blob: 9ec192cb170635b47effa91453098531d972608e [file] [log] [blame]
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_CORE_FRAMEWORK_COLLECTIVE_H_
#define TENSORFLOW_CORE_FRAMEWORK_COLLECTIVE_H_
#include <string>
#include <vector>
#include "tensorflow/core/framework/device_attributes.pb.h"
#include "tensorflow/core/framework/device_base.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/lib/core/refcount.h"
#include "tensorflow/core/lib/core/status.h"
namespace tensorflow {
class BufRendezvous;
class CancellationManager;
class CompleteGroupRequest;
class CompleteGroupResponse;
class CompleteInstanceRequest;
class CompleteInstanceResponse;
class Device;
class DeviceMgr;
class GetStepSequenceRequest;
class GetStepSequenceResponse;
class Tensor;
// Types of supported collective operations.
enum CollectiveType {
REDUCTION_COLLECTIVE = 0,
BROADCAST_COLLECTIVE,
GATHER_COLLECTIVE,
UNDEFINED_COLLECTIVE,
};
// Some collective op implementations require runtime group configuration from
// the OpKernel. Currently, this struct is used to set communicator key for
// NCCL-based collective implementation.
struct CollGroupRuntimeDetails {
string communicator_key; // for communicator-based techniques e.g. NCCL
string ToString() const;
};
// Data common to all members of a device group.
// All members share the same device set but its order is
// particular to an instance so it is stored there.
struct CollGroupParams {
int32 group_key;
int32 group_size;
DeviceType device_type;
int32 num_tasks; // number of distinct tasks in group
CollGroupRuntimeDetails runtime_details;
string ToString() const;
CollGroupParams()
: group_key(0), group_size(0), device_type(DEVICE_CPU), num_tasks(0) {}
};
// The best implementation of a collective op depends on many factors
// including the number of devices involved, the topology of
// interconnects between them and the sizes of inputs. This structure
// is used in generating and representing data movement choreography
// for each specific algorithm, hence it does not have a single, fixed
// interpretation. On first execution the runtime will update this
// structure with decisions that will guide all subsequent executions.
struct CollImplDetails {
string collective_name;
std::vector<std::vector<int>> subdiv_permutations;
std::vector<int> subdiv_offsets;
std::vector<int> subdiv_source_rank; // rank of source in each subdiv
std::vector<int32>
dependencies; // collective instances on which this node depends
};
// Data common to all members of a collective instance.
struct CollInstanceParams {
// Identifies all participating graph nodes.
int32 instance_key = -1;
CollectiveType type = UNDEFINED_COLLECTIVE;
DataType data_type = DT_FLOAT;
TensorShape shape = {0};
// Fully qualified name of device for each member, in default rank order.
std::vector<string> device_names;
// Task name prefix of corresponding device name.
std::vector<string> task_names;
// True if every task has the same number of devices.
bool same_num_devices_per_task = false;
// Task -> number of devices on that task.
std::unordered_map<string, int32> num_devices_per_task;
// If passed in to GPUOptions in ConfigProto, defines a good ring order for
// GPUs. Assumes same GPU configuration at each worker.
string gpu_ring_order = "";
CollImplDetails impl_details;
string ToString() const;
CollInstanceParams& operator=(const struct CollInstanceParams& other);
};
// Data common to all instance members in the same task.
struct CollTaskParams {
// True for devices that are local to the process, i.e. no RPC needed.
std::vector<bool> is_local;
string ToString() const;
};
// Unique to a single CollectiveOp node.
struct CollectiveParams {
CollGroupParams group;
CollInstanceParams instance;
CollTaskParams task;
string name = ""; // node name used only for log or error messages
int default_rank = -1; // index of this op within device_names
bool is_source = false; // broadcast only
int source_rank = -1; // broadcast only
// Rank of this device in each subdivision permutation.
std::vector<int> subdiv_rank;
std::unique_ptr<OpKernel> merge_op; // reduction only
std::unique_ptr<OpKernel> final_op; // reduction only
string ToString() const;
};
class CollectiveExecutor;
// Interface that provides resolution of device localities.
