blob: 697e0604bf39f2a1cac6d30d073677e52547fa8e [file] [log] [blame]
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_CORE_FRAMEWORK_DATASET_H_
#define TENSORFLOW_CORE_FRAMEWORK_DATASET_H_
#include <deque>
#include <memory>
#include "tensorflow/core/framework/attr_value.pb.h"
#include "tensorflow/core/framework/attr_value_util.h"
#include "tensorflow/core/framework/dataset_stateful_op_whitelist.h"
#include "tensorflow/core/framework/function.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/model.h"
#include "tensorflow/core/framework/node_def.pb.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/types.pb.h"
#include "tensorflow/core/framework/variant_encode_decode.h"
#include "tensorflow/core/framework/variant_tensor_data.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/tracing.h"
// Polymorphic datasets should support all primitive TensorFlow
// types. Use this macro to expand `m(T)` once for each primitive type
// `T`, e.g. to build a `switch` statement.
#define TF_CALL_DATASET_TYPES(m) TF_CALL_ALL_TYPES(m) TF_CALL_QUANTIZED_TYPES(m)
namespace tensorflow {
// Forward declarations to avoid introducing a dependency on headers in
// "tensorflow/core/graph/...".
class GraphDefBuilder;
class Node;
namespace data {
// A constant that can be used to enable auto-tuning.
constexpr int kAutoTune = -1;
class DatasetBase;
class SerializationContext;
// Interface for reading values from a key-value store.
// Used for restoring iterator state.
class IteratorStateReader {
public:
virtual Status ReadScalar(StringPiece key, int64* val) = 0;
virtual Status ReadScalar(StringPiece key, string* val) = 0;
virtual Status ReadTensor(StringPiece key, Tensor* val) = 0;
virtual bool Contains(StringPiece key) = 0;
virtual ~IteratorStateReader() {}
};
// Interface for writing values to a key-value store.
// Used for saving iterator state.
class IteratorStateWriter {
public:
virtual Status WriteScalar(StringPiece key, const int64 val) = 0;
virtual Status WriteScalar(StringPiece key, const string& val) = 0;
virtual Status WriteTensor(StringPiece key, const Tensor& val) = 0;
virtual ~IteratorStateWriter() {}
};
// Wrapper around GraphDefBuilder. Used to serialize Dataset graph.
class GraphDefBuilderWrapper {
public:
explicit GraphDefBuilderWrapper(GraphDefBuilder* b) : b_(b) {}
// Adds a Const node with scalar value to the Graph.
// `*output` contains a pointer to the output `Node`. It is guaranteed to be
// non-null if the method returns with an OK status.
// The returned Node pointer is owned by the backing Graph of GraphDefBuilder.
template <typename T>
Status AddScalar(const T& val, Node** output) {
Tensor val_t = Tensor(DataTypeToEnum<T>::v(), TensorShape({}));
val_t.scalar<T>()() = val;
AddTensorInternal(val_t, output);
if (*output == nullptr) {
return errors::Internal("AddScalar: Failed to build Const op.");
}
return Status::OK();
}
// Adds a Const node with vector value to the Graph.
// `*output` contains a pointer to the output `Node`. It is guaranteed to be
// non-null if the method returns with an OK status.
// The returned Node pointer is owned by the backing Graph of GraphDefBuilder.
// TODO(shivaniagrawal): Consider changing to gtl::ArraySlice?
template <typename T>
Status AddVector(const std::vector<T>& val, Node** output) {
Tensor val_t = Tensor(DataTypeToEnum<T>::v(),
TensorShape({static_cast<int64>(val.size())}));
for (int i = 0; i < val.size(); i++) {
val_t.flat<T>()(i) = val[i];
}
AddTensorInternal(val_t, output);
if (*output == nullptr) {
return errors::Internal("AddVector: Failed to build Const op.");
}
return Status::OK();
}
// Adds a `Const` node for the given tensor value to the graph.
//
// `*output` contains a pointer to the output `Node`. It is guaranteed to be
// non-null if the method returns with an OK status. The returned `Node`
// pointer is owned by the backing graph of `GraphDefBuilder`.
