blob: 36cbd71f8b33a3a00ace2ed5ebd8447c940638d6 [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Distribution of a vectorized Exponential, with uncorrelated components."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.distributions.python.ops import distribution_util
from tensorflow.contrib.distributions.python.ops import vector_exponential_linear_operator as vector_exponential_linop
from tensorflow.python.framework import ops
from tensorflow.python.util import deprecation
__all__ = [
"VectorExponentialDiag",
]
class VectorExponentialDiag(
vector_exponential_linop.VectorExponentialLinearOperator):
"""The vectorization of the Exponential distribution on `R^k`.
The vector exponential distribution is defined over a subset of `R^k`, and
parameterized by a (batch of) length-`k` `loc` vector and a (batch of) `k x k`
`scale` matrix: `covariance = scale @ scale.T`, where `@` denotes
matrix-multiplication.
#### Mathematical Details
The probability density function (pdf) is defined over the image of the
`scale` matrix + `loc`, applied to the positive half-space:
`Supp = {loc + scale @ x : x in R^k, x_1 > 0, ..., x_k > 0}`. On this set,
```none
pdf(y; loc, scale) = exp(-||x||_1) / Z, for y in Supp
x = inv(scale) @ (y - loc),
Z = |det(scale)|,
```
where:
* `loc` is a vector in `R^k`,
* `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`,
* `Z` denotes the normalization constant, and,
* `||x||_1` denotes the `l1` norm of `x`, `sum_i |x_i|`.
The VectorExponential distribution is a member of the [location-scale
family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be
constructed as,
```none
X = (X_1, ..., X_k), each X_i ~ Exponential(rate=1)
Y = (Y_1, ...,Y_k) = scale @ X + loc
```
#### About `VectorExponential` and `Vector` distributions in TensorFlow.
The `VectorExponential` is a non-standard distribution that has useful
properties.
The marginals `Y_1, ..., Y_k` are *not* Exponential random variables, due to
the fact that the sum of Exponential random variables is not Exponential.
Instead, `Y` is a vector whose components are linear combinations of
Exponential random variables. Thus, `Y` lives in the vector space generated
by `vectors` of Exponential distributions. This allows the user to decide the
mean and covariance (by setting `loc` and `scale`), while preserving some
properties of the Exponential distribution. In particular, the tails of `Y_i`
will be (up to polynomial factors) exponentially decaying.
To see this last statement, note that the pdf of `Y_i` is the convolution of
the pdf of `k` independent Exponential random variables. One can then show by
induction that distributions with exponential (up to polynomial factors) tails
are closed under convolution.
#### Examples
```python
import tensorflow_probability as tfp
tfd = tfp.distributions
# Initialize a single 2-variate VectorExponential, supported on
# {(x, y) in R^2 : x > 0, y > 0}.
# The first component has pdf exp{-x}, the second 0.5 exp{-x / 2}
vex = tfd.VectorExponentialDiag(scale_diag=[1., 2.])
# Compute the pdf of an`R^2` observation; return a scalar.
vex.prob([3., 4.]).eval() # shape: []
# Initialize a 2-batch of 3-variate Vector Exponential's.
loc = [[1., 2, 3],
[1., 0, 0]] # shape: [2, 3]
scale_diag = [[1., 2, 3],
[0.5, 1, 1.5]] # shape: [2, 3]
vex = tfd.VectorExponentialDiag(loc, scale_diag)
# Compute the pdf of two `R^3` observations; return a length-2 vector.
x = [[1.9, 2.2, 3.1],
[10., 1.0, 9.0]] # shape: [2, 3]
vex.prob(x).eval() # shape: [2]
```
"""
@deprecation.deprecated(
"2018-10-01",
"The TensorFlow Distributions library has moved to "
"TensorFlow Probability "
"(https://github.com/tensorflow/probability). You "
"should update all references to use `tfp.distributions` "
"instead of `tf.contrib.distributions`.",
warn_once=True)
def __init__(self,
loc=None,
scale_diag=None,
scale_identity_multiplier=None,
validate_args=False,
allow_nan_stats=True,
name="VectorExponentialDiag"):
"""Construct Vector Exponential distribution supported on a subset of `R^k`.
The `batch_shape` is the broadcast shape between `loc` and `scale`
arguments.
The `event_shape` is given by last dimension of the matrix implied by
`scale`. The last dimension of `loc` (if provided) must broadcast with this.
Recall that `covariance = scale @ scale.T`.
```none
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
```
where:
* `scale_diag.shape = [k]`, and,
* `scale_identity_multiplier.shape = []`.
Additional leading dimensions (if any) will index batches.
If both `scale_diag` and `scale_identity_multiplier` are `None`, then
`scale` is the Identity matrix.
Args:
loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
`b >= 0` and `k` is the event size.
scale_diag: Non-zero, floating-point `Tensor` representing a diagonal
matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`,
and characterizes `b`-batches of `k x k` diagonal matrices added to
`scale`. When both `scale_identity_multiplier` and `scale_diag` are
`None` then `scale` is the `Identity`.
scale_identity_multiplier: Non-zero, floating-point `Tensor` representing
a scaled-identity-matrix added to `scale`. May have shape
`[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled
`k x k` identity matrices added to `scale`. When both
`scale_identity_multiplier` and `scale_diag` are `None` then `scale` is
the `Identity`.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`,
statistics (e.g., mean, mode, variance) use the value "`NaN`" to
indicate the result is undefined. When `False`, an exception is raised
if one or more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
Raises:
ValueError: if at most `scale_identity_multiplier` is specified.
"""
parameters = dict(locals())
with ops.name_scope(name) as name:
with ops.name_scope("init", values=[
loc, scale_diag, scale_identity_multiplier]):
# No need to validate_args while making diag_scale. The returned
# LinearOperatorDiag has an assert_non_singular method that is called by
# the Bijector.
scale = distribution_util.make_diag_scale(
loc=loc,
scale_diag=scale_diag,
scale_identity_multiplier=scale_identity_multiplier,
validate_args=False,
assert_positive=False)
super(VectorExponentialDiag, self).__init__(
loc=loc,
scale=scale,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
name=name)
self._parameters = parameters