blob: 82103f03132e45ff822ce1ebcc2be47b24f5869f [file] [log] [blame]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for the Python extension-based XLA client."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import threading
import numpy as np
from tensorflow.compiler.xla.python import xla_client
import unittest
class LocalComputationTest(unittest.TestCase):
"""Base class for running an XLA Computation through the local client."""
def _NewComputation(self, name=None):
if name is None:
name = self.id()
return xla_client.ComputationBuilder(name)
def _Execute(self, c, arguments):
compiled_c = c.Build().CompileWithExampleArguments(arguments)
return compiled_c.Execute(arguments)
def _ExecuteAndAssertWith(self, assert_func, c, arguments, expected):
assert expected is not None
result = self._Execute(c, arguments)
# Numpy's comparison methods are a bit too lenient by treating inputs as
# "array-like", meaning that scalar 4 will be happily compared equal to
# [[4]]. We'd like to be more strict so assert shapes as well.
self.assertEqual(np.asanyarray(result).shape, np.asanyarray(expected).shape)
assert_func(result, expected)
def _ExecuteAndCompareExact(self, c, arguments=(), expected=None):
self._ExecuteAndAssertWith(np.testing.assert_equal, c, arguments, expected)
def _ExecuteAndCompareClose(self, c, arguments=(), expected=None):
self._ExecuteAndAssertWith(np.testing.assert_allclose, c, arguments,
expected)
def NumpyArrayF32(*args, **kwargs):
"""Convenience wrapper to create Numpy arrays with a np.float32 dtype."""
return np.array(*args, dtype=np.float32, **kwargs)
def NumpyArrayF64(*args, **kwargs):
"""Convenience wrapper to create Numpy arrays with a np.float64 dtype."""
return np.array(*args, dtype=np.float64, **kwargs)
def NumpyArrayS32(*args, **kwargs):
"""Convenience wrapper to create Numpy arrays with a np.int32 dtype."""
return np.array(*args, dtype=np.int32, **kwargs)
def NumpyArrayS64(*args, **kwargs):
"""Convenience wrapper to create Numpy arrays with a np.int64 dtype."""
return np.array(*args, dtype=np.int64, **kwargs)
def NumpyArrayBool(*args, **kwargs):
"""Convenience wrapper to create Numpy arrays with a np.bool dtype."""
return np.array(*args, dtype=np.bool, **kwargs)
class ComputationsWithConstantsTest(LocalComputationTest):
"""Tests focusing on Constant ops."""
def testConstantScalarSumF32(self):
c = self._NewComputation()
root = c.Add(c.ConstantF32Scalar(1.11), c.ConstantF32Scalar(3.14))
self.assertEqual(c.GetShape(root), c.GetReturnValueShape())
self._ExecuteAndCompareClose(c, expected=4.25)
def testConstantScalarSumF64(self):
c = self._NewComputation()
c.Add(c.ConstantF64Scalar(1.11), c.ConstantF64Scalar(3.14))
self._ExecuteAndCompareClose(c, expected=4.25)
def testConstantScalarSumS32(self):
c = self._NewComputation()
c.Add(c.ConstantS32Scalar(1), c.ConstantS32Scalar(2))
self._ExecuteAndCompareClose(c, expected=3)
def testConstantScalarSumS64(self):
c = self._NewComputation()
c.Add(c.ConstantS64Scalar(1), c.ConstantS64Scalar(2))
self._ExecuteAndCompareClose(c, expected=3)
def testConstantVectorMulF32(self):
c = self._NewComputation()
c.Mul(
c.Constant(NumpyArrayF32([2.5, 3.3, -1.2, 0.7])),
c.Constant(NumpyArrayF32([-1.2, 2, -2, -3])))
self._ExecuteAndCompareClose(c, expected=[-3, 6.6, 2.4, -2.1])
def testConstantVectorMulF64(self):
c = self._NewComputation()
c.Mul(
c.Constant(NumpyArrayF64([2.5, 3.3, -1.2, 0.7])),
c.Constant(NumpyArrayF64([-1.2, 2, -2, -3])))
self._ExecuteAndCompareClose(c, expected=[-3, 6.6, 2.4, -2.1])
def testConstantVectorScalarDivF32(self):
c = self._NewComputation()
c.Div(
c.Constant(NumpyArrayF32([1.5, 2.5, 3.0, -10.8])),
c.ConstantF32Scalar(2.0))
self._ExecuteAndCompareClose(c, expected=[0.75, 1.25, 1.5, -5.4])
def testConstantVectorScalarDivF64(self):
c = self._NewComputation()
c.Div(
c.Constant(NumpyArrayF64([1.5, 2.5, 3.0, -10.8])),
c.ConstantF64Scalar(2.0))
self._ExecuteAndCompareClose(c, expected=[0.75, 1.25, 1.5, -5.4])
def testConstantVectorScalarPowF32(self):
c = self._NewComputation()
c.Pow(c.Constant(NumpyArrayF32([1.5, 2.5, 3.0])), c.ConstantF32Scalar(2.))
self._ExecuteAndCompareClose(c, expected=[2.25, 6.25, 9.])
def testConstantVectorScalarPowF64(self):
c = self._NewComputation()
c.Pow(c.Constant(NumpyArrayF64([1.5, 2.5, 3.0])), c.ConstantF64Scalar(2.))
self._ExecuteAndCompareClose(c, expected=[2.25, 6.25, 9.])
def testBooleanAnd(self):
c = self._NewComputation()
c.And(
c.Constant(NumpyArrayBool([True, False, True, False])),
c.Constant(NumpyArrayBool([True, True, False, False])))
self._ExecuteAndCompareExact(c, expected=[True, False, False, False])
def testBooleanOr(self):
c = self._NewComputation()
c.Or(
c.Constant(NumpyArrayBool([True, False, True, False])),
c.Constant(NumpyArrayBool([True, True, False, False])))
self._ExecuteAndCompareExact(c, expected=[True, True, True, False])
def testBooleanXor(self):
c = self._NewComputation()
c.Xor(
c.Constant(NumpyArrayBool([True, False, True, False])),
c.Constant(NumpyArrayBool([True, True, False, False])))
self._ExecuteAndCompareExact(c, expected=[False, True, True, False])
def testSum2DF32(self):
c = self._NewComputation()
c.Add(
c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6]])),
c.Constant(NumpyArrayF32([[1, -1, 1], [-1, 1, -1]])))
self._ExecuteAndCompareClose(c, expected=[[2, 1, 4], [3, 6, 5]])
def testShiftLeft(self):
c = self._NewComputation()
c.ShiftLeft(c.Constant(NumpyArrayS32([3])),
c.Constant(NumpyArrayS32([2])))
self._ExecuteAndCompareClose(c, expected=[12])
def testShiftRightArithmetic(self):
c = self._NewComputation()
c.ShiftRightArithmetic(c.Constant(NumpyArrayS32([-2])),
c.Constant(NumpyArrayS32([1])))
self._ExecuteAndCompareClose(c, expected=[-1])
def testShiftRightLogical(self):
c = self._NewComputation()
c.ShiftRightLogical(c.Constant(NumpyArrayS32([-1])),
c.Constant(NumpyArrayS32([1])))
self._ExecuteAndCompareClose(c, expected=[2**31 - 1])
def testGetProto(self):
c = self._NewComputation()
c.Add(
c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6]])),
c.Constant(NumpyArrayF32([[1, -1, 1], [-1, 1, -1]])))
built = c.Build()
proto = built.GetProto() # HloModuleProto
self.assertTrue(len(proto.computations) == 1)
self.assertTrue(len(proto.computations[0].instructions) == 3)
def testSum2DF64(self):
c = self._NewComputation()
c.Add(
c.Constant(NumpyArrayF64([[1, 2, 3], [4, 5, 6]])),
c.Constant(NumpyArrayF64([[1, -1, 1], [-1, 1, -1]])))
self._ExecuteAndCompareClose(c, expected=[[2, 1, 4], [3, 6, 5]])
def testSum2DWith1DBroadcastDim0F32(self):