class DeviceResolverInterface {
public:
virtual ~DeviceResolverInterface() {}
// Collects DeviceAttributes protobufs from all of the devices identified
// in 'col_params'.
virtual void GetAllDeviceAttributesAsync(
const std::vector<string>& devices, const std::vector<string>& tasks,
std::vector<DeviceAttributes>* attributes,
const StatusCallback& done) = 0;
// Populate *attributes with the DeviceAttributes of the specified
// device.
virtual void GetDeviceAttributesAsync(const string& device,
const string& task,
DeviceAttributes* attributes,
const StatusCallback& done) = 0;
// Clear the cache of device data belonging to the specified task.
virtual void ClearTask(const string& task) = 0;
// Clear the cache of all device data.
virtual void ClearCache() = 0;
};
// Interface that provides resolution of shared CollectiveParams fields.
class ParamResolverInterface {
public:
virtual ~ParamResolverInterface() {}
// Called by each collective op at first execution in order to fill out
// the CollectiveParams structure with data gathered from the full
// (maybe distributed) collection of peer nodes.
virtual void CompleteParamsAsync(const string& device, CollectiveParams* cp,
CancellationManager* cancel_mgr,
const StatusCallback& done) = 0;
// Used within a distributed implementation to discover/verify
// data shared across a device group.
virtual void CompleteGroupAsync(const CompleteGroupRequest* request,
CompleteGroupResponse* response,
CancellationManager* cancel_mgr,
const StatusCallback& done) = 0;
// Used within a distributed implementation to discover/verify data
// shared across an instance group.
virtual void CompleteInstanceAsync(const CompleteInstanceRequest* request,
CompleteInstanceResponse* response,
CancellationManager* cancel_mgr,
const StatusCallback& done) = 0;
};
// Graphs which utilize Collective Ops in a common instance must
// execute with identical step_ids even if they are disjoint graphs
// run by otherwise independent tasks. This interface supplies
// coordinated step_ids to use in such cases.
class StepSequenceInterface {
public:
virtual ~StepSequenceInterface() {}
// Used with a distributed implementation to coordinate step_id
// sequences across tasks.
virtual void GetStepSequenceAsync(const GetStepSequenceRequest* request,
GetStepSequenceResponse* response,
const StatusCallback& done) = 0;
// Refresh the local per-graph_key step_id sequence from collective
// group leader, if applicable.
virtual void RefreshStepIdSequenceAsync(int64 graph_key,
const StatusCallback& done) = 0;
// Returns the step_id that should be used for initiating a new execution
// on the specified graph. May return the same step_id multiple times if
// RetireStepId or RefreshStepIdReservation is not called.
virtual int64 NextStepId(int64 graph_key) = 0;
// Reports that execution of the given step has completed successfully.
// Should be called immediately after a step completes with OK status,
// prior to calling NextStepId(). If the step fails, don't call.
virtual void RetireStepId(int64 graph_key, int64 step_id) = 0;
};
// Interface that provides access to per-step CollectiveExecutor
// instances and various distributed resolution capabilities.
class CollectiveExecutorMgrInterface : public StepSequenceInterface {
public:
virtual ~CollectiveExecutorMgrInterface() {}
// Returns the step-specific CollectiveExecutor, creating if one does not
// already exist. The caller assumes ownership of one Ref on the object.
virtual CollectiveExecutor* FindOrCreate(int64 step_id) = 0;
// If there is a CollectiveExecutor for step_id, remove it from the
// table.
virtual void Cleanup(int64 step_id) = 0;
virtual ParamResolverInterface* GetParamResolver() const = 0;
virtual DeviceResolverInterface* GetDeviceResolver() const = 0;
};
// Interface that a Collective Op implementation uses to exchange data
// with peers. Note that data exchange is currently limited to types
// for which DMAHelper::CanUseDMA() returns true, i.e. dense numeric
// types.
