blob: 53cdd60a4916b8b705c9b2bc0419c42052c882de [file] [log] [blame]
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <utility>
#include "tensorflow/compiler/xla/service/gpu/gpu_executable.h"
#include "tensorflow/compiler/xla/service/gpu/stream_executor_util.h"
#include "tensorflow/compiler/xla/service/gpu/tests/gpu_codegen_test.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_module_config.h"
#include "tensorflow/compiler/xla/service/hlo_parser.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/compiler/xla/tests/filecheck.h"
#include "tensorflow/compiler/xla/tests/hlo_test_base.h"
#include "tensorflow/compiler/xla/xla.pb.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/stream_executor/lib/statusor.h"
namespace xla {
namespace gpu {
namespace {
class GemmRewriteTest : public GpuCodegenTest {
public:
void CheckNumberOfAllocations(const std::string& hlo,
int expected_number_of_allocations) {
TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> optimized_module,
GetOptimizedModule(hlo));
TF_ASSERT_OK_AND_ASSIGN(
std::unique_ptr<Executable> executable,
backend().compiler()->RunBackend(
std::move(optimized_module), backend().default_stream_executor(),
backend().default_stream_executor()->GetAllocator()));
GpuExecutable* gpu_executable =
static_cast<GpuExecutable*>(executable.get());
absl::Span<const BufferAllocation> allocations =
gpu_executable->GetAllocations();
CHECK_EQ(allocations.size(), expected_number_of_allocations);
}
se::CudaComputeCapability GetCudaComputeCapability() {
return backend()
.default_stream_executor()
->GetDeviceDescription()
.cuda_compute_capability();
}
};
TEST_F(GemmRewriteTest, SimpleRewrite) {
const char* hlo_text = R"(
HloModule SimpleGemm
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
ROOT dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK-LABEL: ENTRY %AddDotsFunc (x: f32[2,2], y: f32[2,2]) -> f32[2,2] {
; CHECK-NEXT: %x = f32[2,2]{1,0} parameter(0)
; CHECK-NEXT: %y = f32[2,2]{1,0} parameter(1)
; CHECK-NEXT: ROOT %custom-call = f32[2,2]{1,0} custom-call(%x, %y), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":1,\"alpha_imag\":0,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, TestBatchedAutotuning) {
const char* hlo_text = R"(
HloModule ComplexDotMultipleNonContracting
ENTRY %test {
%lhs = f32[7,17,10,13]{3,2,1,0} parameter(0)
%rhs = f32[7,9,10,13,6]{4,3,2,1,0} parameter(1)
ROOT %dot = f32[10,7,17,9,6]{4,3,2,1,0} dot(%lhs, %rhs), lhs_batch_dims={2,0}, rhs_batch_dims={2,0}, lhs_contracting_dims={3}, rhs_contracting_dims={3}
}
)";
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: \"batch_size\":\"70\"
; CHECK: selected_algorithm
)");
}
TEST_F(GemmRewriteTest, SimpleRewriteDeterministic) {
const char* hlo_text = R"(
HloModule SimpleGemm
ENTRY AddDotsFunc {
x = f32[128,128] parameter(0)
y = f32[128,128] parameter(1)
ROOT dot_a = f32[128,128] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
}
)";
auto get_module = [&]() -> StatusOr<std::unique_ptr<HloModule>> {
HloModuleConfig config;
DebugOptions debug_options = GetDebugOptionsForTest();
debug_options.set_xla_gpu_deterministic_ops(true);
config.set_debug_options(debug_options);
return ParseAndReturnVerifiedModule(hlo_text, config);
};
TF_ASSERT_OK_AND_ASSIGN(
std::unique_ptr<HloModule> optimized_module,
backend().compiler()->RunHloPasses(
*get_module(), backend().default_stream_executor(),
backend().default_stream_executor()->GetAllocator()));