Status AddTensor(const Tensor& val, Node** output) {
AddTensorInternal(val, output);
if (*output == nullptr) {
return errors::Internal("AddTensor: Failed to build Const op.");
}
return Status::OK();
}
// Adds a `Placeholder` node for the given tensor value to the graph.
//
// `*output` contains a pointer to the output `Node`. It is guaranteed to be
// non-null if the method returns with an OK status. The returned `Node`
// pointer is owned by the backing graph of `GraphDefBuilder`.
Status AddPlaceholder(const Tensor& val, Node** output) {
AddPlaceholderInternal(val, output);
if (*output == nullptr) {
return errors::Internal(
"AddPlaceholder: Failed to build Placeholder op.");
}
return Status::OK();
}
Status AddDataset(const DatasetBase* dataset,
const std::vector<Node*>& inputs, Node** output) {
return AddDataset(dataset, inputs, {}, output);
}
// Adds a node corresponding to the `DatasetType` to the Graph.
// Return value of `DatasetType::op_name()` is used as the op type for the
// node.
// Values for the output_types and output_shapes node attributes are also
// written if those attributes are defined in the OpDef.
// `*output` contains a pointer to the output `Node`. It is guaranteed to be
// non-null if the method returns with an OK status.
// The returned Node pointer is owned by the backing Graph of GraphDefBuilder.
Status AddDataset(const DatasetBase* dataset,
const std::vector<Node*>& inputs,
const std::vector<std::pair<StringPiece, AttrValue>>& attrs,
Node** output) {
std::vector<std::pair<size_t, Node*>> enumerated_inputs(inputs.size());
for (int i = 0; i < inputs.size(); i++) {
enumerated_inputs[i] = std::make_pair(i, inputs[i]);
}
return AddDataset(dataset, enumerated_inputs, {}, attrs, output);
}
Status AddDataset(
const DatasetBase* dataset,
const std::vector<std::pair<size_t, Node*>>& inputs,
const std::vector<std::pair<size_t, gtl::ArraySlice<Node*>>>& list_inputs,
const std::vector<std::pair<StringPiece, AttrValue>>& attrs,
Node** output);
// Adds a user-defined function with name `function_name` to the graph and
// recursively adds all functions it references. If a function with a matching
// name has already been added, returns with OK status. If a user-defined with
// name `function_name` is not found in the context's function library,
// returns an InvalidArgumentError. If the function with name `function_name`
// or any of its dependent functions are stateful, and the context does not
// explicitly permit stateful functions, returns an InvalidArgument error.
Status AddFunction(SerializationContext* ctx, const string& function_name);
template <typename T>
void BuildAttrValue(const T& value, AttrValue* attr) {
SetAttrValue(value, attr);
}
private:
void AddPlaceholderInternal(const Tensor& val, Node** output);
void AddTensorInternal(const Tensor& val, Node** output);
Status EnsureFunctionIsStateless(const FunctionLibraryDefinition& flib_def,
const string& function_name) const {
const FunctionDef* function_def = flib_def.Find(function_name);
if (!function_def) {
return errors::InvalidArgument("Unable to find FunctionDef for ",
function_name, " in registry.");
}
for (const NodeDef& node_def : function_def->node_def()) {
const OpDef* op_def;
TF_RETURN_IF_ERROR(flib_def.LookUpOpDef(node_def.op(), &op_def));
// TODO(b/65524810): Hack to allow functions to capture Dataset op
// nodes needed for FlatMap. Currently, source datasets nodes have been
// marked stateful to avoid constant folding since we do not have a
// good way of serializing them.
if (IsOpWhitelisted(op_def)) {
continue;
}
if (op_def->is_stateful()) {
return errors::InvalidArgument(
"Op[name: ", node_def.name(), ", type: ", node_def.op(), "] ",
"in function ", function_name, " is stateful. ",
"Saving stateful functions is not supported yet.");
}
}
return Status::OK();
}
// Returns whether an op has been whitelisted for use inside map_fns.
// Uses a heuristic to whitelist source dataset ops which have been
// marked stateful due to b/65524810.
