blob: 6dfbbf3694f2afe021b862ac774b2a8234d55a48 [file] [log] [blame]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-import-not-at-top
"""Callbacks: utilities called at certain points during model training.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import deque
from collections import Iterable
from collections import OrderedDict
import copy
import csv
import json
import math
import os
import time
import numpy as np
import six
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.engine.training_utils import standardize_input_data
from tensorflow.python.keras.utils.data_utils import Sequence
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import summary_ops_v2
from tensorflow.python.ops import variables
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.summary import summary as tf_summary
from tensorflow.python.training import saver
from tensorflow.python.util.tf_export import tf_export
try:
import requests
except ImportError:
requests = None
def configure_callbacks(callbacks,
model,
do_validation=False,
val_inputs=None,
val_targets=None,
val_sample_weights=None,
batch_size=None,
epochs=None,
steps_per_epoch=None,
samples=None,
validation_steps=None,
verbose=1,
count_mode='steps'):
"""Configures callbacks for use in various training loops.
Arguments:
callbacks: List of Callbacks.
model: Model being trained.
do_validation: Whether or not validation loop will be run.
val_inputs: Inputs to Model for validation loop. Can be any
data format Keras accepts.
val_targets: Targets for Model for validation loop. Can be any
data format Keras accepts.
val_sample_weights: Sample weights for Model for validation loop.
Can be any data format Keras accepts.
batch_size: Number of samples per batch.
epochs: Number of epoch to train.
steps_per_epoch: Number of batches to run per training epoch.
samples: Number of training samples.
validation_steps: Number of batches to run per validation epoch.
verbose: int, 0 or 1. Keras logging verbosity to pass to ProgbarLogger.
count_mode: One of 'steps' or 'samples'. Per-batch or per-sample count.
Returns:
Instance of CallbackList used to control all Callbacks.
"""
# Add additional callbacks
model.history = History()
stateful_metric_names = None
if hasattr(model, 'stateful_metric_names'):
stateful_metric_names = model.stateful_metric_names
callbacks = [BaseLogger(stateful_metrics=stateful_metric_names)
] + (callbacks or []) + [model.history]
if verbose:
callbacks.append(
ProgbarLogger(count_mode, stateful_metrics=stateful_metric_names))
callback_list = CallbackList(callbacks)
# Set callback model
callback_model = model._get_callback_model() # pylint: disable=protected-access
if do_validation and val_inputs and not context.executing_eagerly():
# Need to create the test_function before start of the first epoch
# because TensorBoard callback on_epoch_begin adds summary to the
# list of fetches of the test_function
callback_model._make_test_function() # pylint: disable=protected-access
callback_list.set_model(callback_model)
# Set callback parameters
callback_metrics = []
# When we have deferred build scenario with iterator input, we will compile
# when we standardize first batch of data.
if model._is_compiled: # pylint: disable=protected-access
callback_metrics = copy.copy(model.metrics_names)
if do_validation:
callback_metrics += ['val_' + n for n in model.metrics_names]
if validation_steps is None and isinstance(val_inputs, Sequence):
validation_steps = len(val_inputs)
callback_params = {
'batch_size': batch_size,
'epochs': epochs,
'steps': steps_per_epoch,
'samples': samples,
'verbose': verbose,
'do_validation': do_validation,
'metrics': callback_metrics,
'validation_steps': validation_steps
}
callback_list.set_params(callback_params)
# Pass validation data to callbacks
if not val_inputs:
val_data = []
elif _is_generator_like(val_inputs):
val_data = val_inputs
else:
val_data = val_inputs + val_targets
if val_sample_weights:
val_data += val_sample_weights
if model.uses_learning_phase and not isinstance(K.learning_phase(), int):
val_data += [0.]
for cbk in callbacks:
cbk.validation_data = val_data
callback_list.model.stop_training = False
return callback_list
def _is_generator_like(data):
"""Checks if data is a generator, Sequence, or Iterator."""
return (hasattr(data, 'next') or hasattr(data, '__next__') or isinstance(
data, (Sequence, iterator_ops.Iterator, iterator_ops.EagerIterator)))
class CallbackList(object):
"""Container abstracting a list of callbacks.
Arguments:
callbacks: List of `Callback` instances.
queue_length: Queue length for keeping
running statistics over callback execution time.
"""
def __init__(self, callbacks=None, queue_length=10):
callbacks = callbacks or []
self.callbacks = [c for c in callbacks]
self.queue_length = queue_length
self.params = {}
self.model = None
def append(self, callback):
self.callbacks.append(callback)
def set_params(self, params):
self.params = params
for callback in self.callbacks:
callback.set_params(params)
def set_model(self, model):
self.model = model
for callback in self.callbacks:
callback.set_model(model)
def on_epoch_begin(self, epoch, logs=None):
"""Called at the start of an epoch.
Arguments:
epoch: integer, index of epoch.
logs: dictionary of logs.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_epoch_begin(epoch, logs)
self._delta_t_batch = 0.
self._delta_ts_batch_begin = deque([], maxlen=self.queue_length)
self._delta_ts_batch_end = deque([], maxlen=self.queue_length)
def on_epoch_end(self, epoch, logs=None):
"""Called at the end of an epoch.