StatusOr<bool> filecheck_result = RunFileCheck(optimized_module->ToString(),
R"(
; CHECK: \"selected_algorithm\":\"-1\"
)");
TF_ASSERT_OK(filecheck_result.status());
EXPECT_TRUE(filecheck_result.ValueOrDie());
EXPECT_TRUE(RunAndCompare(*get_module(), ErrorSpec{1e-5, 1e-5}));
}
TEST_F(GemmRewriteTest, ArgTransposeFoldCheck) {
const char* hlo_text = R"(
HloModule ArgTransposeFoldGemm
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
x_transposed = f32[2,2] transpose(x), dimensions={1, 0}
ROOT dot_a = f32[2,2] dot(x_transposed, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK-LABEL: ENTRY %AddDotsFunc (x: f32[2,2], y: f32[2,2]) -> f32[2,2] {
; CHECK-NEXT: %x = f32[2,2]{1,0} parameter(0)
; CHECK-NEXT: %y = f32[2,2]{1,0} parameter(1)
; CHECK-NEXT: ROOT %custom-call = f32[2,2]{1,0} custom-call(%x, %y), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":1,\"alpha_imag\":0,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"0\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, InstrTransposeFoldCheck) {
const char* hlo_text = R"(
HloModule InstrTransposeFoldGemm
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
ROOT out = f32[2,2] transpose(dot_a), dimensions={1, 0}
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK-LABEL: ENTRY %AddDotsFunc (x: f32[2,2], y: f32[2,2]) -> f32[2,2] {
; CHECK-NEXT: %y = f32[2,2]{1,0} parameter(1)
; CHECK-NEXT: %x = f32[2,2]{1,0} parameter(0)
; CHECK-NEXT: ROOT %custom-call = f32[2,2]{1,0} custom-call(%y, %x), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":1,\"alpha_imag\":0,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"0\"],\"rhs_contracting_dimensions\":[\"1\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, AlphaSimpleRewrite) {
const char* hlo_text = R"(
HloModule AlphaSimpleRewrite
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
k = f32[] constant(3.0)
k_broadcast = f32[2, 2] broadcast(k), dimensions={}
dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
ROOT dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast)
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK-LABEL: ENTRY %AddDotsFunc (x: f32[2,2], y: f32[2,2]) -> f32[2,2] {
; CHECK-NEXT: %x = f32[2,2]{1,0} parameter(0)
; CHECK-NEXT: %y = f32[2,2]{1,0} parameter(1)
; CHECK-NEXT: ROOT %custom-call = f32[2,2]{1,0} custom-call(%x, %y), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":3,\"alpha_imag\":0,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, ComplexAlphaSimpleRewrite) {
const char* hlo_text = R"(
HloModule ComplexAlphaSimpleRewrite
ENTRY AddDotsFunc {
x = c64[2,2] parameter(0)
y = c64[2,2] parameter(1)
k = c64[] constant((3.0, 3.0))
k_broadcast = c64[2, 2] broadcast(k), dimensions={}
dot_a = c64[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
ROOT dot_a_multiplied = c64[2, 2] multiply(dot_a, k_broadcast)
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK-LABEL: ENTRY %AddDotsFunc (x: c64[2,2], y: c64[2,2]) -> c64[2,2] {
; CHECK-NEXT: %x = c64[2,2]{1,0} parameter(0)
; CHECK-NEXT: %y = c64[2,2]{1,0} parameter(1)
; CHECK-NEXT: ROOT %custom-call = c64[2,2]{1,0} custom-call(%x, %y), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":3,\"alpha_imag\":3,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, AlphaMultipleUsersNoRewrite) {
const char* hlo_text = R"(
HloModule AlphaMultipleUsersNoRewrite
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
k = f32[] constant(3.0)
k_broadcast = f32[2, 2] broadcast(k), dimensions={}
dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast)
