::move(*dataLayout), transformer);
}
// Add an LLVM module to the main library managed by the JIT engine.
Error addModule(std::unique_ptr<llvm::Module> M) {
return transformLayer.add(
session.getMainJITDylib(),
llvm::orc::ThreadSafeModule(std::move(M), threadSafeCtx));
}
// Lookup a symbol in the main library managed by the JIT engine.
Expected<llvm::JITEvaluatedSymbol> lookup(StringRef Name) {
return session.lookup({&session.getMainJITDylib()}, mangler(Name.str()));
}
private:
// Wrap the `irTransformer` into a function that can be called by the
// IRTranformLayer. If `irTransformer` is not set up, return the module as is
// without errors.
llvm::orc::IRTransformLayer::TransformFunction makeIRTransformFunction() {
return [this](llvm::orc::ThreadSafeModule module,
const llvm::orc::MaterializationResponsibility &resp)
-> Expected<llvm::orc::ThreadSafeModule> {
(void)resp;
if (!irTransformer)
return module;
if (Error err = irTransformer(module.getModule()))
return std::move(err);
return module;
};
}
IRTransformer irTransformer;
llvm::orc::ExecutionSession session;
llvm::orc::RTDyldObjectLinkingLayer objectLayer;
llvm::orc::IRCompileLayer compileLayer;
llvm::orc::IRTransformLayer transformLayer;
llvm::DataLayout dataLayout;
llvm::orc::MangleAndInterner mangler;
llvm::orc::ThreadSafeContext threadSafeCtx;
};
} // end namespace impl
} // namespace mlir
// Wrap a string into an llvm::StringError.
static inline Error make_string_error(const llvm::Twine &message) {
return llvm::make_error<llvm::StringError>(message.str(),
llvm::inconvertibleErrorCode());
}
// Given a list of PassInfo coming from a higher level, creates the passes to
// run as an owning vector and appends the extra required passes to lower to
// LLVMIR. Currently, these extra passes are:
// - constant folding
// - CSE
// - canonicalization
// - affine lowering
static std::vector<std::unique_ptr<mlir::Pass>>
getDefaultPasses(const std::vector<const mlir::PassInfo *> &mlirPassInfoList) {
std::vector<std::unique_ptr<mlir::Pass>> passList;
passList.reserve(mlirPassInfoList.size() + 4);
// Run each of the passes that were selected.
for (const auto *passInfo : mlirPassInfoList) {
passList.emplace_back(passInfo->createPass());
}
// Append the extra passes for lowering to MLIR.
passList.emplace_back(mlir::createConstantFoldPass());
passList.emplace_back(mlir::createCSEPass());
passList.emplace_back(mlir::createCanonicalizerPass());
passList.emplace_back(mlir::createLowerAffinePass());
passList.emplace_back(mlir::createConvertToLLVMIRPass());
return passList;
}
// Run the passes sequentially on the given module.
// Return `nullptr` immediately if any of the passes fails.
static bool runPasses(const std::vector<std::unique_ptr<mlir::Pass>> &passes,
Module *module) {
for (const auto &pass : passes) {
mlir::PassResult result = pass->runOnModule(module);
if (result == mlir::PassResult::Failure || module->verify()) {
llvm::errs() << "Pass failed\n";
return true;
}
}
return false;
}
// Setup LLVM target triple from the current machine.
static bool setupTargetTriple(llvm::Module *llvmModule) {
// Setup the machine properties from the current architecture.
auto targetTriple = llvm::sys::getDefaultTargetTriple();
std::string errorMessage;
auto target = llvm::TargetRegistry::lookupTarget(targetTriple, errorMessage);
if (!target) {
llvm::errs() << "NO target: " << errorMessage << "\n";
return true;
}
auto machine =
target->createTargetMachine(targetTriple, "generic", "", {}, {});
llvmModule->setDataLayout(machine->createDataLayout());
llvmModule->setTargetTriple(targetTriple);
return false;
}
static std::string makePackedFunctionName(StringRef name) {
return "_mlir_" + name.str();
}
// For each function in the LLVM module, define an interface function that wraps
// all the arguments of the original function and all its results into an i8**
// pointer to provide a unified invocation interface.