Arguments:
epoch: integer, index of epoch.
logs: dictionary of logs.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_epoch_end(epoch, logs)
def on_batch_begin(self, batch, logs=None):
"""Called right before processing a batch.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dictionary of logs.
"""
logs = logs or {}
t_before_callbacks = time.time()
for callback in self.callbacks:
callback.on_batch_begin(batch, logs)
self._delta_ts_batch_begin.append(time.time() - t_before_callbacks)
delta_t_median = np.median(self._delta_ts_batch_begin)
if (self._delta_t_batch > 0. and
delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1):
logging.warning('Method on_batch_begin() is slow compared '
'to the batch update (%f). Check your callbacks.',
delta_t_median)
self._t_enter_batch = time.time()
def on_batch_end(self, batch, logs=None):
"""Called at the end of a batch.
Arguments:
batch: integer, index of batch within the current epoch.
logs: dictionary of logs.
"""
logs = logs or {}
if not hasattr(self, '_t_enter_batch'):
self._t_enter_batch = time.time()
self._delta_t_batch = time.time() - self._t_enter_batch
t_before_callbacks = time.time()
for callback in self.callbacks:
callback.on_batch_end(batch, logs)
self._delta_ts_batch_end.append(time.time() - t_before_callbacks)
delta_t_median = np.median(self._delta_ts_batch_end)
if (self._delta_t_batch > 0. and
(delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)):
logging.warning('Method on_batch_end() is slow compared '
'to the batch update (%f). Check your callbacks.',
delta_t_median)
def on_train_begin(self, logs=None):
"""Called at the beginning of training.
Arguments:
logs: dictionary of logs.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_train_begin(logs)
def on_train_end(self, logs=None):
"""Called at the end of training.
Arguments:
logs: dictionary of logs.
"""
logs = logs or {}
for callback in self.callbacks:
callback.on_train_end(logs)
def __iter__(self):
return iter(self.callbacks)
@tf_export('keras.callbacks.Callback')
class Callback(object):
"""Abstract base class used to build new callbacks.
Attributes:
params: dict. Training parameters
(eg. verbosity, batch size, number of epochs...).
model: instance of `keras.models.Model`.
Reference of the model being trained.
The `logs` dictionary that callback methods
take as argument will contain keys for quantities relevant to
the current batch or epoch.
Currently, the `.fit()` method of the `Sequential` model class
will include the following quantities in the `logs` that
it passes to its callbacks:
on_epoch_end: logs include `acc` and `loss`, and
optionally include `val_loss`
(if validation is enabled in `fit`), and `val_acc`
(if validation and accuracy monitoring are enabled).
on_batch_begin: logs include `size`,
the number of samples in the current batch.
on_batch_end: logs include `loss`, and optionally `acc`
(if accuracy monitoring is enabled).
"""
def __init__(self):
self.validation_data = None
self.model = None
def set_params(self, params):
self.params = params
def set_model(self, model):
self.model = model
def on_epoch_begin(self, epoch, logs=None):
pass
def on_epoch_end(self, epoch, logs=None):
pass
def on_batch_begin(self, batch, logs=None):
pass
def on_batch_end(self, batch, logs=None):
pass
def on_train_begin(self, logs=None):
pass
def on_train_end(self, logs=None):
pass
@tf_export('keras.callbacks.BaseLogger')
class BaseLogger(Callback):
"""Callback that accumulates epoch averages of metrics.
This callback is automatically applied to every Keras model.
Arguments:
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over an epoch.
Metrics in this list will be logged as-is in `on_epoch_end`.
All others will be averaged in `on_epoch_end`.
"""
def __init__(self, stateful_metrics=None):
super(BaseLogger, self).__init__()
self.stateful_metrics = set(stateful_metrics or [])
def on_epoch_begin(self, epoch, logs=None):
self.seen = 0
self.totals = {}
def on_batch_end(self, batch, logs=None):
logs = logs or {}
batch_size = logs.get('size', 0)
# In case of distribution strategy we can potentially run multiple steps
# at the same time, we should account for that in the `seen` calculation.
num_steps = logs.get('num_steps', 1)
self.seen += batch_size * num_steps
for k, v in logs.items():
if k in self.stateful_metrics:
self.totals[k] = v
else:
if k in self.totals:
self.totals[k] += v * batch_size
else:
self.totals[k] = v * batch_size
def on_epoch_end(self, epoch, logs=None):
if logs is not None:
for k in self.params['metrics']:
if k in self.totals:
# Make value available to next callbacks.
if k in self.stateful_metrics:
logs[k] = self.totals[k]
else:
logs[k] = self.totals[k] / self.seen
@tf_export('keras.callbacks.TerminateOnNaN')
class TerminateOnNaN(Callback):
"""Callback that terminates training when a NaN loss is encountered.
"""
def on_batch_end(self, batch, logs=None):
logs = logs or {}
loss = logs.get('loss')
if loss is not None:
if np.isnan(loss) or np.isinf(loss):
print('Batch %d: Invalid loss, terminating training' % (batch))
self.model.stop_training = True
@tf_export('keras.callbacks.ProgbarLogger')
class ProgbarLogger(Callback):
"""Callback that prints metrics to stdout.