# sum of a 2D array with a 1D array where the latter is replicated across
# dimension 0 to match the former's shape.
c = self._NewComputation()
c.Add(
c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
c.Constant(NumpyArrayF32([10, 20, 30])),
broadcast_dimensions=(0,))
self._ExecuteAndCompareClose(
c, expected=[[11, 12, 13], [24, 25, 26], [37, 38, 39]])
def testSum2DWith1DBroadcastDim0F64(self):
# sum of a 2D array with a 1D array where the latter is replicated across
# dimension 0 to match the former's shape.
c = self._NewComputation()
c.Add(
c.Constant(NumpyArrayF64([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
c.Constant(NumpyArrayF64([10, 20, 30])),
broadcast_dimensions=(0,))
self._ExecuteAndCompareClose(
c, expected=[[11, 12, 13], [24, 25, 26], [37, 38, 39]])
def testSum2DWith1DBroadcastDim1F32(self):
# sum of a 2D array with a 1D array where the latter is replicated across
# dimension 1 to match the former's shape.
c = self._NewComputation()
c.Add(
c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
c.Constant(NumpyArrayF32([10, 20, 30])),
broadcast_dimensions=(1,))
self._ExecuteAndCompareClose(
c, expected=[[11, 22, 33], [14, 25, 36], [17, 28, 39]])
def testSum2DWith1DBroadcastDim1F64(self):
# sum of a 2D array with a 1D array where the latter is replicated across
# dimension 1 to match the former's shape.
c = self._NewComputation()
c.Add(
c.Constant(NumpyArrayF64([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
c.Constant(NumpyArrayF64([10, 20, 30])),
broadcast_dimensions=(1,))
self._ExecuteAndCompareClose(
c, expected=[[11, 22, 33], [14, 25, 36], [17, 28, 39]])
def testConstantAxpyF32(self):
c = self._NewComputation()
c.Add(
c.Mul(
c.ConstantF32Scalar(2),
c.Constant(NumpyArrayF32([2.2, 3.3, 4.4, 5.5]))),
c.Constant(NumpyArrayF32([100, -100, 200, -200])))
self._ExecuteAndCompareClose(c, expected=[104.4, -93.4, 208.8, -189])
def testConstantAxpyF64(self):
c = self._NewComputation()
c.Add(
c.Mul(
c.ConstantF64Scalar(2),
c.Constant(NumpyArrayF64([2.2, 3.3, 4.4, 5.5]))),
c.Constant(NumpyArrayF64([100, -100, 200, -200])))
self._ExecuteAndCompareClose(c, expected=[104.4, -93.4, 208.8, -189])
class ParametersTest(LocalComputationTest):
"""Tests focusing on Parameter ops and argument-passing."""
def setUp(self):
self.f32_scalar_2 = NumpyArrayF32(2.0)
self.f32_4vector = NumpyArrayF32([-2.3, 3.3, -4.3, 5.3])
self.f64_scalar_2 = NumpyArrayF64(2.0)
self.f64_4vector = NumpyArrayF64([-2.3, 3.3, -4.3, 5.3])
self.s32_scalar_3 = NumpyArrayS32(3)
self.s32_4vector = NumpyArrayS32([10, 15, -2, 7])
self.s64_scalar_3 = NumpyArrayS64(3)
self.s64_4vector = NumpyArrayS64([10, 15, -2, 7])
def testScalarTimesVectorAutonumberF32(self):
c = self._NewComputation()
p0 = c.ParameterFromNumpy(self.f32_scalar_2)
p1 = c.ParameterFromNumpy(self.f32_4vector)
c.Mul(p0, p1)
self._ExecuteAndCompareClose(
c,
arguments=[self.f32_scalar_2, self.f32_4vector],
expected=[-4.6, 6.6, -8.6, 10.6])
def testScalarTimesVectorAutonumberF64(self):
c = self._NewComputation()
p0 = c.ParameterFromNumpy(self.f64_scalar_2)
p1 = c.ParameterFromNumpy(self.f64_4vector)
c.Mul(p0, p1)
self._ExecuteAndCompareClose(
c,
arguments=[self.f64_scalar_2, self.f64_4vector],
expected=[-4.6, 6.6, -8.6, 10.6])
def testScalarTimesVectorS32(self):
c = self._NewComputation()
p0 = c.ParameterFromNumpy(self.s32_scalar_3)
p1 = c.ParameterFromNumpy(self.s32_4vector)
c.Mul(p0, p1)
self._ExecuteAndCompareExact(
c,
arguments=[self.s32_scalar_3, self.s32_4vector],
expected=[30, 45, -6, 21])
def testScalarTimesVectorS64(self):
c = self._NewComputation()
p0 = c.ParameterFromNumpy(self.s64_scalar_3)
p1 = c.ParameterFromNumpy(self.s64_4vector)
c.Mul(p0, p1)
self._ExecuteAndCompareExact(
c,
arguments=[self.s64_scalar_3, self.s64_4vector],
expected=[30, 45, -6, 21])
def testScalarMinusVectorExplicitNumberingF32(self):
# Use explicit numbering and pass parameter_num first. Sub is used since
# it's not commutative and can help catch parameter reversal within the
# computation.
c = self._NewComputation()
p1 = c.ParameterFromNumpy(self.f32_4vector, parameter_num=1)
p0 = c.ParameterFromNumpy(self.f32_scalar_2, parameter_num=0)
c.Sub(p1, p0)
self._ExecuteAndCompareClose(
c,
arguments=[self.f32_scalar_2, self.f32_4vector],
expected=[-4.3, 1.3, -6.3, 3.3])
def testScalarMinusVectorExplicitNumberingF64(self):
# Use explicit numbering and pass parameter_num first. Sub is used since
# it's not commutative and can help catch parameter reversal within the
# computation.
c = self._NewComputation()
p1 = c.ParameterFromNumpy(self.f64_4vector, parameter_num=1)
p0 = c.ParameterFromNumpy(self.f64_scalar_2, parameter_num=0)
c.Sub(p1, p0)
self._ExecuteAndCompareClose(
c,
arguments=[self.f64_scalar_2, self.f64_4vector],
expected=[-4.3, 1.3, -6.3, 3.3])
class LocalBufferTest(LocalComputationTest):
"""Tests focusing on execution with LocalBuffers."""
def _Execute(self, c, arguments):
compiled_c = c.Build().CompileWithExampleArguments(arguments)
arg_buffers = [xla_client.LocalBuffer.from_pyval(arg) for arg in arguments]
result_buffer = compiled_c.ExecuteWithLocalBuffers(arg_buffers)
return result_buffer.to_py()
def testConstantSum(self):
c = self._NewComputation()
c.Add(c.ConstantF32Scalar(1.11), c.ConstantF32Scalar(3.14))
self._ExecuteAndCompareClose(c, expected=4.25)
def testOneParameterSum(self):
c = self._NewComputation()
c.Add(c.ParameterFromNumpy(NumpyArrayF32(0.)), c.ConstantF32Scalar(3.14))
self._ExecuteAndCompareClose(
c,
arguments=[NumpyArrayF32(1.11)],
expected=4.25)
def testTwoParameterSum(self):
c = self._NewComputation()
c.Add(c.ParameterFromNumpy(NumpyArrayF32(0.)),
c.ParameterFromNumpy(NumpyArrayF32(0.)))