// Also looks up the `op_def->name` in the global
// `WhitelistedStatefulOpRegistry`.
bool IsOpWhitelisted(const OpDef* op_def) const {
return (str_util::EndsWith(op_def->name(), "Dataset") &&
op_def->output_arg_size() == 1 &&
op_def->output_arg(0).type() == DT_VARIANT) ||
WhitelistedStatefulOpRegistry::Global()->Contains(op_def->name());
}
bool HasAttr(const string& op_type_name, const string& attr_name) const;
bool HasAttr(const OpDef* op_def, const string& attr_name) const {
for (auto attr : op_def->attr()) {
if (attr.name() == attr_name) {
return true;
}
}
return false;
}
Status AddAttrFunctions(SerializationContext* ctx,
const AttrValue& attr_value) {
if (attr_value.has_func()) {
TF_RETURN_IF_ERROR(AddFunction(ctx, attr_value.func().name()));
} else if (attr_value.has_list()) {
for (const NameAttrList& name_attr_list : attr_value.list().func()) {
TF_RETURN_IF_ERROR(AddFunction(ctx, name_attr_list.name()));
}
}
return Status::OK();
}
GraphDefBuilder* b_;
};
class StatsAggregator;
// A cut-down version of `OpKernelContext` for running computations in
// iterators. Note that we cannot simply use `OpKernelContext` here because we
// might run computation in an iterator whose lifetime is not nested within the
// lifetime of a single `OpKernelContext` (e.g. asynchronous prefetching).
//
// TODO(mrry): We're making some daring assumptions about the lifetime of the
// runner passed in here. A runner will be deleted when the original step ends,
// but all existing runners only close over session-lifetime (or longer-lived)
// state, so we can make a copy of the function. There's nothing in the
// definition of the API from which we took the runner to guarantee that what we
// are doing is safe. We should formalize the properties here.
class IteratorContext {
public:
struct Params {
// Interface to operating system functionality.
Env* env;
// Function call support.
std::function<void(std::function<void()>)> runner = nullptr;
// A function that returns the current `StatsAggregator` instance to be
// used when recording statistics about the iterator.
//
// NOTE(mrry): This is somewhat awkward, because (i) the `StatsAggregator`
// is a property of the `IteratorResource` (which this class does not know
// about), and (ii) it can change after the `IteratorContext` has been
// created. Better suggestions are welcome!
std::function<std::shared_ptr<StatsAggregator>()> stats_aggregator_getter =
nullptr;
// The FunctionLibraryRuntime object to be used to make function calls.
FunctionLibraryRuntime* lib = nullptr;
std::shared_ptr<const FunctionLibraryDefinition> function_library = nullptr;
// The Allocator to be used to allocate the output of an iterator.
std::function<Allocator*(AllocatorAttributes)> allocator_getter = nullptr;
// If non-null, identifies the object used for performance modeling.
std::shared_ptr<model::Model> model = nullptr;
};
explicit IteratorContext(Params params) : params_(std::move(params)) {}
explicit IteratorContext(OpKernelContext* ctx) {
params_.env = ctx->env();
params_.runner = *(ctx->runner());
params_.lib = ctx->function_library();
// NOTE: must use reinterpret_cast because function.h forward-declares
// Device.
DeviceBase* device =
reinterpret_cast<DeviceBase*>(ctx->function_library()->device());
params_.allocator_getter = [device](AllocatorAttributes attrs) {
return device->GetAllocator(attrs);
};
}
Env* env() const { return params_.env; }
std::function<void(std::function<void()>)>* runner() {
return &params_.runner;
}
std::shared_ptr<StatsAggregator> stats_aggregator() {
if (params_.stats_aggregator_getter) {
return params_.stats_aggregator_getter();
} else {
return nullptr;
}
}
std::shared_ptr<const FunctionLibraryDefinition> function_library() {
return params_.function_library;
}
FunctionLibraryRuntime* lib() { return params_.lib; }
void set_lib(FunctionLibraryRuntime* lib) { params_.lib = lib; }
Allocator* allocator(AllocatorAttributes attrs) {
return params_.allocator_getter(attrs);
}
std::function<Allocator*(AllocatorAttributes)> allocator_getter() {
return params_.allocator_getter;
}
std::function<std::shared_ptr<StatsAggregator>()> stats_aggregator_getter() {
return params_.stats_aggregator_getter;
}
std::shared_ptr<model::Model> model() { return params_.model; }
Params params() { return params_; }
private:
Params params_;
};
// Aggregates runtime support needed for dataset and iterator serialization.
class SerializationContext {
public:
struct Params {
bool allow_stateful_functions = false;
const FunctionLibraryDefinition* flib_def = nullptr; // Not owned.
std::vector<std::pair<string, Tensor>>* input_list = nullptr; // Not owned.