Arguments:
count_mode: One of "steps" or "samples".
Whether the progress bar should
count samples seen or steps (batches) seen.
stateful_metrics: Iterable of string names of metrics that
should *not* be averaged over an epoch.
Metrics in this list will be logged as-is.
All others will be averaged over time (e.g. loss, etc).
Raises:
ValueError: In case of invalid `count_mode`.
"""
def __init__(self, count_mode='samples', stateful_metrics=None):
super(ProgbarLogger, self).__init__()
if count_mode == 'samples':
self.use_steps = False
elif count_mode == 'steps':
self.use_steps = True
else:
raise ValueError('Unknown `count_mode`: ' + str(count_mode))
self.stateful_metrics = set(stateful_metrics or [])
def on_train_begin(self, logs=None):
self.verbose = self.params['verbose']
self.epochs = self.params['epochs']
def on_epoch_begin(self, epoch, logs=None):
if self.verbose:
print('Epoch %d/%d' % (epoch + 1, self.epochs))
if self.use_steps:
target = self.params['steps']
else:
target = self.params['samples']
self.target = target
self.progbar = Progbar(
target=self.target,
verbose=self.verbose,
stateful_metrics=self.stateful_metrics)
self.seen = 0
def on_batch_begin(self, batch, logs=None):
if self.seen < self.target:
self.log_values = []
def on_batch_end(self, batch, logs=None):
logs = logs or {}
batch_size = logs.get('size', 0)
# In case of distribution strategy we can potentially run multiple steps
# at the same time, we should account for that in the `seen` calculation.
num_steps = logs.get('num_steps', 1)
if self.use_steps:
self.seen += num_steps
else:
self.seen += batch_size * num_steps
for k in self.params['metrics']:
if k in logs:
self.log_values.append((k, logs[k]))
# Skip progbar update for the last batch;
# will be handled by on_epoch_end.
if self.verbose and self.seen < self.target:
self.progbar.update(self.seen, self.log_values)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
for k in self.params['metrics']:
if k in logs:
self.log_values.append((k, logs[k]))
if self.verbose:
self.progbar.update(self.seen, self.log_values)
@tf_export('keras.callbacks.History')
class History(Callback):
"""Callback that records events into a `History` object.
This callback is automatically applied to
every Keras model. The `History` object
gets returned by the `fit` method of models.
"""
def on_train_begin(self, logs=None):
self.epoch = []
self.history = {}
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epoch.append(epoch)
for k, v in logs.items():
self.history.setdefault(k, []).append(v)
@tf_export('keras.callbacks.ModelCheckpoint')
class ModelCheckpoint(Callback):
"""Save the model after every epoch.
`filepath` can contain named formatting options,
which will be filled the value of `epoch` and
keys in `logs` (passed in `on_epoch_end`).
For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`,
then the model checkpoints will be saved with the epoch number and
the validation loss in the filename.
Arguments:
filepath: string, path to save the model file.
monitor: quantity to monitor.
verbose: verbosity mode, 0 or 1.
save_best_only: if `save_best_only=True`,
the latest best model according to
the quantity monitored will not be overwritten.
mode: one of {auto, min, max}.
If `save_best_only=True`, the decision
to overwrite the current save file is made
based on either the maximization or the
minimization of the monitored quantity. For `val_acc`,
this should be `max`, for `val_loss` this should
be `min`, etc. In `auto` mode, the direction is
automatically inferred from the name of the monitored quantity.
save_weights_only: if True, then only the model's weights will be
saved (`model.save_weights(filepath)`), else the full model
is saved (`model.save(filepath)`).
period: Interval (number of epochs) between checkpoints.
"""
def __init__(self,
filepath,
monitor='val_loss',
verbose=0,
save_best_only=False,
save_weights_only=False,
mode='auto',
period=1):
super(ModelCheckpoint, self).__init__()
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
self.save_best_only = save_best_only
self.save_weights_only = save_weights_only
self.period = period
self.epochs_since_last_save = 0
if mode not in ['auto', 'min', 'max']:
logging.warning('ModelCheckpoint mode %s is unknown, '
'fallback to auto mode.', mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epochs_since_last_save += 1
if self.epochs_since_last_save >= self.period:
self.epochs_since_last_save = 0
filepath = self.filepath.format(epoch=epoch + 1, **logs)
if self.save_best_only:
current = logs.get(self.monitor)
if current is None:
logging.warning('Can save best model only with %s available, '
'skipping.', self.monitor)
else:
if self.monitor_op(current, self.best):
if self.verbose > 0:
print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
' saving model to %s' % (epoch + 1, self.monitor, self.best,
current, filepath))
self.best = current
if self.save_weights_only:
self.model.save_weights(filepath, overwrite=True)
else:
self.model.save(filepath, overwrite=True)
else:
if self.verbose > 0:
print('\nEpoch %05d: %s did not improve from %0.5f' %
(epoch + 1, self.monitor, self.best))
else:
if self.verbose > 0:
print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
if self.save_weights_only:
self.model.save_weights(filepath, overwrite=True)
else:
self.model.save(filepath, overwrite=True)
@tf_export('keras.callbacks.EarlyStopping')
class EarlyStopping(Callback):
"""Stop training when a monitored quantity has stopped improving.