self._ExecuteAndCompareClose(
c,
arguments=[NumpyArrayF32(1.11), NumpyArrayF32(3.14)],
expected=4.25)
def testCannotCallWithDeletedBuffers(self):
c = self._NewComputation()
c.Add(c.ParameterFromNumpy(NumpyArrayF32(0.)), c.ConstantF32Scalar(3.14))
arg = NumpyArrayF32(1.11)
compiled_c = c.Build().CompileWithExampleArguments([arg])
arg_buffer = xla_client.LocalBuffer.from_pyval(arg)
arg_buffer.delete()
with self.assertRaises(ValueError):
compiled_c.ExecuteWithLocalBuffers([arg_buffer])
def testDestructureTupleEmpty(self):
t = ()
local_buffer = xla_client.LocalBuffer.from_pyval(t)
pieces = local_buffer.destructure()
self.assertTrue(local_buffer.is_deleted())
self.assertEqual(len(pieces), 0)
def testDestructureTupleOneArrayElement(self):
t = (np.array([1, 2, 3, 4], dtype=np.int32),)
local_buffer = xla_client.LocalBuffer.from_pyval(t)
pieces = local_buffer.destructure()
self.assertTrue(local_buffer.is_deleted())
self.assertEqual(len(pieces), 1)
array = pieces[0]
got = array.to_py()
want = NumpyArrayS32([1, 2, 3, 4])
np.testing.assert_equal(want, got)
def testDestructureTupleTwoArrayElementDifferentType(self):
t = (np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32),
np.array([2, 3, 4, 5], dtype=np.int32))
local_buffer = xla_client.LocalBuffer.from_pyval(t)
pieces = local_buffer.destructure()
self.assertTrue(local_buffer.is_deleted())
self.assertEqual(len(pieces), 2)
array0, array1 = pieces
got = array0.to_py()
want = NumpyArrayF32([1.0, 2.0, 3.0, 4.0])
np.testing.assert_equal(want, got)
got = array1.to_py()
want = NumpyArrayS32([2, 3, 4, 5])
np.testing.assert_equal(want, got)
def testDestructureTupleNested(self):
t = ((NumpyArrayF32([1.0, 2.0]), NumpyArrayS32([3, 4])), NumpyArrayS32([5]))
local_buffer = xla_client.LocalBuffer.from_pyval(t)
pieces = local_buffer.destructure()
self.assertTrue(local_buffer.is_deleted())
self.assertEqual(len(pieces), 2)
tuple0, array1 = pieces
got = array1.to_py()
want = NumpyArrayS32([5])
np.testing.assert_equal(want, got)
got = tuple0.to_py()
self.assertEqual(type(got), tuple)
self.assertEqual(len(got), 2)
np.testing.assert_equal(NumpyArrayF32([1.0, 2.0]), got[0])
np.testing.assert_equal(NumpyArrayS32([3, 4]), got[1])
class SingleOpTest(LocalComputationTest):
"""Tests for single ops.
The goal here is smoke testing - to exercise the most basic functionality of
single XLA ops. As minimal as possible number of additional ops are added
around the op being tested.
"""
def testConcatenateF32(self):
c = self._NewComputation()
c.Concatenate(
(c.Constant(NumpyArrayF32([1.0, 2.0, 3.0])),
c.Constant(NumpyArrayF32([4.0, 5.0, 6.0]))),
dimension=0)
self._ExecuteAndCompareClose(c, expected=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
def testConcatenateF64(self):
c = self._NewComputation()
c.Concatenate(
(c.Constant(NumpyArrayF64([1.0, 2.0, 3.0])),
c.Constant(NumpyArrayF64([4.0, 5.0, 6.0]))),
dimension=0)
self._ExecuteAndCompareClose(c, expected=[1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
def testConvertElementType(self):
xla_types = {
np.bool: xla_client.xla_data_pb2.PRED,
np.int32: xla_client.xla_data_pb2.S32,
np.int64: xla_client.xla_data_pb2.S64,
np.float32: xla_client.xla_data_pb2.F32,
np.float64: xla_client.xla_data_pb2.F64,
}
def _ConvertAndTest(template, src_dtype, dst_dtype):
c = self._NewComputation()
x = c.Constant(np.array(template, dtype=src_dtype))
c.ConvertElementType(x, xla_types[dst_dtype])
result = c.Build().Compile().Execute()
expected = np.array(template, dtype=dst_dtype)
self.assertEqual(result.shape, expected.shape)
self.assertEqual(result.dtype, expected.dtype)
np.testing.assert_equal(result, expected)
x = [0, 1, 0, 0, 1]
for src_dtype, dst_dtype in itertools.product(xla_types, xla_types):
_ConvertAndTest(x, src_dtype, dst_dtype)
def testBitcastConvertType(self):
xla_x32_types = {
np.int32: xla_client.xla_data_pb2.S32,
np.float32: xla_client.xla_data_pb2.F32,
}
xla_x64_types = {
np.int64: xla_client.xla_data_pb2.S64,
np.float64: xla_client.xla_data_pb2.F64,
}
def _ConvertAndTest(template, src_dtype, dst_dtype, dst_etype):
c = self._NewComputation()
x = c.Constant(np.array(template, dtype=src_dtype))
c.BitcastConvertType(x, dst_etype)
result = c.Build().Compile().Execute()
expected = np.array(template, src_dtype).view(dst_dtype)
self.assertEqual(result.shape, expected.shape)
self.assertEqual(result.dtype, expected.dtype)
np.testing.assert_equal(result, expected)
x = [0, 1, 0, 0, 1]
for xla_types in [xla_x32_types, xla_x64_types]:
for src_dtype, dst_dtype in itertools.product(xla_types, xla_types):
_ConvertAndTest(x, src_dtype, dst_dtype, xla_types[dst_dtype])
def testCrossReplicaSumOneReplica(self):
samples = [
NumpyArrayF32(42.0),
NumpyArrayF32([97.0]),
NumpyArrayF32([64.0, 117.0]),
NumpyArrayF32([[2.0, 3.0], [4.0, 5.0]]),
]
for lhs in samples:
c = self._NewComputation()
c.CrossReplicaSum(c.Constant(lhs))
self._ExecuteAndCompareExact(c, expected=lhs)
def testDotMatrixVectorF32(self):
c = self._NewComputation()
lhs = NumpyArrayF32([[2.0, 3.0], [4.0, 5.0]])
rhs = NumpyArrayF32([[10.0], [20.0]])
c.Dot(c.Constant(lhs), c.Constant(rhs))
self._ExecuteAndCompareClose(c, expected=np.dot(lhs, rhs))
def testDotMatrixVectorF64(self):
c = self._NewComputation()
lhs = NumpyArrayF64([[2.0, 3.0], [4.0, 5.0]])
rhs = NumpyArrayF64([[10.0], [20.0]])
c.Dot(c.Constant(lhs), c.Constant(rhs))
self._ExecuteAndCompareClose(c, expected=np.dot(lhs, rhs))
def testDotMatrixMatrixF32(self):
c = self._NewComputation()
lhs = NumpyArrayF32([[2.0, 3.0], [4.0, 5.0]])
rhs = NumpyArrayF32([[10.0, 20.0], [100.0, 200.0]])
c.Dot(c.Constant(lhs), c.Constant(rhs))
self._ExecuteAndCompareClose(c, expected=np.dot(lhs, rhs))
def testDotMatrixMatrixF64(self):
c = self._NewComputation()
lhs = NumpyArrayF64([[2.0, 3.0], [4.0, 5.0]])
rhs = NumpyArrayF64([[10.0, 20.0], [100.0, 200.0]])
c.Dot(c.Constant(lhs), c.Constant(rhs))
self._ExecuteAndCompareClose(c, expected=np.dot(lhs, rhs))
def testDotGeneral(self):
c = self._NewComputation()
rng = np.random.RandomState(0)
lhs = NumpyArrayF32(rng.randn(10, 3, 4))
rhs = NumpyArrayF32(rng.randn(10, 4, 5))
dimension_numbers = (([2], [1]), ([0], [0]))
c.DotGeneral(c.Constant(lhs), c.Constant(rhs), dimension_numbers)
self._ExecuteAndCompareClose(c, expected=np.matmul(lhs, rhs))
def testDotGeneralWithDotDimensionNumbersProto(self):
c = self._NewComputation()
rng = np.random.RandomState(0)
lhs = NumpyArrayF32(rng.randn(10, 3, 4))
rhs = NumpyArrayF32(rng.randn(10, 4, 5))
dimension_numbers = xla_client.xla_data_pb2.DotDimensionNumbers()
dimension_numbers.lhs_contracting_dimensions.append(2)
dimension_numbers.rhs_contracting_dimensions.append(1)
dimension_numbers.lhs_batch_dimensions.append(0)
dimension_numbers.rhs_batch_dimensions.append(0)
c.DotGeneral(c.Constant(lhs), c.Constant(rhs), dimension_numbers)
self._ExecuteAndCompareClose(c, expected=np.matmul(lhs, rhs))
def testConvF32Same(self):
c = self._NewComputation()
a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32")
lhs = a(1, 2, 3, 4)
rhs = a(1, 2, 1, 2) * 10
c.Conv(c.Constant(lhs), c.Constant(rhs),
[1, 1], xla_client.PaddingType.SAME)
result = np.array([[[[640., 700., 760., 300.],
[880., 940., 1000., 380.],
[1120., 1180., 1240., 460.]]]])
