blob: 18d40fc1dff8e7c9aefffbe3ceba770598a42096 [file] [log] [blame]
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Monte Carlo integration and helpers.
@@expectation
@@expectation_importance_sampler
@@expectation_importance_sampler_logspace
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.util import deprecation
__all__ = [
'expectation',
'expectation_importance_sampler',
'expectation_importance_sampler_logspace',
]
def expectation_importance_sampler(f,
log_p,
sampling_dist_q,
z=None,
n=None,
seed=None,
name='expectation_importance_sampler'):
r"""Monte Carlo estimate of \\(E_p[f(Z)] = E_q[f(Z) p(Z) / q(Z)]\\).
With \\(p(z) := exp^{log_p(z)}\\), this `Op` returns
\\(n^{-1} sum_{i=1}^n [ f(z_i) p(z_i) / q(z_i) ], z_i ~ q,\\)
\\(\approx E_q[ f(Z) p(Z) / q(Z) ]\\)
\\(= E_p[f(Z)]\\)
This integral is done in log-space with max-subtraction to better handle the
often extreme values that `f(z) p(z) / q(z)` can take on.
If `f >= 0`, it is up to 2x more efficient to exponentiate the result of
`expectation_importance_sampler_logspace` applied to `Log[f]`.
User supplies either `Tensor` of samples `z`, or number of samples to draw `n`
Args:
f: Callable mapping samples from `sampling_dist_q` to `Tensors` with shape
broadcastable to `q.batch_shape`.
For example, `f` works "just like" `q.log_prob`.
log_p: Callable mapping samples from `sampling_dist_q` to `Tensors` with
shape broadcastable to `q.batch_shape`.
For example, `log_p` works "just like" `sampling_dist_q.log_prob`.
sampling_dist_q: The sampling distribution.
`tfp.distributions.Distribution`.
`float64` `dtype` recommended.
`log_p` and `q` should be supported on the same set.
z: `Tensor` of samples from `q`, produced by `q.sample` for some `n`.
n: Integer `Tensor`. Number of samples to generate if `z` is not provided.
seed: Python integer to seed the random number generator.
name: A name to give this `Op`.
Returns:
The importance sampling estimate. `Tensor` with `shape` equal
to batch shape of `q`, and `dtype` = `q.dtype`.
"""
q = sampling_dist_q
with ops.name_scope(name, values=[z, n]):
z = _get_samples(q, z, n, seed)
log_p_z = log_p(z)
q_log_prob_z = q.log_prob(z)
def _importance_sampler_positive_f(log_f_z):
# Same as expectation_importance_sampler_logspace, but using Tensors
# rather than samples and functions. Allows us to sample once.
log_values = log_f_z + log_p_z - q_log_prob_z
return _logspace_mean(log_values)
# With \\(f_{plus}(z) = max(0, f(z)), f_{minus}(z) = max(0, -f(z))\\),
# \\(E_p[f(Z)] = E_p[f_{plus}(Z)] - E_p[f_{minus}(Z)]\\)
# \\( = E_p[f_{plus}(Z) + 1] - E_p[f_{minus}(Z) + 1]\\)
# Without incurring bias, 1 is added to each to prevent zeros in logspace.
# The logarithm is approximately linear around 1 + epsilon, so this is good
# for small values of 'z' as well.
f_z = f(z)
log_f_plus_z = math_ops.log(nn.relu(f_z) + 1.)
log_f_minus_z = math_ops.log(nn.relu(-1. * f_z) + 1.)
log_f_plus_integral = _importance_sampler_positive_f(log_f_plus_z)
log_f_minus_integral = _importance_sampler_positive_f(log_f_minus_z)
return math_ops.exp(log_f_plus_integral) - math_ops.exp(log_f_minus_integral)
def expectation_importance_sampler_logspace(
log_f,
log_p,
sampling_dist_q,
z=None,
n=None,
seed=None,
name='expectation_importance_sampler_logspace'):
r"""Importance sampling with a positive function, in log-space.
With \\(p(z) := exp^{log_p(z)}\\), and \\(f(z) = exp{log_f(z)}\\),
this `Op` returns
\\(Log[ n^{-1} sum_{i=1}^n [ f(z_i) p(z_i) / q(z_i) ] ], z_i ~ q,\\)
\\(\approx Log[ E_q[ f(Z) p(Z) / q(Z) ] ]\\)
\\(= Log[E_p[f(Z)]]\\)
This integral is done in log-space with max-subtraction to better handle the
often extreme values that `f(z) p(z) / q(z)` can take on.
In contrast to `expectation_importance_sampler`, this `Op` returns values in
log-space.
User supplies either `Tensor` of samples `z`, or number of samples to draw `n`
Args:
log_f: Callable mapping samples from `sampling_dist_q` to `Tensors` with
shape broadcastable to `q.batch_shape`.