Arguments:
monitor: quantity to be monitored.
min_delta: minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than min_delta, will count as no
improvement.
patience: number of epochs with no improvement
after which training will be stopped.
verbose: verbosity mode.
mode: one of {auto, min, max}. In `min` mode,
training will stop when the quantity
monitored has stopped decreasing; in `max`
mode it will stop when the quantity
monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred
from the name of the monitored quantity.
baseline: baseline value for the monitored quantity.
Training will stop if the model doesn't show improvement over the
baseline.
"""
def __init__(self,
monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None):
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.baseline = baseline
self.min_delta = abs(min_delta)
self.wait = 0
self.stopped_epoch = 0
if mode not in ['auto', 'min', 'max']:
logging.warning('EarlyStopping mode %s is unknown, '
'fallback to auto mode.', mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
elif mode == 'max':
self.monitor_op = np.greater
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
else:
self.monitor_op = np.less
if self.monitor_op == np.greater:
self.min_delta *= 1
else:
self.min_delta *= -1
def on_train_begin(self, logs=None):
# Allow instances to be re-used
self.wait = 0
self.stopped_epoch = 0
if self.baseline is not None:
self.best = self.baseline
else:
self.best = np.Inf if self.monitor_op == np.less else -np.Inf
def on_epoch_end(self, epoch, logs=None):
current = logs.get(self.monitor)
if current is None:
logging.warning('Early stopping conditioned on metric `%s` '
'which is not available. Available metrics are: %s',
self.monitor, ','.join(list(logs.keys())))
return
if self.monitor_op(current - self.min_delta, self.best):
self.best = current
self.wait = 0
else:
self.wait += 1
if self.wait >= self.patience:
self.stopped_epoch = epoch
self.model.stop_training = True
def on_train_end(self, logs=None):
if self.stopped_epoch > 0 and self.verbose > 0:
print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))
@tf_export('keras.callbacks.RemoteMonitor')
class RemoteMonitor(Callback):
"""Callback used to stream events to a server.
Requires the `requests` library.
Events are sent to `root + '/publish/epoch/end/'` by default. Calls are
HTTP POST, with a `data` argument which is a
JSON-encoded dictionary of event data.
If send_as_json is set to True, the content type of the request will be
application/json. Otherwise the serialized JSON will be sent within a form.
Arguments:
root: String; root url of the target server.
path: String; path relative to `root` to which the events will be sent.
field: String; JSON field under which the data will be stored.
The field is used only if the payload is sent within a form
(i.e. send_as_json is set to False).
headers: Dictionary; optional custom HTTP headers.
send_as_json: Boolean; whether the request should be
sent as application/json.
"""
def __init__(self,
root='http://localhost:9000',
path='/publish/epoch/end/',
field='data',
headers=None,
send_as_json=False):
super(RemoteMonitor, self).__init__()
self.root = root
self.path = path
self.field = field
self.headers = headers
self.send_as_json = send_as_json
def on_epoch_end(self, epoch, logs=None):
if requests is None:
raise ImportError('RemoteMonitor requires the `requests` library.')
logs = logs or {}
send = {}
send['epoch'] = epoch
for k, v in logs.items():
send[k] = v
try:
if self.send_as_json:
requests.post(self.root + self.path, json=send, headers=self.headers)
else:
requests.post(
self.root + self.path, {self.field: json.dumps(send)},
headers=self.headers)
except requests.exceptions.RequestException:
logging.warning('Warning: could not reach RemoteMonitor '
'root server at ' + str(self.root))
@tf_export('keras.callbacks.LearningRateScheduler')
class LearningRateScheduler(Callback):
"""Learning rate scheduler.
Arguments:
schedule: a function that takes an epoch index as input
(integer, indexed from 0) and returns a new
learning rate as output (float).
verbose: int. 0: quiet, 1: update messages.
"""
def __init__(self, schedule, verbose=0):
super(LearningRateScheduler, self).__init__()
self.schedule = schedule
self.verbose = verbose
def on_epoch_begin(self, epoch, logs=None):
if not hasattr(self.model.optimizer, 'lr'):
raise ValueError('Optimizer must have a "lr" attribute.')
try: # new API
lr = float(K.get_value(self.model.optimizer.lr))
lr = self.schedule(epoch, lr)
except TypeError: # Support for old API for backward compatibility
lr = self.schedule(epoch)
if not isinstance(lr, (float, np.float32, np.float64)):
raise ValueError('The output of the "schedule" function '
'should be float.')
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nEpoch %05d: LearningRateScheduler reducing learning '
'rate to %s.' % (epoch + 1, lr))
@tf_export('keras.callbacks.TensorBoard')
class TensorBoard(Callback):
# pylint: disable=line-too-long
"""Tensorboard basic visualizations.