self._ExecuteAndCompareClose(c, expected=result)
def testConvF32Valid(self):
c = self._NewComputation()
a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32")
lhs = a(1, 2, 3, 4)
rhs = a(1, 2, 1, 2) * 10
c.Conv(c.Constant(lhs), c.Constant(rhs),
[2, 1], xla_client.PaddingType.VALID)
result = np.array([[[[640., 700., 760.],
[1120., 1180., 1240.]]]])
self._ExecuteAndCompareClose(c, expected=result)
def testConvWithGeneralPaddingF32(self):
c = self._NewComputation()
a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32")
lhs = a(1, 1, 2, 3)
rhs = a(1, 1, 1, 2) * 10
strides = [1, 1]
pads = [(1, 0), (0, 1)]
lhs_dilation = (2, 1)
rhs_dilation = (1, 1)
c.ConvWithGeneralPadding(c.Constant(lhs), c.Constant(rhs),
strides, pads, lhs_dilation, rhs_dilation)
result = np.array([[[[0., 0., 0.],
[10., 20., 0.],
[0., 0., 0.],
[40., 50., 0.]]]])
self._ExecuteAndCompareClose(c, expected=result)
def testConvGeneralDilatedF32(self):
c = self._NewComputation()
a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32")
lhs = a(1, 1, 2, 3)
rhs = a(1, 1, 1, 2) * 10
strides = [1, 1]
pads = [(1, 0), (0, 1)]
lhs_dilation = (2, 1)
rhs_dilation = (1, 1)
dimension_numbers = ("NCHW", "OIHW", "NCHW")
c.ConvGeneralDilated(c.Constant(lhs), c.Constant(rhs),
strides, pads, lhs_dilation, rhs_dilation,
dimension_numbers)
result = np.array([[[[0., 0., 0.],
[10., 20., 0.],
[0., 0., 0.],
[40., 50., 0.]]]])
self._ExecuteAndCompareClose(c, expected=result)
def testConvGeneralDilatedPermutedF32(self):
c = self._NewComputation()
a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32")
lhs = a(1, 1, 2, 3)
rhs = a(1, 1, 1, 2) * 10
strides = [1, 1]
pads = [(1, 0), (0, 1)]
lhs_dilation = (2, 1)
rhs_dilation = (1, 1)
dimension_numbers = ("NHWC", "OIHW", "CWNH")
c.ConvGeneralDilated(c.Constant(np.transpose(lhs, (0, 2, 3, 1))),
c.Constant(rhs),
strides, pads, lhs_dilation, rhs_dilation,
dimension_numbers)
result = np.array([[[[0., 0., 0.],
[10., 20., 0.],
[0., 0., 0.],
[40., 50., 0.]]]])
self._ExecuteAndCompareClose(c, expected=np.transpose(result, (1, 3, 0, 2)))
def testConvGeneralDilatedGroupedConvolutionF32(self):
c = self._NewComputation()
a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32")
lhs = a(1, 2, 2, 3)
rhs = a(2, 1, 1, 2) * 10
strides = [1, 1]
pads = [(1, 0), (0, 1)]
lhs_dilation = (2, 1)
rhs_dilation = (1, 1)
dimension_numbers = ("NCHW", "OIHW", "NCHW")
feature_group_count = 2
c.ConvGeneralDilated(c.Constant(lhs), c.Constant(rhs),
strides, pads, lhs_dilation, rhs_dilation,
dimension_numbers, feature_group_count)
result = np.array([[[[0., 0., 0.],
[10., 20., 0.],
[0., 0., 0.],
[40., 50., 0.]],
[[0., 0., 0.],
[330., 380., 160.],
[0., 0., 0.],
[480., 530., 220.]]]])
self._ExecuteAndCompareClose(c, expected=result)
def testBooleanNot(self):
c = self._NewComputation()
arr = NumpyArrayBool([True, False, True])
c.Not(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=~arr)
def testExp(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Exp(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.exp(arr))
def testExpm1(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Expm1(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.expm1(arr))
def testRound(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Round(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.round(arr))
def testLog(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Log(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.log(arr))
def testLog1p(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Log1p(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.log1p(arr))
def testNeg(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Neg(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=-arr)
def testFloor(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Floor(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.floor(arr))
def testCeil(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Ceil(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.ceil(arr))
def testAbs(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, -12.1, 2.4, -1.])
c.Abs(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.abs(arr))
def testTanh(self):
c = self._NewComputation()
arr = NumpyArrayF32([3.3, 12.1])
c.Tanh(c.Constant(arr))
self._ExecuteAndCompareClose(c, expected=np.tanh(arr))
def testTrans(self):
def _TransposeAndTest(array):
c = self._NewComputation()
c.Trans(c.Constant(array))
self._ExecuteAndCompareClose(c, expected=array.T)
