blob: 931c1159030514373a17c6026c88b25332af8105 [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests and benchmarks for the ResNet50 model, executed eagerly."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gc
import os
import tempfile
import time
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorflow.python.client import device_lib
from tensorflow.python.eager import context
from tensorflow.python.eager import tape
from tensorflow.python.eager.benchmarks.resnet50 import resnet50
def device_and_data_format():
if tf.config.experimental.list_physical_devices('GPU'):
return ('/gpu:0', 'channels_first')
return ('/cpu:0', 'channels_last')
def random_batch(batch_size, data_format):
shape = (3, 224, 224) if data_format == 'channels_first' else (224, 224, 3)
shape = (batch_size,) + shape
num_classes = 1000
images = tf.random_uniform(shape)
labels = tf.random_uniform(
[batch_size], minval=0, maxval=num_classes, dtype=tf.int32)
one_hot = tf.one_hot(labels, num_classes)
return images, one_hot
def compute_gradients(model, images, labels, num_replicas=1):
with tf.GradientTape() as grad_tape:
logits = model(images, training=True)
loss = tf.losses.softmax_cross_entropy(
logits=logits, onehot_labels=labels)
tf.compat.v2.summary.write('loss', loss)
if num_replicas != 1:
loss /= num_replicas
# TODO(b/110991947): We can mistakenly trace the gradient call in
# multi-threaded environment. Explicitly disable recording until
# this is fixed.
with tape.stop_recording():
grads = grad_tape.gradient(loss, model.variables)
return grads
def apply_gradients(model, optimizer, gradients):
optimizer.apply_gradients(zip(gradients, model.variables))
def _events_from_file(filepath):
"""Returns all events in a single event file.
Args:
filepath: Path to the event file.
Returns:
A list of all tf.compat.v1.Event protos in the event file.
"""
records = list(tf.python_io.tf_record_iterator(filepath))
result = []
for r in records:
event = tf.Event()
event.ParseFromString(r)
result.append(event)
return result
def events_from_logdir(logdir):
"""Returns all events in the single eventfile in logdir.
Args:
logdir: The directory in which the single event file is sought.
Returns:
A list of all tf.compat.v1.Event protos from the single event file.
Raises:
AssertionError: If logdir does not contain exactly one file.
"""
assert tf.io.gfile.exists(logdir)
files = tf.io.gfile.listdir(logdir)
assert len(files) == 1, 'Found not exactly one file in logdir: %s' % files
return _events_from_file(os.path.join(logdir, files[0]))
class ResNet50Test(tf.test.TestCase):
def _apply(self, defun=False, execution_mode=None):
device, data_format = device_and_data_format()
model = resnet50.ResNet50(data_format)
if defun:
model.call = tf.function(model.call)
with tf.device(device), context.execution_mode(execution_mode):
images, _ = random_batch(2, data_format)
output = model(images, training=False)
context.async_wait()
self.assertEqual((2, 1000), output.shape)
def test_apply(self):
self._apply(defun=False)
def test_apply_async(self):
self._apply(defun=False, execution_mode=context.ASYNC)
def test_apply_with_defun(self):
self._apply(defun=True)
def test_apply_with_defun_async(self):
self._apply(defun=True, execution_mode=context.ASYNC)
def test_apply_no_top(self):
device, data_format = device_and_data_format()
model = resnet50.ResNet50(data_format, include_top=False)
with tf.device(device):
images, _ = random_batch(2, data_format)
output = model(images, training=False)
output_shape = ((2, 2048, 1, 1)
if data_format == 'channels_first' else (2, 1, 1, 2048))
self.assertEqual(output_shape, output.shape)
def test_apply_with_pooling(self):
device, data_format = device_and_data_format()
model = resnet50.ResNet50(data_format, include_top=False, pooling='avg')
with tf.device(device):
images, _ = random_batch(2, data_format)
output = model(images, training=False)
self.assertEqual((2, 2048), output.shape)
def _test_train(self, execution_mode=None):
device, data_format = device_and_data_format()
model = resnet50.ResNet50(data_format)
tf.compat.v2.summary.experimental.set_step(
tf.train.get_or_create_global_step())
logdir = tempfile.mkdtemp()
with tf.compat.v2.summary.create_file_writer(
logdir, max_queue=0,
name='t0').as_default(), tf.compat.v2.summary.record_if(True):
with tf.device(device), context.execution_mode(execution_mode):
optimizer = tf.train.GradientDescentOptimizer(0.1)
images, labels = random_batch(2, data_format)
apply_gradients(model, optimizer,
compute_gradients(model, images, labels))
self.assertEqual(320, len(model.variables))
context.async_wait()
events = events_from_logdir(logdir)
self.assertEqual(len(events), 2)
self.assertEqual(events[1].summary.value[0].tag, 'loss')
def test_train(self):
self._test_train()
def test_train_async(self):
self._test_train(execution_mode=context.ASYNC)
def test_no_garbage(self):
device, data_format = device_and_data_format()
model = resnet50.ResNet50(data_format)
optimizer = tf.train.GradientDescentOptimizer(0.1)
with tf.device(device):
images, labels = random_batch(2, data_format)
gc.disable()
# Warm up. Note that this first run does create significant amounts of
# garbage to be collected. The hope is that this is a build-only effect,
# and a subsequent training loop will create nothing which needs to be
# collected.
apply_gradients(model, optimizer,
compute_gradients(model, images, labels))
gc.collect()
previous_gc_debug_flags = gc.get_debug()
gc.set_debug(gc.DEBUG_SAVEALL)
for _ in range(2):
# Run twice to ensure that garbage that is created on the first
# iteration is no longer accessible.
apply_gradients(model, optimizer,
compute_gradients(model, images, labels))
gc.collect()
# There should be no garbage requiring collection.
self.assertEqual(0, len(gc.garbage))
gc.set_debug(previous_gc_debug_flags)
gc.enable()
class MockIterator(object):
def __init__(self, tensors):
self._tensors = [tf.identity(x) for x in tensors]
def next(self):
return self._tensors
class ResNet50Benchmarks(tf.test.Benchmark):
def _train_batch_sizes(self):
"""Choose batch sizes based on GPU capability."""