void packFunctionArguments(llvm::Module *module) {
auto &ctx = module->getContext();
llvm::IRBuilder<> builder(ctx);
llvm::DenseSet<llvm::Function *> interfaceFunctions;
for (auto &func : module->getFunctionList()) {
if (func.isDeclaration()) {
continue;
}
if (interfaceFunctions.count(&func)) {
continue;
}
// Given a function `foo(<...>)`, define the interface function
// `mlir_foo(i8**)`.
auto newType = llvm::FunctionType::get(
builder.getVoidTy(), builder.getInt8PtrTy()->getPointerTo(),
/*isVarArg=*/false);
auto newName = makePackedFunctionName(func.getName());
auto funcCst = module->getOrInsertFunction(newName, newType);
llvm::Function *interfaceFunc =
llvm::cast<llvm::Function>(funcCst.getCallee());
interfaceFunctions.insert(interfaceFunc);
// Extract the arguments from the type-erased argument list and cast them to
// the proper types.
auto bb = llvm::BasicBlock::Create(ctx);
bb->insertInto(interfaceFunc);
builder.SetInsertPoint(bb);
llvm::Value *argList = interfaceFunc->arg_begin();
llvm::SmallVector<llvm::Value *, 8> args;
args.reserve(llvm::size(func.args()));
for (auto &indexedArg : llvm::enumerate(func.args())) {
llvm::Value *argIndex = llvm::Constant::getIntegerValue(
builder.getInt64Ty(), llvm::APInt(64, indexedArg.index()));
llvm::Value *argPtrPtr = builder.CreateGEP(argList, argIndex);
llvm::Value *argPtr = builder.CreateLoad(argPtrPtr);
argPtr = builder.CreateBitCast(
argPtr, indexedArg.value().getType()->getPointerTo());
llvm::Value *arg = builder.CreateLoad(argPtr);
args.push_back(arg);
}
// Call the implementation function with the extracted arguments.
llvm::Value *result = builder.CreateCall(&func, args);
// Assuming the result is one value, potentially of type `void`.
if (!result->getType()->isVoidTy()) {
llvm::Value *retIndex = llvm::Constant::getIntegerValue(
builder.getInt64Ty(), llvm::APInt(64, llvm::size(func.args())));
llvm::Value *retPtrPtr = builder.CreateGEP(argList, retIndex);
llvm::Value *retPtr = builder.CreateLoad(retPtrPtr);
retPtr = builder.CreateBitCast(retPtr, result->getType()->getPointerTo());
builder.CreateStore(result, retPtr);
}
// The interface function returns void.
builder.CreateRetVoid();
}
}
// Out of line for PIMPL unique_ptr.
ExecutionEngine::~ExecutionEngine() = default;
std::unique_ptr<llvm::Module> translateModuleToLLVMIR(const Module &m);
Expected<std::unique_ptr<ExecutionEngine>> ExecutionEngine::create(
Module *m, std::function<llvm::Error(llvm::Module *)> transformer) {
auto engine = llvm::make_unique<ExecutionEngine>();
auto expectedJIT = impl::OrcJIT::createDefault(transformer);
if (!expectedJIT)
return expectedJIT.takeError();
if (runPasses(getDefaultPasses({}), m))
return make_string_error("passes failed");
auto llvmModule = translateModuleToLLVMIR(*m);
if (!llvmModule)
return make_string_error("could not convert to LLVM IR");
// FIXME: the triple should be passed to the translation or dialect conversion
// instead of this. Currently, the LLVM module created above has no triple
// associated with it.
setupTargetTriple(llvmModule.get());
packFunctionArguments(llvmModule.get());
if (auto err = (*expectedJIT)->addModule(std::move(llvmModule)))
return std::move(err);
engine->jit = std::move(*expectedJIT);
return engine;
}
Expected<void (*)(void **)> ExecutionEngine::lookup(StringRef name) const {
auto expectedSymbol = jit->lookup(makePackedFunctionName(name));
if (!expectedSymbol)
return expectedSymbol.takeError();
auto rawFPtr = expectedSymbol->getAddress();
auto fptr = reinterpret_cast<void (*)(void **)>(rawFPtr);
if (!fptr)
return make_string_error("looked up function is null");
return fptr;
}
llvm::Error ExecutionEngine::invoke(StringRef name,
MutableArrayRef<void *> args) {
auto expectedFPtr = lookup(name);
if (!expectedFPtr)
return expectedFPtr.takeError();
auto fptr = *expectedFPtr;
(*fptr)(args.data());
return llvm::Error::success();
}