};
explicit SerializationContext(Params params) : params_(std::move(params)) {}
bool allow_stateful_functions() { return params_.allow_stateful_functions; }
const FunctionLibraryDefinition& flib_def() { return *params_.flib_def; }
std::vector<std::pair<string, Tensor>>* input_list() {
return params_.input_list;
}
private:
Params params_;
TF_DISALLOW_COPY_AND_ASSIGN(SerializationContext);
};
// Represents the current position in a range of outputs, where the
// range of outputs is typically represented by an `DatasetBase`,
// defined below.
class IteratorBase {
public:
virtual ~IteratorBase() {
for (auto rit = cleanup_fns_.rbegin(); rit != cleanup_fns_.rend(); ++rit) {
(*rit)();
}
}
// Gets the next output from the range that this iterator is traversing.
//
// If at least one output remains in this iterator's range, that
// output will be stored in `*out_tensors` and `false` will be
// stored in `*end_of_sequence`.
//
// If no more outputs remain in this iterator's range, `true` will
// be stored in `*end_of_sequence`, and the content of
// `*out_tensors` will be undefined.
//
// This method is thread-safe.
//
// TODO(mrry): Define `GetNextAsync()` or `GetNextManyAsync()`, and
// potentially remove this method.
virtual Status GetNext(IteratorContext* ctx, std::vector<Tensor>* out_tensors,
bool* end_of_sequence) = 0;
Status GetNext(IteratorContext&& ctx, std::vector<Tensor>* out_tensors,
bool* end_of_sequence) {
return GetNext(&ctx, out_tensors, end_of_sequence);
}
// Returns a vector of DataType values, representing the respective
// element types of each tuple component in the outputs of this
// iterator.
virtual const DataTypeVector& output_dtypes() const = 0;
// Returns a vector of tensor shapes, representing the respective
// (and possibly partially defined) shapes of each tuple component
// in the outputs of this iterator.
virtual const std::vector<PartialTensorShape>& output_shapes() const = 0;
// Returns a string that identifies the sequence of iterators leading up to
// this iterator.
virtual const string& prefix() const = 0;
// Performs initialization that needs to happen outside of a constructor to
// properly propagate errors.
virtual Status Initialize(IteratorContext* ctx) { return Status::OK(); }
// Saves the state of this iterator.
virtual Status Save(SerializationContext* ctx, IteratorStateWriter* writer) {
return SaveInternal(writer);
}
// Restores the state of this iterator.
virtual Status Restore(IteratorContext* ctx, IteratorStateReader* reader) {
return RestoreInternal(ctx, reader);
}
protected:
// This is needed so that sub-classes of IteratorBase can call
// `SaveInternal` on their input iterators.
Status SaveInput(IteratorStateWriter* writer,
const std::unique_ptr<IteratorBase>& input) {
return input->SaveInternal(writer);
}
// This is needed so that sub-classes of IteratorBase can call
// `RestoreInternal` on their input iterators.
Status RestoreInput(IteratorContext* ctx, IteratorStateReader* reader,
const std::unique_ptr<IteratorBase>& input) {
return input->RestoreInternal(ctx, reader);
}
// Saves the state of this iterator recursively.
virtual Status SaveInternal(IteratorStateWriter* writer) {
return errors::Unimplemented("SaveInternal");
}
// Restores the state of this iterator recursively.
virtual Status RestoreInternal(IteratorContext* ctx,
IteratorStateReader* reader) {
return errors::Unimplemented("RestoreInternal");
}
private:
friend class DatasetBase; // for access to `AddCleanupFunction`
// Registers a cleanup function to be called upon object destruction.