class PeerAccessInterface {
public:
virtual ~PeerAccessInterface() {}
virtual void RecvFromPeer(const string& peer_device, const string& peer_task,
bool peer_is_local, const string& key,
Device* to_device, DeviceContext* to_device_ctx,
const AllocatorAttributes& to_alloc_attr,
Tensor* to_tensor,
const DeviceLocality& client_locality,
int dev_to_dev_stream_index,
const StatusCallback& done) = 0;
virtual void PostToPeer(const string& peer_device, const string& peer_task,
const string& key, Device* from_device,
DeviceContext* from_device_ctx,
const AllocatorAttributes& from_alloc_attr,
const Tensor* from_tensor,
const DeviceLocality& client_locality,
const StatusCallback& done) = 0;
// Runs the potentially-blocking closure/expensive callback.
virtual void RunClosure(std::function<void()> closure) = 0;
};
class PerStepCollectiveRemoteAccess;
// A step-specific object that can execute a collective operation completely
// described by a CollectiveParams object.
class CollectiveExecutor : public PeerAccessInterface, public core::RefCounted {
public:
virtual void StartAbort(const Status& s) {}
virtual void ExecuteAsync(OpKernelContext* ctx,
const CollectiveParams& col_params,
const string& exec_key, StatusCallback done) {
done(errors::Internal(
"A collective Op has been called in a context in which "
"a CollectiveExecutor has not been provided."));
}
virtual void CompleteParamsAsync(const string& device, CollectiveParams* cp,
CancellationManager* cancel_mgr,
StatusCallback done) {
done(errors::Internal(
"A collective Op has been called in a context in which "
"a CollectiveExecutor has not been provided."));
}
virtual PerStepCollectiveRemoteAccess* remote_access() { return nullptr; }
// `WaitForDependencies` and `Launched` are used for fine-grained control of
// execution order between collective instances. These functions are intended
// to be called in `Run` function of collective implementations, and may be
// used to make part, or whole, of the collective execution ordered with
// respect to other collective instances.
//
// `WaitForDependencies` will block until it is safe to continue the callee's
// execution, where safety is defined as: ordered with respect to the
// collective instances defined in the callee's `wait_for` attribute.
virtual void WaitForDependencies(const CollectiveParams& col_params) {}
// `Launched` unblocks the dependent collective instances by recording that
// this callee device has completed the critical portion of the collective
// execution.
virtual void Launched(const CollectiveParams& col_params) {}
// Used to designate an invalid group or instance key.
static int64 kInvalidId;
// Lexically scoped handle for Ref.
class Handle {
public:
explicit Handle(CollectiveExecutor* ce, bool inherit_ref) : ce_(ce) {
if (!inherit_ref) ce->Ref();
}
~Handle() { ce_->Unref(); }
CollectiveExecutor* get() const { return ce_; }
private:
CollectiveExecutor* ce_;
};
protected:
explicit CollectiveExecutor(CollectiveExecutorMgrInterface* cem)
: cem_(cem) {}
// For use only by derived classes
static OpKernelContext::Params* CtxParams(OpKernelContext* ctx);
CollectiveExecutorMgrInterface* cem_;
TF_DISALLOW_COPY_AND_ASSIGN(CollectiveExecutor);
};
// Interface of a helper object that provides a CollectiveExecutor with
// all of the remote access it needs.
class CollectiveRemoteAccess : public PeerAccessInterface,
public DeviceResolverInterface {
public:
virtual ~CollectiveRemoteAccess() {}
virtual BufRendezvous* buf_rendezvous() = 0;
};
// A per-step version of CollectiveRemoteAccess that cleans up outstanding
// communications in case step execution is abandoned.