This callback writes a log for TensorBoard, which allows
you to visualize dynamic graphs of your training and test
metrics, as well as activation histograms for the different
layers in your model.
TensorBoard is a visualization tool provided with TensorFlow.
If you have installed TensorFlow with pip, you should be able
to launch TensorBoard from the command line:
```sh
tensorboard --logdir=/full_path_to_your_logs
```
You can find more information about TensorBoard
[here](https://www.tensorflow.org/get_started/summaries_and_tensorboard).
Arguments:
log_dir: the path of the directory where to save the log
files to be parsed by TensorBoard.
histogram_freq: frequency (in epochs) at which to compute activation
and weight histograms for the layers of the model. If set to 0,
histograms won't be computed. Validation data (or split) must be
specified for histogram visualizations.
write_graph: whether to visualize the graph in TensorBoard.
The log file can become quite large when
write_graph is set to True.
write_grads: whether to visualize gradient histograms in TensorBoard.
`histogram_freq` must be greater than 0.
batch_size: size of batch of inputs to feed to the network
for histograms computation.
write_images: whether to write model weights to visualize as
image in TensorBoard.
embeddings_freq: frequency (in epochs) at which selected embedding
layers will be saved. If set to 0, embeddings won't be computed.
Data to be visualized in TensorBoard's Embedding tab must be passed
as `embeddings_data`.
embeddings_layer_names: a list of names of layers to keep eye on. If
None or empty list all the embedding layer will be watched.
embeddings_metadata: a dictionary which maps layer name to a file name
in which metadata for this embedding layer is saved. See the
[details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
about metadata files format. In case if the same metadata file is
used for all embedding layers, string can be passed.
embeddings_data: data to be embedded at layers specified in
`embeddings_layer_names`. Numpy array (if the model has a single
input) or list of Numpy arrays (if the model has multiple inputs).
Learn [more about embeddings](https://www.tensorflow.org/programmers_guide/embedding)
Raises:
ValueError: If histogram_freq is set and no validation data is provided.
@compatibility(eager)
Using `Tensorboard` callback will work while eager execution is enabled,
however outputting histogram summaries of weights and gradients is not
supported, and thus `histogram_freq` will be ignored.
@end_compatibility
"""
# pylint: enable=line-too-long
def __init__(self,
log_dir='./logs',
histogram_freq=0,
batch_size=32,
write_graph=True,
write_grads=False,
write_images=False,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None,
embeddings_data=None):
super(TensorBoard, self).__init__()
self.log_dir = log_dir
self.histogram_freq = histogram_freq
if self.histogram_freq and context.executing_eagerly():
logging.warning(
UserWarning('Weight and gradient histograms not supported for eager'
'execution, setting `histogram_freq` to `0`.'))
self.histogram_freq = 0
self.merged = None
self.write_graph = write_graph
self.write_grads = write_grads
self.write_images = write_images
self.batch_size = batch_size
self._current_batch = 0
self._total_batches_seen = 0
self.embeddings_freq = embeddings_freq
self.embeddings_layer_names = embeddings_layer_names
self.embeddings_metadata = embeddings_metadata
self.embeddings_data = embeddings_data
def _init_writer(self):
"""Sets file writer."""
if context.executing_eagerly():
self.writer = summary_ops_v2.create_file_writer(self.log_dir)
elif self.write_graph:
self.writer = tf_summary.FileWriter(self.log_dir, K.get_session().graph)
else:
self.writer = tf_summary.FileWriter(self.log_dir)
def _make_histogram_ops(self, model):
"""Defines histogram ops when histogram_freq > 0."""
# only make histogram summary op if it hasn't already been made
if self.histogram_freq and self.merged is None:
for layer in self.model.layers:
for weight in layer.weights:
mapped_weight_name = weight.name.replace(':', '_')
tf_summary.histogram(mapped_weight_name, weight)
if self.write_images:
w_img = array_ops.squeeze(weight)
shape = K.int_shape(w_img)
if len(shape) == 2: # dense layer kernel case
if shape[0] > shape[1]:
w_img = array_ops.transpose(w_img)
shape = K.int_shape(w_img)
w_img = array_ops.reshape(w_img, [1, shape[0], shape[1], 1])
elif len(shape) == 3: # convnet case
if K.image_data_format() == 'channels_last':
# switch to channels_first to display
# every kernel as a separate image
w_img = array_ops.transpose(w_img, perm=[2, 0, 1])
shape = K.int_shape(w_img)
w_img = array_ops.reshape(w_img,
[shape[0], shape[1], shape[2], 1])
elif len(shape) == 1: # bias case
w_img = array_ops.reshape(w_img, [1, shape[0], 1, 1])
else:
# not possible to handle 3D convnets etc.
continue
shape = K.int_shape(w_img)
assert len(shape) == 4 and shape[-1] in [1, 3, 4]
tf_summary.image(mapped_weight_name, w_img)
if self.write_grads:
for weight in layer.trainable_weights:
mapped_weight_name = weight.name.replace(':', '_')
grads = model.optimizer.get_gradients(model.total_loss, weight)
def is_indexed_slices(grad):
return type(grad).__name__ == 'IndexedSlices'
grads = [
grad.values if is_indexed_slices(grad) else grad
for grad in grads
]
tf_summary.histogram('{}_grad'.format(mapped_weight_name), grads)
if hasattr(layer, 'output'):
if isinstance(layer.output, list):
for i, output in enumerate(layer.output):
tf_summary.histogram('{}_out_{}'.format(layer.name, i), output)
else:
tf_summary.histogram('{}_out'.format(layer.name), layer.output)
def set_model(self, model):
"""Sets Keras model and creates summary ops."""