//
// Registered functions are invoked in the reserve order of registration.
void AddCleanupFunction(std::function<void()>&& cleanup_fn) {
cleanup_fns_.push_back(std::move(cleanup_fn));
}
std::vector<std::function<void()>> cleanup_fns_;
};
// Represents runtime information needed to construct a dataset.
class DatasetContext {
public:
struct Params {
string name;
};
explicit DatasetContext(Params params) : params_(std::move(params)) {}
explicit DatasetContext(OpKernelContext* ctx) {
params_.name = ctx->op_kernel().type_string();
}
const string& name() const { return params_.name; }
private:
Params params_;
};
// Represents a (potentially infinite) range of outputs, where each
// output is a tuple of tensors.
class DatasetBase : public core::RefCounted {
public:
// Key for storing the Dataset graph in the serialized format.
TF_EXPORT static const char kDatasetGraphKey[];
// Key for storing the output node of the Dataset graph in the serialized
// format.
TF_EXPORT static const char kDatasetGraphOutputNodeKey[];
explicit DatasetBase(DatasetContext&& ctx) : name_(ctx.name()) {}
const string& name() const { return name_; }
// Returns a new iterator for iterating over the range of elements in
// this dataset.
//
// This method may be called multiple times on the same instance,
// and the resulting iterators will have distinct state. Each
// iterator will traverse all elements in this dataset from the
// start.
//
// The prefix identifies the sequence of iterators leading up to the newly
// created iterator.
Status MakeIterator(IteratorContext* ctx, const string& prefix,
std::unique_ptr<IteratorBase>* iterator) const {
*iterator = MakeIteratorInternal(prefix);
if (ctx->model()) {
ctx->model()->AddNode((*iterator)->prefix(), prefix);
std::shared_ptr<model::Model> model = ctx->model();
const string& prefix = (*iterator)->prefix();
(*iterator)->AddCleanupFunction(
[model, prefix]() { model->RemoveNode(prefix); });
}
return (*iterator)->Initialize(ctx);
}
Status MakeIterator(IteratorContext&& ctx, const string& prefix,
std::unique_ptr<IteratorBase>* iterator) const {
return MakeIterator(&ctx, prefix, iterator);
}
// Returns a vector of DataType values, representing the respective
// element types of each tuple component in the outputs of this
// dataset.
virtual const DataTypeVector& output_dtypes() const = 0;
// Returns a vector of tensor shapes, representing the respective
// (and possibly partially defined) shapes of each tuple component
// in the outputs of this dataset.
virtual const std::vector<PartialTensorShape>& output_shapes() const = 0;
// A human-readable debug string for this dataset.
virtual string DebugString() const = 0;
// Serializes the dataset and writes it to the `writer`.
virtual Status Save(SerializationContext* ctx,
IteratorStateWriter* writer) const;
protected:
friend class DatasetToGraphOp; // For access to graph related members.
class DatasetGraphDefBuilder : public GraphDefBuilderWrapper {
public:
DatasetGraphDefBuilder(GraphDefBuilder* b) : GraphDefBuilderWrapper(b) {}
Status AddInputDataset(SerializationContext* ctx,
const DatasetBase* dataset, Node** output) {
return dataset->AsGraphDefInternal(ctx, this, output);
}
};
// TODO(jsimsa): Consolidate overloading into a single method.
virtual Status AsGraphDefInternal(SerializationContext* ctx,
DatasetGraphDefBuilder* b,
Node** node) const = 0;
virtual std::unique_ptr<IteratorBase> MakeIteratorInternal(
const string& prefix) const = 0;
private:
const string name_;
};
// Represents an iterator that is associated with a particular dataset.
class DatasetBaseIterator : public IteratorBase {
public:
struct BaseParams {
// Owns one reference on the shared dataset object.
const DatasetBase* dataset;
// Identifies the sequence of iterators leading up to this iterator.
const string prefix;
};
explicit DatasetBaseIterator(const BaseParams& params) : params_(params) {
params_.dataset->Ref();
}
~DatasetBaseIterator() override { params_.dataset->Unref(); }
// The sequence of iterators leading up to this iterator.