For example, `log_f` works "just like" `sampling_dist_q.log_prob`.
log_p: Callable mapping samples from `sampling_dist_q` to `Tensors` with
shape broadcastable to `q.batch_shape`.
For example, `log_p` works "just like" `q.log_prob`.
sampling_dist_q: The sampling distribution.
`tfp.distributions.Distribution`.
`float64` `dtype` recommended.
`log_p` and `q` should be supported on the same set.
z: `Tensor` of samples from `q`, produced by `q.sample` for some `n`.
n: Integer `Tensor`. Number of samples to generate if `z` is not provided.
seed: Python integer to seed the random number generator.
name: A name to give this `Op`.
Returns:
Logarithm of the importance sampling estimate. `Tensor` with `shape` equal
to batch shape of `q`, and `dtype` = `q.dtype`.
"""
q = sampling_dist_q
with ops.name_scope(name, values=[z, n]):
z = _get_samples(q, z, n, seed)
log_values = log_f(z) + log_p(z) - q.log_prob(z)
return _logspace_mean(log_values)
def _logspace_mean(log_values):
"""Evaluate `Log[E[values]]` in a stable manner.
Args:
log_values: `Tensor` holding `Log[values]`.
Returns:
`Tensor` of same `dtype` as `log_values`, reduced across dim 0.
`Log[Mean[values]]`.
"""
# center = Max[Log[values]], with stop-gradient
# The center hopefully keep the exponentiated term small. It is canceled
# from the final result, so putting stop gradient on it will not change the
# final result. We put stop gradient on to eliminate unnecessary computation.
center = array_ops.stop_gradient(_sample_max(log_values))
# centered_values = exp{Log[values] - E[Log[values]]}
centered_values = math_ops.exp(log_values - center)
# log_mean_of_values = Log[ E[centered_values] ] + center
# = Log[ E[exp{log_values - E[log_values]}] ] + center
# = Log[E[values]] - E[log_values] + center
# = Log[E[values]]
log_mean_of_values = math_ops.log(_sample_mean(centered_values)) + center
return log_mean_of_values
@deprecation.deprecated(
'2018-10-01',
'The tf.contrib.bayesflow library has moved to '
'TensorFlow Probability (https://github.com/tensorflow/probability). '
'Use `tfp.monte_carlo.expectation` instead.',
warn_once=True)
def expectation(f, samples, log_prob=None, use_reparametrization=True,
axis=0, keep_dims=False, name=None):
r"""Computes the Monte-Carlo approximation of \\(E_p[f(X)]\\).
This function computes the Monte-Carlo approximation of an expectation, i.e.,
\\(E_p[f(X)] \approx= m^{-1} sum_i^m f(x_j), x_j\ ~iid\ p(X)\\)
where:
- `x_j = samples[j, ...]`,
- `log(p(samples)) = log_prob(samples)` and
- `m = prod(shape(samples)[axis])`.
Tricks: Reparameterization and Score-Gradient
When p is "reparameterized", i.e., a diffeomorphic transformation of a
parameterless distribution (e.g.,
`Normal(Y; m, s) <=> Y = sX + m, X ~ Normal(0,1)`), we can swap gradient and
expectation, i.e.,
grad[ Avg{ \\(s_i : i=1...n\\) } ] = Avg{ grad[\\(s_i\\)] : i=1...n } where
S_n = Avg{\\(s_i\\)}` and `\\(s_i = f(x_i), x_i ~ p\\).
However, if p is not reparameterized, TensorFlow's gradient will be incorrect
since the chain-rule stops at samples of non-reparameterized distributions.
(The non-differentiated result, `approx_expectation`, is the same regardless
of `use_reparametrization`.) In this circumstance using the Score-Gradient
trick results in an unbiased gradient, i.e.,
```none
grad[ E_p[f(X)] ]
= grad[ int dx p(x) f(x) ]
= int dx grad[ p(x) f(x) ]
= int dx [ p'(x) f(x) + p(x) f'(x) ]
= int dx p(x) [p'(x) / p(x) f(x) + f'(x) ]
= int dx p(x) grad[ f(x) p(x) / stop_grad[p(x)] ]
= E_p[ grad[ f(x) p(x) / stop_grad[p(x)] ] ]
```
Unless p is not reparametrized, it is usually preferable to
`use_reparametrization = True`.
Warning: users are responsible for verifying `p` is a "reparameterized"
distribution.