self.model = model
self._init_writer()
# histogram summaries only enabled in graph mode
if not context.executing_eagerly():
self._make_histogram_ops(model)
self.merged = tf_summary.merge_all()
# If both embedding_freq and embeddings_data are available, we will
# visualize embeddings.
if self.embeddings_freq and self.embeddings_data is not None:
self.embeddings_data = standardize_input_data(self.embeddings_data,
model.input_names)
# If embedding_layer_names are not provided, get all of the embedding
# layers from the model.
embeddings_layer_names = self.embeddings_layer_names
if not embeddings_layer_names:
embeddings_layer_names = [
layer.name
for layer in self.model.layers
if type(layer).__name__ == 'Embedding'
]
self.assign_embeddings = []
embeddings_vars = {}
self.batch_id = batch_id = array_ops.placeholder(dtypes.int32)
self.step = step = array_ops.placeholder(dtypes.int32)
for layer in self.model.layers:
if layer.name in embeddings_layer_names:
embedding_input = self.model.get_layer(layer.name).output
embedding_size = np.prod(embedding_input.shape[1:])
embedding_input = array_ops.reshape(embedding_input,
(step, int(embedding_size)))
shape = (self.embeddings_data[0].shape[0], int(embedding_size))
embedding = variables.Variable(
array_ops.zeros(shape), name=layer.name + '_embedding')
embeddings_vars[layer.name] = embedding
batch = state_ops.assign(embedding[batch_id:batch_id + step],
embedding_input)
self.assign_embeddings.append(batch)
self.saver = saver.Saver(list(embeddings_vars.values()))
# Create embeddings_metadata dictionary
if isinstance(self.embeddings_metadata, str):
embeddings_metadata = {
layer_name: self.embeddings_metadata
for layer_name in embeddings_vars.keys()
}
else:
# If embedding_metadata is already a dictionary
embeddings_metadata = self.embeddings_metadata
try:
from tensorboard.plugins import projector
except ImportError:
raise ImportError('Failed to import TensorBoard. Please make sure that '
'TensorBoard integration is complete."')
# TODO(psv): Add integration tests to test embedding visualization
# with TensorBoard callback. We are unable to write a unit test for this
# because TensorBoard dependency assumes TensorFlow package is installed.
config = projector.ProjectorConfig()
for layer_name, tensor in embeddings_vars.items():
embedding = config.embeddings.add()
embedding.tensor_name = tensor.name
if (embeddings_metadata is not None and
layer_name in embeddings_metadata):
embedding.metadata_path = embeddings_metadata[layer_name]
projector.visualize_embeddings(self.writer, config)
def _fetch_callback(self, summary):
self.writer.add_summary(
summary,
self._epoch + self._current_val_batch / self._validation_batches)
self._current_val_batch += 1
def _write_custom_summaries(self, step, logs=None):
"""Writes metrics out as custom scalar summaries.
Arguments:
step: the global step to use for Tensorboard.
logs: dict. Keys are scalar summary names, values are
NumPy scalars.
"""
logs = logs or {}
if context.executing_eagerly():
# use v2 summary ops
with self.writer.as_default(), summary_ops_v2.always_record_summaries():
for name, value in logs.items():
summary_ops_v2.scalar(name, value.item(), step=step)
else:
# use FileWriter from v1 summary
for name, value in logs.items():
summary = tf_summary.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.writer.add_summary(summary, step)
self.writer.flush()
def on_train_begin(self, logs=None):
"""Checks if histogram summaries can be run."""
# will never be set when in eager
if self.histogram_freq:
if self.params.get('validation_steps', None) is not None:
self._validation_batches = self.params['validation_steps']
elif self.validation_data:
self._validation_batches = math.ceil(
self.validation_data[0].shape[0] / self.batch_size)
else:
raise ValueError('If printing histograms, validation data must be '
'provided.')
if self._validation_batches == 0:
raise ValueError(
'If printing histograms, validation data must have length > 0.')
def on_batch_end(self, batch, logs=None):
"""Writes scalar summaries for metrics on every training batch."""
# Don't output batch_size and batch number as Tensorboard summaries
logs = logs or {}
batch_logs = {('batch_' + k): v
for k, v in logs.items()
if k not in ['batch', 'size', 'num_steps']}
self._write_custom_summaries(self._total_batches_seen, batch_logs)
self._total_batches_seen += 1
def on_epoch_begin(self, epoch, logs=None):
"""Add histogram op to Model test_function callbacks, reset batch count."""