# Test square and non-square matrices in both default (C) and F orders.
for array_fun in [NumpyArrayF32, NumpyArrayF64]:
_TransposeAndTest(array_fun([[1, 2, 3], [4, 5, 6]]))
_TransposeAndTest(array_fun([[1, 2, 3], [4, 5, 6]], order="F"))
_TransposeAndTest(array_fun([[1, 2], [4, 5]]))
_TransposeAndTest(array_fun([[1, 2], [4, 5]], order="F"))
def testTranspose(self):
def _TransposeAndTest(array, permutation):
c = self._NewComputation()
c.Transpose(c.Constant(array), permutation)
expected = np.transpose(array, permutation)
self._ExecuteAndCompareClose(c, expected=expected)
_TransposeAndTest(NumpyArrayF32([[1, 2, 3], [4, 5, 6]]), [0, 1])
_TransposeAndTest(NumpyArrayF32([[1, 2, 3], [4, 5, 6]]), [1, 0])
_TransposeAndTest(NumpyArrayF32([[1, 2], [4, 5]]), [0, 1])
_TransposeAndTest(NumpyArrayF32([[1, 2], [4, 5]]), [1, 0])
arr = np.random.RandomState(0).randn(2, 3, 4).astype(np.float32)
for permutation in itertools.permutations(range(arr.ndim)):
_TransposeAndTest(arr, permutation)
_TransposeAndTest(np.asfortranarray(arr), permutation)
def testEq(self):
c = self._NewComputation()
c.Eq(
c.Constant(NumpyArrayS32([1, 2, 3, 4])),
c.Constant(NumpyArrayS32([4, 2, 3, 1])))
self._ExecuteAndCompareExact(c, expected=[False, True, True, False])
def testNe(self):
c = self._NewComputation()
c.Ne(
c.Constant(NumpyArrayS32([1, 2, 3, 4])),
c.Constant(NumpyArrayS32([4, 2, 3, 1])))
self._ExecuteAndCompareExact(c, expected=[True, False, False, True])
c.Ne(
c.Constant(NumpyArrayF32([-2.0, 0.0,
float("nan"),
float("nan")])),
c.Constant(NumpyArrayF32([2.0, -0.0, 1.0, float("nan")])))
self._ExecuteAndAssertWith(
np.testing.assert_allclose, c, (), expected=[True, False, True, True])
def testGt(self):
c = self._NewComputation()
c.Gt(
c.Constant(NumpyArrayS32([1, 2, 3, 4, 9])),
c.Constant(NumpyArrayS32([1, 0, 2, 7, 12])))
self._ExecuteAndCompareExact(c, expected=[False, True, True, False, False])
def testGe(self):
c = self._NewComputation()
c.Ge(
c.Constant(NumpyArrayS32([1, 2, 3, 4, 9])),
c.Constant(NumpyArrayS32([1, 0, 2, 7, 12])))
self._ExecuteAndCompareExact(c, expected=[True, True, True, False, False])
def testLt(self):
c = self._NewComputation()
c.Lt(
c.Constant(NumpyArrayS32([1, 2, 3, 4, 9])),
c.Constant(NumpyArrayS32([1, 0, 2, 7, 12])))
self._ExecuteAndCompareExact(c, expected=[False, False, False, True, True])
def testLe(self):
c = self._NewComputation()
c.Le(
c.Constant(NumpyArrayS32([1, 2, 3, 4, 9])),
c.Constant(NumpyArrayS32([1, 0, 2, 7, 12])))
self._ExecuteAndCompareExact(c, expected=[True, False, False, True, True])
def testMax(self):
c = self._NewComputation()
c.Max(
c.Constant(NumpyArrayF32([1.0, 2.0, 3.0, 4.0, 9.0])),
c.Constant(NumpyArrayF32([1.0, 0.0, 2.0, 7.0, 12.0])))
self._ExecuteAndCompareExact(c, expected=[1.0, 2.0, 3.0, 7.0, 12.0])
def testMaxExplicitBroadcastDim0(self):
c = self._NewComputation()
c.Max(
c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
c.Constant(NumpyArrayF32([3, 4, 5])),
broadcast_dimensions=(0,))
self._ExecuteAndCompareExact(c, expected=[[3, 3, 3], [4, 5, 6], [7, 8, 9]])
def testMaxExplicitBroadcastDim1(self):
c = self._NewComputation()
c.Max(
c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
c.Constant(NumpyArrayF32([3, 4, 5])),
broadcast_dimensions=(1,))
self._ExecuteAndCompareExact(c, expected=[[3, 4, 5], [4, 5, 6], [7, 8, 9]])
def testMin(self):
c = self._NewComputation()
c.Min(
c.Constant(NumpyArrayF32([1.0, 2.0, 3.0, 4.0, 9.0])),
c.Constant(NumpyArrayF32([1.0, 0.0, 2.0, 7.0, 12.0])))
self._ExecuteAndCompareExact(c, expected=[1.0, 0.0, 2.0, 4.0, 9.0])
def testPad(self):
c = self._NewComputation()
c.Pad(
c.Constant(NumpyArrayF32([[1.0, 2.0], [3.0, 4.0]])),
c.Constant(NumpyArrayF32(0.0)),
[(1, 2, 1), (0, 1, 0)])
self._ExecuteAndCompareClose(c, expected=[[0.0, 0.0, 0.0],
[1.0, 2.0, 0.0],
[0.0, 0.0, 0.0],
[3.0, 4.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]])
def testPadWithPaddingConfig(self):
c = self._NewComputation()
padding_config = xla_client.xla_data_pb2.PaddingConfig()
for lo, hi, interior in [(1, 2, 1), (0, 1, 0)]:
dimension = padding_config.dimensions.add()
dimension.edge_padding_low = lo
dimension.edge_padding_high = hi
dimension.interior_padding = interior
c.Pad(
c.Constant(NumpyArrayF32([[1.0, 2.0], [3.0, 4.0]])),
c.Constant(NumpyArrayF32(0.0)),
padding_config)
self._ExecuteAndCompareClose(c, expected=[[0.0, 0.0, 0.0],
[1.0, 2.0, 0.0],
[0.0, 0.0, 0.0],
[3.0, 4.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]])
def testReshape(self):
c = self._NewComputation()
c.Reshape(
c.Constant(NumpyArrayS32([[1, 2], [3, 4], [5, 6]])),
dimensions=[0, 1],
new_sizes=[2, 3])
self._ExecuteAndCompareExact(c, expected=[[1, 2, 3], [4, 5, 6]])
def testCollapse(self):
c = self._NewComputation()
c.Collapse(
c.Constant(NumpyArrayS32([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])),
dimensions=[1, 2])
self._ExecuteAndCompareExact(c, expected=[[1, 2, 3, 4], [5, 6, 7, 8]])
def testRev(self):
c = self._NewComputation()
c.Rev(
c.Constant(NumpyArrayS32([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])),
dimensions=[0, 2])
self._ExecuteAndCompareExact(
c, expected=[[[6, 5], [8, 7]], [[2, 1], [4, 3]]])
def testClampF32(self):
c = self._NewComputation()
c.Clamp(
c.Constant(NumpyArrayF32(-1)),
c.Constant(NumpyArrayF32([-2, -1, 0, 1, 2, 3])),
c.Constant(NumpyArrayF32(2)))
self._ExecuteAndCompareExact(c, expected=[-1, -1, 0, 1, 2, 2])
# TODO(b/72689392): re-enable when bug S32 resolved
def DISABLED_testClampS32(self):
c = self._NewComputation()
c.Clamp(
c.Constant(NumpyArrayS32(-1)),
c.Constant(NumpyArrayS32([-2, -1, 0, 1, 2, 3])),
c.Constant(NumpyArrayS32(2)))
self._ExecuteAndCompareExact(c, expected=[-1, 0, 1, 2, 2])
def testSelect(self):
c = self._NewComputation()
c.Select(
c.Constant(NumpyArrayBool([True, False, False, True, False])),
c.Constant(NumpyArrayS32([1, 2, 3, 4, 5])),
c.Constant(NumpyArrayS32([-1, -2, -3, -4, -5])))
self._ExecuteAndCompareExact(c, expected=[1, -2, -3, 4, -5])
def testSlice(self):
c = self._NewComputation()
c.Slice(
c.Constant(NumpyArrayS32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])), [1, 0],
[3, 2])
self._ExecuteAndCompareExact(c, expected=[[4, 5], [7, 8]])
def testSliceInDim(self):
c = self._NewComputation()
c.SliceInDim(
c.Constant(NumpyArrayS32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
start_index=1,
limit_index=2,
stride=1,
dimno=1)
self._ExecuteAndCompareExact(c, expected=[[2], [5], [8]])
c.SliceInDim(
c.Constant(NumpyArrayS32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
start_index=0,
limit_index=3,
stride=2,
dimno=0)
self._ExecuteAndCompareExact(c, expected=[[1, 2, 3], [7, 8, 9]])
def testDynamicSlice(self):
c = self._NewComputation()
c.DynamicSlice(
c.Constant(NumpyArrayS32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
c.Constant(NumpyArrayS32([1, 0])), [2, 2])
self._ExecuteAndCompareExact(c, expected=[[4, 5], [7, 8]])
def testDynamicUpdateSlice(self):
c = self._NewComputation()
c.DynamicUpdateSlice(
c.Constant(NumpyArrayS32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])),
c.Constant(NumpyArrayS32([[1, 2], [3, 4]])),
c.Constant(NumpyArrayS32([1, 1])))
self._ExecuteAndCompareExact(c, expected=[[1, 2, 3], [4, 1, 2], [7, 3, 4]])
def testTuple(self):
c = self._NewComputation()
c.Tuple(
c.ConstantS32Scalar(42), c.Constant(NumpyArrayF32([1.0, 2.0])),
c.Constant(NumpyArrayBool([True, False, False, True])))
result = c.Build().Compile().Execute()
self.assertIsInstance(result, tuple)
np.testing.assert_equal(result[0], 42)
np.testing.assert_allclose(result[1], [1.0, 2.0])
np.testing.assert_equal(result[2], [True, False, False, True])
def testGetTupleElement(self):
c = self._NewComputation()
c.GetTupleElement(
c.Tuple(
c.ConstantS32Scalar(42), c.Constant(NumpyArrayF32([1.0, 2.0])),
c.Constant(NumpyArrayBool([True, False, False, True]))), 1)
self._ExecuteAndCompareClose(c, expected=[1.0, 2.0])
def testBroadcast(self):
c = self._NewComputation()
c.Broadcast(c.Constant(NumpyArrayS32([10, 20, 30, 40])), sizes=(3,))
self._ExecuteAndCompareExact(
c, expected=[[10, 20, 30, 40], [10, 20, 30, 40], [10, 20, 30, 40]])
def testRngNormal(self):
shape = (2, 3)
c = self._NewComputation()
c.RngNormal(c.Constant(NumpyArrayF32(0.)), c.Constant(NumpyArrayF32(1.)),
dims=shape)
result = c.Build().Compile().Execute()
# since the result is random, we just check shape and uniqueness
self.assertEqual(result.shape, shape)
self.assertEqual(len(np.unique(result)), np.prod(shape))
def testRngUniformF32(self):
lo, hi = 2., 4.