ROOT out = f32[2,2] add(dot_a_multiplied, dot_a)
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: %custom-call = f32[2,2]{1,0} custom-call(%x, %y), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":1,\"alpha_imag\":0,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, AlphaVectorNoRewrite) {
const char* hlo_text = R"(
HloModule AlphaVectorNoRewrite
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
alpha = f32[2] constant({1, 2})
alpha_broadcast = f32[2,2] broadcast(alpha), dimensions={1}
dot = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
ROOT dot_a_multiplied = f32[2, 2] multiply(dot, alpha_broadcast)
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK-LABEL: ENTRY %AddDotsFunc (x: f32[2,2], y: f32[2,2]) -> f32[2,2] {
; CHECK-NEXT: %x = f32[2,2]{1,0} parameter(0)
; CHECK-NEXT: %y = f32[2,2]{1,0} parameter(1)
; CHECK-NEXT: %custom-call = f32[2,2]{1,0} custom-call(%x, %y), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":1,\"alpha_imag\":0,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, AlphaBetaRewrite) {
const char* hlo_text = R"(
HloModule NonZeroAlphaBeta
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
bias = f32[2,2] parameter(2)
k = f32[] constant(3.0)
k_broadcast = f32[2, 2] broadcast(k), dimensions={}
dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast)
ROOT out = f32[2,2] add(dot_a_multiplied, bias)
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK-LABEL: ENTRY %AddDotsFunc (x: f32[2,2], y: f32[2,2], bias: f32[2,2]) -> f32[2,2] {
; CHECK-NEXT: %x = f32[2,2]{1,0} parameter(0)
; CHECK-NEXT: %y = f32[2,2]{1,0} parameter(1)
; CHECK-NEXT: %bias = f32[2,2]{1,0} parameter(2)
; CHECK-NEXT: ROOT %custom-call.1 = f32[2,2]{1,0} custom-call(%x, %y, %bias), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":3,\"alpha_imag\":0,\"beta\":1,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, BiasMultipleUsersNoRewrite) {
const char* hlo_text = R"(
HloModule BiasMultipleUsersNoRewrite
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
bias = f32[2,2] parameter(2)
k = f32[] constant(3.0)
k_broadcast = f32[2, 2] broadcast(k), dimensions={}
dot_a = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
dot_a_multiplied = f32[2, 2] multiply(dot_a, k_broadcast)
biased_out = f32[2,2] add(dot_a_multiplied, bias)
ROOT out = f32[2,2] add(biased_out, bias)
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
MatchOptimizedHlo(hlo_text,
R"(
; CHECK-LABEL: ENTRY %AddDotsFunc (x: f32[2,2], y: f32[2,2], bias: f32[2,2]) -> f32[2,2] {
; CHECK-NEXT: %bias = f32[2,2]{1,0} parameter(2)
; CHECK-NEXT: %x = f32[2,2]{1,0} parameter(0)
; CHECK-NEXT: %y = f32[2,2]{1,0} parameter(1)
; CHECK-NEXT: %custom-call = f32[2,2]{1,0} custom-call(%x, %y), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":3,\"alpha_imag\":0,\"beta\":0,\"dot_dimension_numbers\":{\"lhs_contracting_dimensions\":[\"1\"],\"rhs_contracting_dimensions\":[\"0\"],\"lhs_batch_dimensions\":[],\"rhs_batch_dimensions\":[]},\"batch_size\":\"1\",\"lhs_stride\":\"4\",\"rhs_stride\":\"4\",\"selected_algorithm\":\"{{-?[0-9]+}}\"}"
)");
}
TEST_F(GemmRewriteTest, SharedBufferAssignment) {
const char* hlo_text = R"(
HloModule SharedBufferAssignment
ENTRY AddDotsFunc {
x = f32[2,2] parameter(0)
y = f32[2,2] parameter(1)
bias = f32[2,2] add(x, y)
dot = f32[2,2] dot(x, y), lhs_contracting_dims={1}, rhs_contracting_dims={0}
ROOT out = f32[2,2] add(dot, bias)
}
)";
// Bias should be fused into the multiplication.