const string& prefix() const override { return params_.prefix; }
const DataTypeVector& output_dtypes() const override {
return params_.dataset->output_dtypes();
}
const std::vector<PartialTensorShape>& output_shapes() const override {
return params_.dataset->output_shapes();
}
Status GetNext(IteratorContext* ctx, std::vector<Tensor>* out_tensors,
bool* end_of_sequence) final {
tracing::ScopedActivity activity(params_.prefix);
RecordStart(ctx, true /* stop_output */);
Status s = GetNextInternal(ctx, out_tensors, end_of_sequence);
if (s.ok() && !*end_of_sequence) RecordElement(ctx);
RecordStop(ctx, true /* start_output */);
if (TF_PREDICT_FALSE(errors::IsOutOfRange(s) && !*end_of_sequence)) {
s = errors::Internal(
"Iterator \"", params_.prefix,
"\" returned OutOfRange without setting `*end_of_sequence`. This "
"indicates that an error may have occurred. Original message: ",
s.error_message());
LOG(ERROR) << s;
}
return s;
}
Status Save(SerializationContext* ctx, IteratorStateWriter* writer) final {
TF_RETURN_IF_ERROR(params_.dataset->Save(ctx, writer));
return IteratorBase::Save(ctx, writer);
}
protected:
// Internal implementation of GetNext that is wrapped in tracing logic.
virtual Status GetNextInternal(IteratorContext* ctx,
std::vector<Tensor>* out_tensors,
bool* end_of_sequence) = 0;
string full_name(const string& name) const {
return strings::StrCat(params_.prefix, ":", name);
}
// When performance modeling is enabled, this method adds a constant parameter
// to the model node corresponding to this iterator.
void AddConstantParameter(IteratorContext* ctx, const string& name,
int64 value) {
if (ctx->model()) {
ctx->model()->AddConstantParameter(prefix(), name, value);
}
}
// When performance modeling is enabled, this method adds a tunable parameter
// to the model node corresponding to this iterator.
//
// The performance modeling logic may use `value` to set the value of the
// tunable parameter at any point during the lifetime of this iterator. When
// it does, it notifies `cond_var`.
void AddTunableParameter(IteratorContext* ctx, const string& name,
std::atomic<int64>* value, int64 min, int64 max,
condition_variable* cond_var) {
if (ctx->model()) {
ctx->model()->AddTunableParameter(prefix(), name, value, min, max,
cond_var);
}
}
// When performance modeling is enabled, this method records the fact that
// this iterator has produced an element.
void RecordElement(IteratorContext* ctx) {
if (ctx->model()) {
ctx->model()->RecordElement(prefix());
}
}
// When performance modeling is enabled, this method records the fact that
// a thread of this iterator has started work.
void RecordStart(IteratorContext* ctx, bool stop_output = false) {
if (ctx->model()) {
ctx->model()->RecordStart(prefix(), stop_output);
}
}
// When performance modeling is enabled, this method records the fact that
// a thread of this iterator has stopped work.
void RecordStop(IteratorContext* ctx, bool start_output = false) {
if (ctx->model()) {
ctx->model()->RecordStop(prefix(), start_output);
}
}
private:
BaseParams params_;
};
// Represents an iterator that is associated with a particular dataset
// with a particular type.
template <class DatasetType>
class DatasetIterator : public DatasetBaseIterator {
public:
struct Params {
// Borrowed pointer to the dataset.
const DatasetType* dataset;
// Identifies the sequence of iterators leading up to this iterator.
const string prefix;
};
explicit DatasetIterator(const Params& params)
: DatasetBaseIterator({params.dataset, params.prefix}),
typed_dataset_(params.dataset) {}
// The dataset from which this iterator was created.
const DatasetType* dataset() const { return typed_dataset_; }
protected:
virtual Status GetNextInternal(IteratorContext* ctx,
std::vector<Tensor>* out_tensors,
bool* end_of_sequence) = 0;
private:
const DatasetType* const typed_dataset_; // Not owned.