shape = (2, 3)
c = self._NewComputation()
c.RngUniform(c.Constant(NumpyArrayF32(lo)), c.Constant(NumpyArrayF32(hi)),
dims=shape)
result = c.Build().Compile().Execute()
# since the result is random, we just check shape, uniqueness, and range
self.assertEqual(result.shape, shape)
self.assertEqual(len(np.unique(result)), np.prod(shape))
self.assertTrue(np.all(lo <= result))
self.assertTrue(np.all(result < hi))
def testRngUniformS32(self):
lo, hi = 2, 4
shape = (2, 3)
c = self._NewComputation()
c.RngUniform(c.Constant(NumpyArrayS32(lo)), c.Constant(NumpyArrayS32(hi)),
dims=shape)
result = c.Build().Compile().Execute()
# since the result is random, we just check shape, integrality, and range
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, np.int32)
self.assertTrue(np.all(lo <= result))
self.assertTrue(np.all(result < hi))
def testIsConstant(self):
c = self._NewComputation()
a = c.ConstantS32Scalar(3)
b = c.ConstantS32Scalar(1)
x = c.ParameterFromNumpy(NumpyArrayS32(0))
const_expr = c.Sub(b, a)
non_const_expr = c.Mul(const_expr, x)
self.assertTrue(c.IsConstant(const_expr))
self.assertFalse(c.IsConstant(non_const_expr))
# self.assertTrue(c.IsConstant(c.Sub(c.Add(x, a), x))) # TODO(b/77245564)
class EmbeddedComputationsTest(LocalComputationTest):
"""Tests for XLA graphs with embedded computations (such as maps)."""
def _CreateConstantS32Computation(self):
"""Computation (f32) -> s32 that returns a constant 1 for any input."""
c = self._NewComputation("constant_s32_one")
# TODO(eliben): consider adding a nicer way to create new parameters without
# having to create dummy Numpy arrays or populating Shape messages. Perhaps
# we need our own (Python-client-own) way to represent Shapes conveniently.
c.ParameterFromNumpy(NumpyArrayF32(0))
c.ConstantS32Scalar(1)
return c.Build()
def _CreateConstantS64Computation(self):
"""Computation (f64) -> s64 that returns a constant 1 for any input."""
c = self._NewComputation("constant_s64_one")
# TODO(eliben): consider adding a nicer way to create new parameters without
# having to create dummy Numpy arrays or populating Shape messages. Perhaps
# we need our own (Python-client-own) way to represent Shapes conveniently.
c.ParameterFromNumpy(NumpyArrayF64(0))
c.ConstantS64Scalar(1)
return c.Build()
def _CreateConstantF32Computation(self):
"""Computation (f32) -> f32 that returns a constant 1.0 for any input."""
c = self._NewComputation("constant_f32_one")
c.ParameterFromNumpy(NumpyArrayF32(0))
c.ConstantF32Scalar(1.0)
return c.Build()
def _CreateConstantF64Computation(self):
"""Computation (f64) -> f64 that returns a constant 1.0 for any input."""
c = self._NewComputation("constant_f64_one")
c.ParameterFromNumpy(NumpyArrayF64(0))
c.ConstantF64Scalar(1.0)
return c.Build()
def _CreateMulF32By2Computation(self):
"""Computation (f32) -> f32 that multiplies its parameter by 2."""
c = self._NewComputation("mul_f32_by2")
c.Mul(c.ParameterFromNumpy(NumpyArrayF32(0)), c.ConstantF32Scalar(2.0))
return c.Build()
def _CreateMulF32ByParamComputation(self):
"""Computation (f32) -> f32 that multiplies one parameter by the other."""
c = self._NewComputation("mul_f32_by_param")
c.Mul(c.ParameterFromNumpy(NumpyArrayF32(0)),
c.ParameterFromNumpy(NumpyArrayF32(0)))
return c.Build()
def _CreateMulF64By2Computation(self):
"""Computation (f64) -> f64 that multiplies its parameter by 2."""
c = self._NewComputation("mul_f64_by2")
c.Mul(c.ParameterFromNumpy(NumpyArrayF64(0)), c.ConstantF64Scalar(2.0))
return c.Build()
def _CreateBinaryAddF32Computation(self):
"""Computation (f32, f32) -> f32 that adds its two parameters."""
c = self._NewComputation("add_param0_by_param1")
c.Add(
c.ParameterFromNumpy(NumpyArrayF32(0)),
c.ParameterFromNumpy(NumpyArrayF32(0)))
return c.Build()
def _CreateBinaryAddF64Computation(self):
"""Computation (f64, f64) -> f64 that adds its two parameters."""
c = self._NewComputation("add_param0_by_param1")
c.Add(
c.ParameterFromNumpy(NumpyArrayF64(0)),
c.ParameterFromNumpy(NumpyArrayF64(0)))
return c.Build()
def _CreateBinaryDivF32Computation(self):
"""Computation (f32, f32) -> f32 that divides its two parameters."""
c = self._NewComputation("div_param0_by_param1")
c.Div(
c.ParameterFromNumpy(NumpyArrayF32(0)),
c.ParameterFromNumpy(NumpyArrayF32(0)))
return c.Build()
def _CreateBinaryDivF64Computation(self):
"""Computation (f64, f64) -> f64 that divides its two parameters."""
c = self._NewComputation("div_param0_by_param1")
c.Div(
c.ParameterFromNumpy(NumpyArrayF64(0)),
c.ParameterFromNumpy(NumpyArrayF64(0)))
return c.Build()
def _CreateTestF32Lt10Computation(self):
"""Computation (f32) -> bool that tests if its parameter is less than 10."""
c = self._NewComputation("test_f32_lt_10")
c.Lt(c.ParameterFromNumpy(NumpyArrayF32(0)), c.ConstantF32Scalar(10.))
return c.Build()
def _CreateTestF64Lt10Computation(self):
"""Computation (f64) -> bool that tests if its parameter is less than 10."""