for device in device_lib.list_local_devices():
# TODO(b/141475121): We need some way to check which batch sizes would
# work using a public API.
if tf.DeviceSpec.from_string(device.name).device_type == 'GPU':
# Avoid OOM errors with larger batch sizes, which seem to cause errors
# later on even if caught.
#
# TODO(allenl): Base this on device memory; memory limit information
# during the test seems to exclude the amount TensorFlow has allocated,
# which isn't useful.
if 'K20' in device.physical_device_desc:
return (16,)
if 'P100' in device.physical_device_desc:
return (16, 32, 64)
if tf.DeviceSpec.from_string(device.name).device_type == 'TPU':
return (32,)
return (16, 32)
def _report(self, label, start, num_iters, device, batch_size, data_format,
num_replicas=1):
avg_time = (time.time() - start) / num_iters
dev = tf.DeviceSpec.from_string(device).device_type.lower()
replica_str = '' if num_replicas == 1 else 'replicas_%d_' % num_replicas
name = '%s_%s_batch_%d_%s%s' % (label, dev, batch_size,
replica_str, data_format)
extras = {'examples_per_sec': (num_replicas * batch_size) / avg_time}
self.report_benchmark(
iters=num_iters, wall_time=avg_time, name=name, extras=extras)
def _force_device_sync(self):
# If this function is called in the context of a non-CPU device
# (e.g., inside a 'with tf.device("/gpu:0")' block)
# then this will force a copy from CPU->NON_CPU_DEVICE->CPU,
# which forces a sync. This is a roundabout way, yes.
tf.constant(1.).cpu()
def _benchmark_eager_apply(self, label, device_and_format, defun=False,
execution_mode=None):
with context.execution_mode(execution_mode):
device, data_format = device_and_format
model = resnet50.ResNet50(data_format)
if defun:
model.call = tf.function(model.call)
batch_size = 64
num_burn = 5
num_iters = 30
with tf.device(device):
images, _ = random_batch(batch_size, data_format)
for _ in xrange(num_burn):
model(images, training=False).cpu()
if execution_mode:
context.async_wait()
gc.collect()
start = time.time()
for _ in xrange(num_iters):
model(images, training=False).cpu()
if execution_mode:
context.async_wait()
self._report(label, start, num_iters, device, batch_size, data_format)
def benchmark_eager_apply_sync(self):
self._benchmark_eager_apply('eager_apply', device_and_data_format(),
defun=False)
def benchmark_eager_apply_async(self):
self._benchmark_eager_apply(
'eager_apply_async', device_and_data_format(), defun=False,
execution_mode=context.ASYNC)
def benchmark_eager_apply_with_defun(self):
self._benchmark_eager_apply('eager_apply_with_defun',
device_and_data_format(), defun=True)
def _benchmark_eager_train(self,
label,
make_iterator,
device_and_format,
defun=False,
execution_mode=None):
with context.execution_mode(execution_mode):
device, data_format = device_and_format
for batch_size in self._train_batch_sizes():
(images, labels) = random_batch(batch_size, data_format)
model = resnet50.ResNet50(data_format)
optimizer = tf.train.GradientDescentOptimizer(0.1)
apply_grads = apply_gradients
if defun:
model.call = tf.function(model.call)
apply_grads = tf.function(apply_gradients)
num_burn = 3
num_iters = 10
with tf.device(device):
iterator = make_iterator((images, labels))
for _ in xrange(num_burn):
(images, labels) = iterator.next()
apply_grads(model, optimizer,
compute_gradients(model, images, labels))
if execution_mode:
context.async_wait()
self._force_device_sync()
gc.collect()
start = time.time()
for _ in xrange(num_iters):
(images, labels) = iterator.next()
apply_grads(model, optimizer,
compute_gradients(model, images, labels))
if execution_mode:
context.async_wait()
self._force_device_sync()
self._report(label, start, num_iters, device, batch_size, data_format)
def benchmark_eager_train_sync(self):
self._benchmark_eager_train('eager_train', MockIterator,
device_and_data_format(), defun=False)
def benchmark_eager_train_async(self):
self._benchmark_eager_train(
'eager_train_async',
MockIterator,
device_and_data_format(),
defun=False,
execution_mode=context.ASYNC)
def benchmark_eager_train_with_defun(self):
self._benchmark_eager_train(
'eager_train_with_defun', MockIterator,
device_and_data_format(), defun=True)
def benchmark_eager_train_datasets(self):
def make_iterator(tensors):
with tf.device('/device:CPU:0'):
ds = tf.data.Dataset.from_tensors(tensors).repeat()
return iter(ds)
self._benchmark_eager_train(
'eager_train_dataset', make_iterator,
device_and_data_format(), defun=False)
def benchmark_eager_train_datasets_with_defun(self):
def make_iterator(tensors):
with tf.device('/device:CPU:0'):
ds = tf.data.Dataset.from_tensors(tensors).repeat()
return iter(ds)
self._benchmark_eager_train(
'eager_train_dataset_with_defun', make_iterator,
device_and_data_format(), defun=True)
if __name__ == '__main__':
tf.enable_eager_execution()
tf.test.main()