CheckNumberOfAllocations(hlo_text, 3);
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
}
TEST_F(GemmRewriteTest, BF16Gemm) {
const char* hlo_text = R"(
HloModule bf16gemm
ENTRY bf16gemm {
%parameter.1 = bf16[12,4]{1,0} parameter(0)
%parameter.2 = bf16[4,8]{1,0} parameter(1)
ROOT %dot.8 = bf16[12,8] dot(bf16[12,4] %parameter.1, bf16[4,8] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0}
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
if (GetCudaComputeCapability().IsAtLeast(se::CudaComputeCapability::AMPERE)) {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: bf16[16,8]{1,0} custom-call(bf16[16,8]{1,0} {{.*}}, bf16[8,8]{1,0} {{.*}}), custom_call_target="__cublas$gemm"
)",
/*print_operand_shape=*/true);
} else {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: bf16[12,8]{1,0} custom-call(bf16[12,4]{1,0} %parameter.1, bf16[4,8]{1,0} %parameter.2), custom_call_target="__cublas$gemm"
)",
/*print_operand_shape=*/true);
}
}
TEST_F(GemmRewriteTest, BF16GemmStrided) {
const char* hlo_text = R"(
HloModule bf16gemm
ENTRY bf16gemm {
%parameter.1 = bf16[3,3,4] parameter(0)
%parameter.2 = bf16[3,3,2] parameter(1)
ROOT %dot.3 = bf16[3,4,2]{2,1,0} dot(bf16[3,3,4]{2,1,0} %parameter.1, bf16[3,3,2]{2,1,0} %parameter.2), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1}, operand_precision={highest,highest}
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
if (GetCudaComputeCapability().IsAtLeast(se::CudaComputeCapability::AMPERE)) {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: bf16[3,8,8]{2,1,0} custom-call(bf16[3,8,8]{2,1,0} {{.*}}, bf16[3,8,8]{2,1,0} {{.*}}), custom_call_target="__cublas$gemm"
)",
/*print_operand_shape=*/true);
} else {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: ROOT %custom-call = bf16[3,4,2]{2,1,0} custom-call(bf16[3,3,4]{2,1,0} %parameter.1, bf16[3,3,2]{2,1,0} %parameter.2), custom_call_target="__cublas$gemm"
)",
/*print_operand_shape=*/true);
}
}
TEST_F(GemmRewriteTest, BF16GemmCodeGen) {
const char* hlo_text = R"(
HloModule bf16codegendgemm
ENTRY bf16gemm {
%parameter.1 = bf16[2]{0} parameter(0)
%parameter.2 = bf16[2]{0} parameter(1)
ROOT %dot.3 = bf16[] dot(bf16[2]{0} %parameter.1, bf16[2]{0} %parameter.2), lhs_contracting_dims={0}, rhs_contracting_dims={0}, operand_precision={highest,highest}
}
)";
MatchOptimizedHlo(hlo_text, R"(
; CHECK: %param_1.3 = bf16[2]{0} parameter(1)
; CHECK: %convert.5 = f32[2]{0} convert(%param_1.3)
; CHECK: %param_0.3 = bf16[2]{0} parameter(0)
; CHECK: %convert.4 = f32[2]{0} convert(%param_0.3)
; CHECK: %multiply.1 = f32[2]{0} multiply(%convert.5, %convert.4)
; CHECK: %constant_1 = f32[] constant(0)
; CHECK: %reduce.1 = f32[] reduce(%multiply.1, %constant_1), dimensions={0}, to_apply=%scalar_add_computation
; CHECK: ROOT %convert.3 = bf16[] convert(%reduce.1)
)");
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
}
TEST_F(GemmRewriteTest, BF16Transpose) {
const char* hlo_text = R"(
HloModule broadcast
ENTRY broadcast {
p = bf16[9] parameter(0)
ROOT out = bf16[1,9] broadcast(p), dimensions={1}
}
)";
MatchOptimizedHlo(hlo_text, R"(
; CHECK: bf16[1,9]{1,0} bitcast
; CHECK: bf16[1,9]{1,0} copy
)");
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
}
TEST_F(GemmRewriteTest, Int8Gemm) {
const char* hlo_text = R"(
HloModule int8gemm
ENTRY int8gemm {
%parameter.1 = s8[12,4]{1,0} parameter(0)
%parameter.2 = s8[4,8]{1,0} parameter(1)