# check if histogram summary should be run for this epoch
if self.histogram_freq and epoch % self.histogram_freq == 0:
self._epoch = epoch
self._current_val_batch = 0
# add the histogram summary op if it should run this epoch
if self.merged not in self.model.test_function.fetches:
self.model.test_function.fetches.append(self.merged)
self.model.test_function.fetch_callbacks[
self.merged] = self._fetch_callback
def on_epoch_end(self, epoch, logs=None):
"""Checks if summary ops should run next epoch, logs scalar summaries."""
# don't output batch_size and
# batch number as Tensorboard summaries
logs = {('epoch_' + k): v
for k, v in logs.items()
if k not in ['batch', 'size', 'num_steps']}
self._write_custom_summaries(epoch, logs)
# pop the histogram summary op after each epoch
if self.histogram_freq:
if self.merged in self.model.test_function.fetches:
self.model.test_function.fetches.remove(self.merged)
if self.merged in self.model.test_function.fetch_callbacks:
self.model.test_function.fetch_callbacks.pop(self.merged)
if self.embeddings_data is None and self.embeddings_freq:
raise ValueError('To visualize embeddings, embeddings_data must '
'be provided.')
if self.embeddings_freq and self.embeddings_data is not None:
if epoch % self.embeddings_freq == 0:
# We need a second forward-pass here because we're passing
# the `embeddings_data` explicitly. This design allows to pass
# arbitrary data as `embeddings_data` and results from the fact
# that we need to know the size of the `tf.Variable`s which
# hold the embeddings in `set_model`. At this point, however,
# the `validation_data` is not yet set.
embeddings_data = self.embeddings_data
n_samples = embeddings_data[0].shape[0]
i = 0
while i < n_samples:
step = min(self.batch_size, n_samples - i)
batch = slice(i, i + step)
if isinstance(self.model.input, list):
feed_dict = {
model_input: embeddings_data[idx][batch]
for idx, model_input in enumerate(self.model.input)
}
else:
feed_dict = {self.model.input: embeddings_data[0][batch]}
feed_dict.update({self.batch_id: i, self.step: step})
if self.model.uses_learning_phase:
feed_dict[K.learning_phase()] = False
self.sess.run(self.assign_embeddings, feed_dict=feed_dict)
self.saver.save(self.sess,
os.path.join(self.log_dir, 'keras_embedding.ckpt'),
epoch)
i += self.batch_size
def on_train_end(self, logs=None):
self.writer.close()
@tf_export('keras.callbacks.ReduceLROnPlateau')
class ReduceLROnPlateau(Callback):
"""Reduce learning rate when a metric has stopped improving.
Models often benefit from reducing the learning rate by a factor
of 2-10 once learning stagnates. This callback monitors a
quantity and if no improvement is seen for a 'patience' number
of epochs, the learning rate is reduced.
Example:
```python
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=5, min_lr=0.001)
model.fit(X_train, Y_train, callbacks=[reduce_lr])
```
Arguments:
monitor: quantity to be monitored.
factor: factor by which the learning rate will
be reduced. new_lr = lr * factor
patience: number of epochs with no improvement
after which learning rate will be reduced.
verbose: int. 0: quiet, 1: update messages.
mode: one of {auto, min, max}. In `min` mode,
lr will be reduced when the quantity
monitored has stopped decreasing; in `max`
mode it will be reduced when the quantity
monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred
from the name of the monitored quantity.
min_delta: threshold for measuring the new optimum,
to only focus on significant changes.
cooldown: number of epochs to wait before resuming
normal operation after lr has been reduced.
min_lr: lower bound on the learning rate.
"""
def __init__(self,
monitor='val_loss',
factor=0.1,
patience=10,
verbose=0,
mode='auto',
min_delta=1e-4,
cooldown=0,
min_lr=0,
**kwargs):
super(ReduceLROnPlateau, self).__init__()
self.monitor = monitor
if factor >= 1.0:
raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.')
if 'epsilon' in kwargs:
min_delta = kwargs.pop('epsilon')
logging.warning('`epsilon` argument is deprecated and '
'will be removed, use `min_delta` instead.')
self.factor = factor
self.min_lr = min_lr
self.min_delta = min_delta
self.patience = patience
self.verbose = verbose
self.cooldown = cooldown
self.cooldown_counter = 0 # Cooldown counter.
self.wait = 0
self.best = 0
self.mode = mode
self.monitor_op = None
self._reset()
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
logging.warning('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.', self.mode)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.min_delta)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
def on_train_begin(self, logs=None):
self._reset()
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
current = logs.get(self.monitor)
if current is None:
logging.warning('Reduce LR on plateau conditioned on metric `%s` '
'which is not available. Available metrics are: %s',
self.monitor, ','.join(list(logs.keys())))
else:
if self.in_cooldown():
self.cooldown_counter -= 1
self.wait = 0
if self.monitor_op(current, self.best):
self.best = current
self.wait = 0
elif not self.in_cooldown():
self.wait += 1
if self.wait >= self.patience:
old_lr = float(K.get_value(self.model.optimizer.lr))
if old_lr > self.min_lr:
new_lr = old_lr * self.factor
new_lr = max(new_lr, self.min_lr)
K.set_value(self.model.optimizer.lr, new_lr)
if self.verbose > 0:
print('\nEpoch %05d: ReduceLROnPlateau reducing learning '
'rate to %s.' % (epoch + 1, new_lr))
self.cooldown_counter = self.cooldown
self.wait = 0
def in_cooldown(self):
return self.cooldown_counter > 0
@tf_export('keras.callbacks.CSVLogger')
class CSVLogger(Callback):
"""Callback that streams epoch results to a csv file.