c = self._NewComputation("test_f64_lt_10")
c.Lt(c.ParameterFromNumpy(NumpyArrayF64(0)), c.ConstantF64Scalar(10.))
return c.Build()
def _CreateBinaryGeF32Computation(self):
"""Computation (f32, f32) -> bool that tests first_param >= second_param."""
c = self._NewComputation("param0_lt_param1")
c.Ge(c.ParameterFromNumpy(NumpyArrayF32(0)),
c.ParameterFromNumpy(NumpyArrayF32(0)))
return c.Build()
def _CreateBinaryGeF64Computation(self):
"""Computation (f64, f64) -> bool that tests first_param >= second_param."""
c = self._NewComputation("param0_lt_param1")
c.Ge(c.ParameterFromNumpy(NumpyArrayF64(0)),
c.ParameterFromNumpy(NumpyArrayF64(0)))
return c.Build()
def _MakeSample3DArrayF32(self):
return NumpyArrayF32([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]],
[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
def _MakeSample3DArrayF64(self):
return NumpyArrayF64([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]],
[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
def testCallF32(self):
c = self._NewComputation()
c.Call(
self._CreateMulF32By2Computation(),
operands=(c.ConstantF32Scalar(5.0),))
self._ExecuteAndCompareClose(c, expected=10.0)
def testCallF64(self):
c = self._NewComputation()
c.Call(
self._CreateMulF64By2Computation(),
operands=(c.ConstantF64Scalar(5.0),))
self._ExecuteAndCompareClose(c, expected=10.0)
def testMapEachElementToS32Constant(self):
c = self._NewComputation()
c.Map([c.Constant(NumpyArrayF32([1.0, 2.0, 3.0, 4.0]))],
self._CreateConstantS32Computation(), [0])
self._ExecuteAndCompareExact(c, expected=[1, 1, 1, 1])
def testMapEachElementToS64Constant(self):
c = self._NewComputation()
c.Map([c.Constant(NumpyArrayF64([1.0, 2.0, 3.0, 4.0]))],
self._CreateConstantS64Computation(), [0])
self._ExecuteAndCompareExact(c, expected=[1, 1, 1, 1])
def testMapMulBy2F32(self):
c = self._NewComputation()
c.Map([c.Constant(NumpyArrayF32([1.0, 2.0, 3.0, 4.0]))],
self._CreateMulF32By2Computation(), [0])
self._ExecuteAndCompareClose(c, expected=[2.0, 4.0, 6.0, 8.0])
def testMapMulBy2F64(self):
c = self._NewComputation()
c.Map([c.Constant(NumpyArrayF64([1.0, 2.0, 3.0, 4.0]))],
self._CreateMulF64By2Computation(), [0])
self._ExecuteAndCompareClose(c, expected=[2.0, 4.0, 6.0, 8.0])
def testSimpleMapChainF32(self):
# Chains a map of constant-f32 with a map of mul-by-2
c = self._NewComputation()
const_f32 = c.Map([c.Constant(NumpyArrayF32([1.0, 2.0, 3.0, 4.0]))],
self._CreateConstantF32Computation(), [0])
c.Map([const_f32], self._CreateMulF32By2Computation(), [0])
self._ExecuteAndCompareClose(c, expected=[2.0, 2.0, 2.0, 2.0])
def testSimpleMapChainF64(self):
# Chains a map of constant-f64 with a map of mul-by-2
c = self._NewComputation()
const_f64 = c.Map([c.Constant(NumpyArrayF64([1.0, 2.0, 3.0, 4.0]))],
self._CreateConstantF64Computation(), [0])
c.Map([const_f64], self._CreateMulF64By2Computation(), [0])
self._ExecuteAndCompareClose(c, expected=[2.0, 2.0, 2.0, 2.0])
def testDivVectorsWithMapF32(self):
c = self._NewComputation()
c.Map((c.Constant(NumpyArrayF32([1.0, 2.0, 3.0, 4.0])),
c.Constant(NumpyArrayF32([5.0, 5.0, 4.0, 4.0]))),
self._CreateBinaryDivF32Computation(), [0])
self._ExecuteAndCompareClose(c, expected=[0.2, 0.4, 0.75, 1.0])
def testDivVectorsWithMapF64(self):
c = self._NewComputation()
c.Map((c.Constant(NumpyArrayF64([1.0, 2.0, 3.0, 4.0])),
c.Constant(NumpyArrayF64([5.0, 5.0, 4.0, 4.0]))),
self._CreateBinaryDivF64Computation(), [0])
self._ExecuteAndCompareClose(c, expected=[0.2, 0.4, 0.75, 1.0])
def testSelectAndScatterF32(self):
c = self._NewComputation()
c.SelectAndScatter(c.Constant(NumpyArrayF32([[1., 2., 6.], [4., 5., 3.]])),
select=self._CreateBinaryGeF32Computation(),
window_dimensions=(2, 1),
window_strides=(1, 2),
padding=xla_client.PaddingType.VALID,
source=c.Constant(NumpyArrayF32([[0.1, 0.2]])),
init_value=c.Constant(NumpyArrayF32(1)),
scatter=self._CreateBinaryAddF32Computation())
self._ExecuteAndCompareClose(c, expected=[[1., 1., 1.2], [1.1, 1., 1.]])
def testSelectAndScatterF64(self):
c = self._NewComputation()
c.SelectAndScatter(c.Constant(NumpyArrayF64([[1., 2., 6.], [4., 5., 3.]])),
select=self._CreateBinaryGeF64Computation(),
window_dimensions=(2, 1),
window_strides=(1, 2),
padding=xla_client.PaddingType.VALID,
source=c.Constant(NumpyArrayF64([[0.1, 0.2]])),
init_value=c.Constant(NumpyArrayF64(1)),
scatter=self._CreateBinaryAddF64Computation())
self._ExecuteAndCompareClose(c, expected=[[1., 1., 1.2], [1.1, 1., 1.]])