};
// Encapsulates the work required to plug a DatasetBase into the core TensorFlow
// graph execution engine.
class DatasetOpKernel : public OpKernel {
public:
DatasetOpKernel(OpKernelConstruction* ctx) : OpKernel(ctx) {}
void Compute(OpKernelContext* ctx) final;
protected:
// Subclasses should implement this method. It will be called during Compute
// execution.
virtual void MakeDataset(OpKernelContext* ctx, DatasetBase** output) = 0;
template <typename T>
Status ParseScalarArgument(OpKernelContext* ctx,
const StringPiece& argument_name, T* output) {
const Tensor* argument_t;
TF_RETURN_IF_ERROR(ctx->input(argument_name, &argument_t));
if (!TensorShapeUtils::IsScalar(argument_t->shape())) {
return errors::InvalidArgument(argument_name, " must be a scalar");
}
*output = argument_t->scalar<T>()();
return Status::OK();
}
template <typename T>
Status ParseVectorArgument(OpKernelContext* ctx,
const StringPiece& argument_name,
std::vector<T>* output) {
const Tensor* argument_t;
TF_RETURN_IF_ERROR(ctx->input(argument_name, &argument_t));
if (!TensorShapeUtils::IsVector(argument_t->shape())) {
return errors::InvalidArgument(argument_name, " must be a vector");
}
int size = argument_t->vec<T>().size();
output->reserve(size);
for (int i = 0; i < size; ++i) {
output->push_back(argument_t->vec<T>()(i));
}
return Status::OK();
}
};
// Encapsulates the work required to plug unary Datasets into the core
// TensorFlow graph execution engine.
class UnaryDatasetOpKernel : public DatasetOpKernel {
public:
UnaryDatasetOpKernel(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) {}
protected:
void MakeDataset(OpKernelContext* ctx, DatasetBase** output) final;
virtual void MakeDataset(OpKernelContext* ctx, DatasetBase* input,
DatasetBase** output) = 0;
};
// Encapsulates the work required to plug binary Datasets into the core
// TensorFlow graph execution engine.
class BinaryDatasetOpKernel : public DatasetOpKernel {
public:
BinaryDatasetOpKernel(OpKernelConstruction* ctx) : DatasetOpKernel(ctx) {}
protected:
void MakeDataset(OpKernelContext* ctx, DatasetBase** output) final;
virtual void MakeDataset(OpKernelContext* ctx, DatasetBase* input,
DatasetBase* another_input,
DatasetBase** output) = 0;
};
// Validates and extracts a `DatasetBase` object from `tensor`.
//
// `tensor` must have been written by a call to SetVariantTensorToDataset().
//
// The retrieved pointer is a borrowed reference to the dataset, which is owned
// by the tensor. The consumer must either acquire its own reference to the
// dataset by calling `(*out_dataset)->Ref()`, or ensure that `tensor` is not
// destroyed or mutated while the retrieved pointer is in use.
Status GetDatasetFromVariantTensor(const Tensor& tensor,
DatasetBase** out_dataset);
// Stores a `DatasetBase` object in `tensor`.
//
// The ownership of `dataset` is transferred to `tensor`.
Status StoreDatasetInVariantTensor(DatasetBase* dataset, Tensor* tensor);
// A simple background worker that executes closures asynchronously and without
// blocking.
//
// A `BackgroundWorker` is used to offload blocking work from an `AsyncOpKernel`
// to avoid blocking an executor thread that may be required by the blocking
// work.
//
// NOTE(mrry): We do not use a regular `tensorflow::thread::ThreadPool` for this
// purpose because its current implementation (in Eigen) uses a finite-length
// queue and will block the caller when full. This can lead to deadlock under
// heavy load. Since the number of concurrent work items in each user of a
// `BackgroundWorker` is at most one per op invocation, the dynamic allocation
// overhead is tolerable.
class BackgroundWorker {
public:
BackgroundWorker(Env* env, const string& name);
~BackgroundWorker();
void Schedule(std::function<void()> work_item);
private:
void WorkerLoop();
std::unique_ptr<Thread> thread_;
mutex mu_;
condition_variable cond_var_;
bool cancelled_ GUARDED_BY(mu_) = false;
std::deque<std::function<void()>> work_queue_ GUARDED_BY(mu_);
};
} // namespace data
// TODO(b/114112161): Remove these aliases when all users have moved over to the
// `tensorflow::data` namespace.
using data::DatasetBase;
using data::DatasetContext;
using data::DatasetIterator;
using data::DatasetOpKernel;
using data::IteratorBase;
using data::IteratorContext;
using data::IteratorStateReader;
using data::IteratorStateWriter;
using data::SerializationContext;
using data::UnaryDatasetOpKernel;
} // namespace tensorflow
#endif // TENSORFLOW_CORE_FRAMEWORK_DATASET_H_