class PerStepCollectiveRemoteAccess : public CollectiveRemoteAccess {
public:
virtual ~PerStepCollectiveRemoteAccess() {}
virtual void StartAbort(const Status& s) = 0;
};
class CollectiveContext {
public:
CollectiveContext(CollectiveExecutor* col_exec, const DeviceMgr* dev_mgr,
OpKernelContext* ctx, OpKernelContext::Params* op_params,
const CollectiveParams& col_params, const string& exec_key,
int64 step_id, const Tensor* input, Tensor* output);
virtual ~CollectiveContext() = default;
CollectiveExecutor* col_exec; // Not owned
const DeviceMgr* dev_mgr; // Not owned
OpKernelContext* op_ctx; // Not owned
OpKernelContext::Params* op_params; // Not owned
const CollectiveParams& col_params;
const string exec_key;
const int64 step_id;
const Tensor* input; // Not owned
Tensor* output; // Not owned
Device* device; // The device for which this instance labors
const string device_name;
DeviceLocality device_locality;
};
// Interface of a Collective Op implementation. Each specific CollectiveOp will
// implement this interface and register the implementation via the
// CollectiveRegistry detailed below. See common_runtime/ring_reducer and
// common_runtime/hierarchical_tree_broadcaster for examples.
class CollectiveImplementationInterface {
public:
virtual ~CollectiveImplementationInterface() = default;
// Initializes the portions of `col_params` specific to this
// implementation. Called exactly once for every Collective instance during
// the CollectiveParams resolution process when the graph is first executed,
// at the end of `CompleteInstanceLocal()`.
// NOTE(ayushd): This is effectively a static function because it modifies the
// `col_params` passed in and should not manipulate any data members. However
// because it is virtual and needs to be implemented by every derived class we
// do not mark it as static.
virtual Status InitializeCollectiveParams(CollectiveParams* col_params) = 0;
// Prepares the CollectiveContext for executing this CollectiveImplementation.
// Called from CollectiveExecutor right before calling Run(). The
// CollectiveContext passed in must outlive the CollectiveImplementation
// object.
virtual Status InitializeCollectiveContext(CollectiveContext* col_ctx) = 0;
// Performs collective implementation specific group initialization. The
// intention is to do group-specific initialization of runtime details for the
// collective implementation. Currently used only to set `communicator_key`
// in techniques which use a communicator for distributed collectives (NCCL).
virtual Status InitializeCollectiveGroupRuntimeDetails(
CollGroupRuntimeDetails* col_group_runtime_details) = 0;
// Processes and moves data according to the logic of this Collective
// implementation. Relies on appropriate initialization of op-specific
// CollectiveParams in InitializeCollectiveParams(), as well as appropriate
// context initialization in InitializeCollectiveContext().
virtual void Run(StatusCallback done) = 0;
};
// Static-methods only class for registering and looking up collective
// implementations.
class CollectiveRegistry {
public:
using Factory = std::function<CollectiveImplementationInterface*()>;
// Looks up a previously registered CollectiveImplementation under
// `collective_name`. If found, creates an instance of the implementation and
// assign to `implementation`.
static Status Lookup(const string& collective_name,
CollectiveImplementationInterface** implementation);
// Looks up a previously registered CollectiveImplementation under
// `collective_name`. If found, returns the static instance of this
// implementation via `implementation`. This instance should only be used to
// call InitializateCollectiveParams.
static Status LookupParamResolverInstance(
const string& collective_name,
CollectiveImplementationInterface** implementation);
// Returns all registered collective implementations.
static void GetAll(
std::vector<CollectiveImplementationInterface*>* implementations);
private:
friend class CollectiveRegistration;
// Registers a CollectiveImplementation with name `collective_name` and
// factory `factory`. The latter is a function used to create instances of
// the CollectiveImplementation. Also creates a static instance of the
// implementation - this instance is used during param resolution and should
// only be used to call InitializeCollectiveParams.
static Status Register(const string& collective_name, Factory factory);
static Status LookupHelper(const string& collective_name,
CollectiveImplementationInterface** implementation,
bool param_resolver);
};
// Class used to call CollectiveRegistry::Register. This should only be used to
// create a global static object.
class CollectiveRegistration {
public:
CollectiveRegistration(const string& collective_name,
CollectiveRegistry::Factory factory) {
TF_CHECK_OK(CollectiveRegistry::Register(collective_name, factory));
}
};
#define REGISTER_COLLECTIVE(name, implementation) \
static CollectiveRegistration register_##name##_collective( \
#name, []() { return new implementation; });
} // namespace tensorflow
#endif // TENSORFLOW_CORE_FRAMEWORK_COLLECTIVE_H_