def testReduce1DtoScalarF32(self):
c = self._NewComputation()
c.Reduce(
operand=c.Constant(NumpyArrayF32([1.0, 2.0, 3.0, 4.0])),
init_value=c.ConstantF32Scalar(0),
computation_to_apply=self._CreateBinaryAddF32Computation(),
dimensions=[0])
self._ExecuteAndCompareClose(c, expected=10)
def testReduce1DtoScalarF64(self):
c = self._NewComputation()
c.Reduce(
operand=c.Constant(NumpyArrayF64([1.0, 2.0, 3.0, 4.0])),
init_value=c.ConstantF64Scalar(0),
computation_to_apply=self._CreateBinaryAddF64Computation(),
dimensions=[0])
self._ExecuteAndCompareClose(c, expected=10)
def testReduce2DTo1DDim0F32(self):
input_array = NumpyArrayF32([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.Reduce(
operand=c.Constant(input_array),
init_value=c.ConstantF32Scalar(0),
computation_to_apply=self._CreateBinaryAddF32Computation(),
dimensions=[0])
self._ExecuteAndCompareClose(c, expected=[5, 7, 9])
def testReduce2DTo1DDim0F64(self):
input_array = NumpyArrayF64([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.Reduce(
operand=c.Constant(input_array),
init_value=c.ConstantF64Scalar(0),
computation_to_apply=self._CreateBinaryAddF64Computation(),
dimensions=[0])
self._ExecuteAndCompareClose(c, expected=[5, 7, 9])
def testReduce2DTo1DDim1F32(self):
input_array = NumpyArrayF32([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.Reduce(
operand=c.Constant(input_array),
init_value=c.ConstantF32Scalar(0),
computation_to_apply=self._CreateBinaryAddF32Computation(),
dimensions=[1])
self._ExecuteAndCompareClose(c, expected=[6, 15])
def testReduce2DTo1DDim1F64(self):
input_array = NumpyArrayF64([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.Reduce(
operand=c.Constant(input_array),
init_value=c.ConstantF64Scalar(0),
computation_to_apply=self._CreateBinaryAddF64Computation(),
dimensions=[1])
self._ExecuteAndCompareClose(c, expected=[6, 15])
def testReduce3DAllPossibleWaysF32(self):
input_array = self._MakeSample3DArrayF32()
def _ReduceAndTest(*dims):
c = self._NewComputation()
c.Reduce(
operand=c.Constant(input_array),
init_value=c.ConstantF32Scalar(0),
computation_to_apply=self._CreateBinaryAddF32Computation(),
dimensions=dims)
self._ExecuteAndCompareClose(
c, expected=np.sum(input_array, axis=tuple(dims)))
_ReduceAndTest(0)
_ReduceAndTest(0, 1)
_ReduceAndTest(0, 2)
_ReduceAndTest(1, 2)
_ReduceAndTest(0, 1, 2)
def testReduce3DAllPossibleWaysF64(self):
input_array = self._MakeSample3DArrayF64()
def _ReduceAndTest(*dims):
c = self._NewComputation()
c.Reduce(
operand=c.Constant(input_array),
init_value=c.ConstantF64Scalar(0),
computation_to_apply=self._CreateBinaryAddF64Computation(),
dimensions=dims)
self._ExecuteAndCompareClose(
c, expected=np.sum(input_array, axis=tuple(dims)))
_ReduceAndTest(0)
_ReduceAndTest(0)
_ReduceAndTest(0, 1)
_ReduceAndTest(0, 2)
_ReduceAndTest(1, 2)
_ReduceAndTest(0, 1, 2)
def testReduceWindowValidUnitStridesF32(self):
input_array = NumpyArrayF32([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.ReduceWindow(operand=c.Constant(input_array),
init_value=c.ConstantF32Scalar(0),
computation_to_apply=self._CreateBinaryAddF32Computation(),
window_dimensions=(2, 1), window_strides=(1, 1),
padding=xla_client.PaddingType.VALID)
self._ExecuteAndCompareClose(c, expected=[[5., 7., 9.]])
def testReduceWindowSameUnitStridesF32(self):
input_array = NumpyArrayF32([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.ReduceWindow(operand=c.Constant(input_array),
init_value=c.ConstantF32Scalar(0),
computation_to_apply=self._CreateBinaryAddF32Computation(),
window_dimensions=(2, 1), window_strides=(1, 1),
padding=xla_client.PaddingType.SAME)
self._ExecuteAndCompareClose(c, expected=[[5., 7., 9.], [4., 5., 6.]])
def testReduceWindowValidGeneralStridesF32(self):
input_array = NumpyArrayF32([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.ReduceWindow(operand=c.Constant(input_array),
init_value=c.ConstantF32Scalar(0),
computation_to_apply=self._CreateBinaryAddF32Computation(),
window_dimensions=(2, 1), window_strides=(1, 2),
padding=xla_client.PaddingType.VALID)
self._ExecuteAndCompareClose(c, expected=[[5., 9.]])
def testReduceWindowValidUnitStridesF64(self):
input_array = NumpyArrayF64([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.ReduceWindow(operand=c.Constant(input_array),
init_value=c.ConstantF64Scalar(0),
computation_to_apply=self._CreateBinaryAddF64Computation(),
window_dimensions=(2, 1), window_strides=(1, 1),
padding=xla_client.PaddingType.VALID)
self._ExecuteAndCompareClose(c, expected=[[5., 7., 9.]])
def testReduceWindowSameUnitStridesF64(self):
input_array = NumpyArrayF64([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.ReduceWindow(operand=c.Constant(input_array),
init_value=c.ConstantF64Scalar(0),
computation_to_apply=self._CreateBinaryAddF64Computation(),
window_dimensions=(2, 1), window_strides=(1, 1),
padding=xla_client.PaddingType.SAME)
self._ExecuteAndCompareClose(c, expected=[[5., 7., 9.], [4., 5., 6.]])
def testReduceWindowValidGeneralStridesF64(self):
input_array = NumpyArrayF64([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
c = self._NewComputation()
c.ReduceWindow(operand=c.Constant(input_array),
init_value=c.ConstantF64Scalar(0),
computation_to_apply=self._CreateBinaryAddF64Computation(),
window_dimensions=(2, 1), window_strides=(1, 2),
padding=xla_client.PaddingType.VALID)
self._ExecuteAndCompareClose(c, expected=[[5., 9.]])
def testWhileF32(self):
cond = self._CreateTestF32Lt10Computation()
body = self._CreateMulF32By2Computation()
c = self._NewComputation()
init = c.ConstantF32Scalar(1.)
c.While(cond, body, init)
self._ExecuteAndCompareClose(c, expected=16.)
def testWhileF64(self):
cond = self._CreateTestF64Lt10Computation()
body = self._CreateMulF64By2Computation()
c = self._NewComputation()
init = c.ConstantF64Scalar(1.)
c.While(cond, body, init)
self._ExecuteAndCompareClose(c, expected=16.)
def testConditionalTrue(self):
c = self._NewComputation()
pred = c.ConstantPredScalar(True)
true_operand = c.ConstantF32Scalar(3.)
true_computation = self._CreateMulF32By2Computation()
false_operand = c.ConstantF32Scalar(2.)
false_computation = self._CreateConstantF32Computation()
c.Conditional(pred, true_operand, true_computation, false_operand,
false_computation)
self._ExecuteAndCompareClose(c, expected=6.)
def testConditionalFalse(self):
c = self._NewComputation()
pred = c.ConstantPredScalar(False)
true_operand = c.ConstantF32Scalar(3.)
true_computation = self._CreateMulF32By2Computation()
false_operand = c.ConstantF32Scalar(2.)
false_computation = self._CreateConstantF32Computation()
c.Conditional(pred, true_operand, true_computation, false_operand,
false_computation)
self._ExecuteAndCompareClose(c, expected=1.)
def testInfeedS32Values(self):
to_infeed = NumpyArrayS32([1, 2, 3, 4])
c = self._NewComputation()
c.Infeed(xla_client.Shape.from_pyval(to_infeed[0]))
compiled_c = c.Build().CompileWithExampleArguments()
for item in to_infeed:
xla_client.transfer_to_infeed(item)
for item in to_infeed:
result = compiled_c.Execute()
self.assertEqual(result, item)
def testInfeedThenOutfeedS32(self):
to_round_trip = NumpyArrayS32([1, 2, 3, 4])
c = self._NewComputation()
x = c.Infeed(xla_client.Shape.from_pyval(to_round_trip[0]))
c.Outfeed(x)
compiled_c = c.Build().CompileWithExampleArguments()
for want in to_round_trip:
execution = threading.Thread(target=compiled_c.Execute)
execution.start()
xla_client.transfer_to_infeed(want)
got = xla_client.transfer_from_outfeed(
xla_client.Shape.from_pyval(to_round_trip[0]))
execution.join()
self.assertEqual(want, got)
class ErrorTest(LocalComputationTest):
def setUp(self):
self.f32_scalar_2 = NumpyArrayF32(2.0)
self.s32_scalar_2 = NumpyArrayS32(2)
def testInvokeWithWrongElementType(self):
c = self._NewComputation()
c.SetOpMetadata(xla_client.CurrentSourceInfoMetadata())
c.ParameterFromNumpy(self.s32_scalar_2)
c.ClearOpMetadata()
self.assertRaisesRegexp(
RuntimeError, r"Invalid argument shape.*xla_client_test.py.*"
r"expected s32\[\], got f32\[\]",
lambda: c.Build().CompileWithExampleArguments([self.f32_scalar_2]))
if __name__ == "__main__":
unittest.main()