Supports all values that can be represented as a string,
including 1D iterables such as np.ndarray.
Example:
```python
csv_logger = CSVLogger('training.log')
model.fit(X_train, Y_train, callbacks=[csv_logger])
```
Arguments:
filename: filename of the csv file, e.g. 'run/log.csv'.
separator: string used to separate elements in the csv file.
append: True: append if file exists (useful for continuing
training). False: overwrite existing file,
"""
def __init__(self, filename, separator=',', append=False):
self.sep = separator
self.filename = filename
self.append = append
self.writer = None
self.keys = None
self.append_header = True
self.file_flags = 'b' if six.PY2 and os.name == 'nt' else ''
super(CSVLogger, self).__init__()
def on_train_begin(self, logs=None):
if self.append:
if os.path.exists(self.filename):
with open(self.filename, 'r' + self.file_flags) as f:
self.append_header = not bool(len(f.readline()))
self.csv_file = open(self.filename, 'a' + self.file_flags)
else:
self.csv_file = open(self.filename, 'w' + self.file_flags)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
def handle_value(k):
is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0
if isinstance(k, six.string_types):
return k
elif isinstance(k, Iterable) and not is_zero_dim_ndarray:
return '"[%s]"' % (', '.join(map(str, k)))
else:
return k
if self.keys is None:
self.keys = sorted(logs.keys())
if self.model.stop_training:
# We set NA so that csv parsers do not fail for this last epoch.
logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys])
if not self.writer:
class CustomDialect(csv.excel):
delimiter = self.sep
self.writer = csv.DictWriter(
self.csv_file,
fieldnames=['epoch'] + self.keys,
dialect=CustomDialect)
if self.append_header:
self.writer.writeheader()
row_dict = OrderedDict({'epoch': epoch})
row_dict.update((key, handle_value(logs[key])) for key in self.keys)
self.writer.writerow(row_dict)
self.csv_file.flush()
def on_train_end(self, logs=None):
self.csv_file.close()
self.writer = None
@tf_export('keras.callbacks.LambdaCallback')
class LambdaCallback(Callback):
r"""Callback for creating simple, custom callbacks on-the-fly.
This callback is constructed with anonymous functions that will be called
at the appropriate time. Note that the callbacks expects positional
arguments, as:
- `on_epoch_begin` and `on_epoch_end` expect two positional arguments:
`epoch`, `logs`
- `on_batch_begin` and `on_batch_end` expect two positional arguments:
`batch`, `logs`
- `on_train_begin` and `on_train_end` expect one positional argument:
`logs`
Arguments:
on_epoch_begin: called at the beginning of every epoch.
on_epoch_end: called at the end of every epoch.
on_batch_begin: called at the beginning of every batch.
on_batch_end: called at the end of every batch.
on_train_begin: called at the beginning of model training.
on_train_end: called at the end of model training.
Example:
```python
# Print the batch number at the beginning of every batch.
batch_print_callback = LambdaCallback(
on_batch_begin=lambda batch,logs: print(batch))
# Stream the epoch loss to a file in JSON format. The file content
# is not well-formed JSON but rather has a JSON object per line.
import json
json_log = open('loss_log.json', mode='wt', buffering=1)
json_logging_callback = LambdaCallback(
on_epoch_end=lambda epoch, logs: json_log.write(
json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'),
on_train_end=lambda logs: json_log.close()
)
# Terminate some processes after having finished model training.
processes = ...
cleanup_callback = LambdaCallback(
on_train_end=lambda logs: [
p.terminate() for p in processes if p.is_alive()])
model.fit(...,
callbacks=[batch_print_callback,
json_logging_callback,
cleanup_callback])
```
"""
def __init__(self,
on_epoch_begin=None,
on_epoch_end=None,
on_batch_begin=None,
on_batch_end=None,
on_train_begin=None,
on_train_end=None,
**kwargs):
super(LambdaCallback, self).__init__()
self.__dict__.update(kwargs)
if on_epoch_begin is not None:
self.on_epoch_begin = on_epoch_begin
else:
self.on_epoch_begin = lambda epoch, logs: None
if on_epoch_end is not None:
self.on_epoch_end = on_epoch_end
else:
self.on_epoch_end = lambda epoch, logs: None
if on_batch_begin is not None:
self.on_batch_begin = on_batch_begin
else:
self.on_batch_begin = lambda batch, logs: None
if on_batch_end is not None:
self.on_batch_end = on_batch_end
else:
self.on_batch_end = lambda batch, logs: None
if on_train_begin is not None:
self.on_train_begin = on_train_begin
else:
self.on_train_begin = lambda logs: None
if on_train_end is not None:
self.on_train_end = on_train_end
else:
self.on_train_end = lambda logs: None