Example Use:
```python
import tensorflow_probability as tfp
tfd = tfp.distributions
# Monte-Carlo approximation of a reparameterized distribution, e.g., Normal.
num_draws = int(1e5)
p = tfd.Normal(loc=0., scale=1.)
q = tfd.Normal(loc=1., scale=2.)
exact_kl_normal_normal = tfd.kl_divergence(p, q)
# ==> 0.44314718
approx_kl_normal_normal = tfp.monte_carlo.expectation(
f=lambda x: p.log_prob(x) - q.log_prob(x),
samples=p.sample(num_draws, seed=42),
log_prob=p.log_prob,
use_reparametrization=(p.reparameterization_type
== distribution.FULLY_REPARAMETERIZED))
# ==> 0.44632751
# Relative Error: <1%
# Monte-Carlo approximation of non-reparameterized distribution, e.g., Gamma.
num_draws = int(1e5)
p = ds.Gamma(concentration=1., rate=1.)
q = ds.Gamma(concentration=2., rate=3.)
exact_kl_gamma_gamma = tfd.kl_divergence(p, q)
# ==> 0.37999129
approx_kl_gamma_gamma = tfp.monte_carlo.expectation(
f=lambda x: p.log_prob(x) - q.log_prob(x),
samples=p.sample(num_draws, seed=42),
log_prob=p.log_prob,
use_reparametrization=(p.reparameterization_type
== distribution.FULLY_REPARAMETERIZED))
# ==> 0.37696719
# Relative Error: <1%
# For comparing the gradients, see `monte_carlo_test.py`.
```
Note: The above example is for illustration only. To compute approximate
KL-divergence, the following is preferred:
```python
approx_kl_p_q = tfp.vi.monte_carlo_csiszar_f_divergence(
f=bf.kl_reverse,
p_log_prob=q.log_prob,
q=p,
num_draws=num_draws)
```
Args:
f: Python callable which can return `f(samples)`.
samples: `Tensor` of samples used to form the Monte-Carlo approximation of
\\(E_p[f(X)]\\). A batch of samples should be indexed by `axis`
dimensions.
log_prob: Python callable which can return `log_prob(samples)`. Must
correspond to the natural-logarithm of the pdf/pmf of each sample. Only
required/used if `use_reparametrization=False`.
Default value: `None`.
use_reparametrization: Python `bool` indicating that the approximation
should use the fact that the gradient of samples is unbiased. Whether
`True` or `False`, this arg only affects the gradient of the resulting
`approx_expectation`.
Default value: `True`.
axis: The dimensions to average. If `None`, averages all
dimensions.
Default value: `0` (the left-most dimension).
keep_dims: If True, retains averaged dimensions using size `1`.
Default value: `False`.
name: A `name_scope` for operations created by this function.
Default value: `None` (which implies "expectation").
Returns:
approx_expectation: `Tensor` corresponding to the Monte-Carlo approximation
of \\(E_p[f(X)]\\).
Raises:
ValueError: if `f` is not a Python `callable`.
ValueError: if `use_reparametrization=False` and `log_prob` is not a Python
`callable`.
"""
with ops.name_scope(name, 'expectation', [samples]):
if not callable(f):
raise ValueError('`f` must be a callable function.')
if use_reparametrization:
return math_ops.reduce_mean(f(samples), axis=axis, keepdims=keep_dims)
else:
if not callable(log_prob):
raise ValueError('`log_prob` must be a callable function.')
stop = array_ops.stop_gradient # For readability.
x = stop(samples)
logpx = log_prob(x)
fx = f(x) # Call `f` once in case it has side-effects.
# We now rewrite f(x) so that:
# `grad[f(x)] := grad[f(x)] + f(x) * grad[logqx]`.
# To achieve this, we use a trick that
# `h(x) - stop(h(x)) == zeros_like(h(x))`
# but its gradient is grad[h(x)].
# Note that IEEE754 specifies that `x - x == 0.` and `x + 0. == x`, hence
# this trick loses no precision. For more discussion regarding the
# relevant portions of the IEEE754 standard, see the StackOverflow
# question,
# "Is there a floating point value of x, for which x-x == 0 is false?"
# http://stackoverflow.com/q/2686644
fx += stop(fx) * (logpx - stop(logpx)) # Add zeros_like(logpx).
return math_ops.reduce_mean(fx, axis=axis, keepdims=keep_dims)
def _sample_mean(values):
"""Mean over sample indices. In this module this is always [0]."""
return math_ops.reduce_mean(values, reduction_indices=[0])
def _sample_max(values):
"""Max over sample indices. In this module this is always [0]."""
return math_ops.reduce_max(values, reduction_indices=[0])
def _get_samples(dist, z, n, seed):
"""Check args and return samples."""
with ops.name_scope('get_samples', values=[z, n]):
if (n is None) == (z is None):
raise ValueError(
'Must specify exactly one of arguments "n" and "z". Found: '
'n = %s, z = %s' % (n, z))
if n is not None:
return dist.sample(n, seed=seed)
else:
return ops.convert_to_tensor(z, name='z')