ROOT %dot.8 = s32[12,8] dot(s8[12,4] %parameter.1, s8[4,8] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0}
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
if (GetCudaComputeCapability().IsAtLeast(se::CudaComputeCapability::VOLTA)) {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: s32[12,8]{1,0} custom-call(s8[12,4]{1,0} %parameter.1, s8[4,8]{1,0} %parameter.2), custom_call_target="__cublas$gemm"
)",
/*print_operand_shape=*/true);
} else {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: s32[12,8]{1,0} dot(s32[12,4]{1,0} %bitcast, s32[4,8]{1,0} %bitcast.1), lhs_contracting_dims={1}, rhs_contracting_dims={0}
)",
/*print_operand_shape=*/true);
}
}
TEST_F(GemmRewriteTest, Int8GemmNoAlphaRewrite) {
const char* hlo_text = R"(
HloModule int8gemm
ENTRY int8gemm {
%parameter.1 = s8[12,4]{1,0} parameter(0)
%parameter.2 = s8[4,8]{1,0} parameter(1)
k = s32[] constant(2)
k_broadcast = s32[12,8] broadcast(k), dimensions={}
%dot.8 = s32[12,8] dot(s8[12,4] %parameter.1, s8[4,8] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0}
ROOT dot_multiplied = s32[12,8] multiply(%dot.8, k_broadcast)
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
if (GetCudaComputeCapability().IsAtLeast(se::CudaComputeCapability::VOLTA)) {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: s32[12,8]{1,0} custom-call(s8[12,4]{1,0} %parameter.1, s8[4,8]{1,0} %parameter.2), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":1,\"alpha_imag\":0
)",
/*print_operand_shape=*/true);
} else {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: s32[12,8]{1,0} dot(s32[12,4]{1,0} %bitcast, s32[4,8]{1,0} %bitcast.1), lhs_contracting_dims={1}, rhs_contracting_dims={0}
)",
/*print_operand_shape=*/true);
}
}
TEST_F(GemmRewriteTest, Int8GemmNoBetaRewrite) {
const char* hlo_text = R"(
HloModule int8gemm
ENTRY int8gemm {
%parameter.1 = s8[12,4]{1,0} parameter(0)
%parameter.2 = s8[4,8]{1,0} parameter(1)
bias = s32[12,8] parameter(2)
%dot.8 = s32[12,8] dot(s8[12,4] %parameter.1, s8[4,8] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0}
ROOT out = s32[12,8] add(%dot.8, bias)
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
if (GetCudaComputeCapability().IsAtLeast(se::CudaComputeCapability::VOLTA)) {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: s32[12,8]{1,0} custom-call(s8[12,4]{1,0} %parameter.1, s8[4,8]{1,0} %parameter.2), custom_call_target="__cublas$gemm", backend_config="{\"alpha_real\":1,\"alpha_imag\":0,\"beta\":0
)",
/*print_operand_shape=*/true);
} else {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: s32[12,8]{1,0} dot(s32[12,4]{1,0} %bitcast, s32[4,8]{1,0} %bitcast.1), lhs_contracting_dims={1}, rhs_contracting_dims={0}
)",
/*print_operand_shape=*/true);
}
}
TEST_F(GemmRewriteTest, Int8GemmNotMultipleOfFour) {
const char* hlo_text = R"(
HloModule int8gemm
ENTRY int8gemm {
%parameter.1 = s8[13,4]{1,0} parameter(0)
%parameter.2 = s8[4,9]{1,0} parameter(1)
ROOT %dot.9 = s32[13,9] dot(s8[13,4] %parameter.1, s8[4,9] %parameter.2), lhs_contracting_dims={1}, rhs_contracting_dims={0}
}
)";
EXPECT_TRUE(RunAndCompare(hlo_text, ErrorSpec{1e-5, 1e-5}));
if (GetCudaComputeCapability().IsAtLeast(se::CudaComputeCapability::VOLTA)) {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: s32[16,12]{1,0} custom-call(s8[16,4]{1,0} %pad, s8[4,12]{1,0} %pad.1)
)",
/*print_operand_shape=*/true);
} else {
MatchOptimizedHlo(hlo_text,
R"(
; CHECK: s32[13,9]{1,0} dot(s32[13,4]{1,0} %bitcast, s32[4,9]{1,0} %bitcast.1), lhs_contracting_dims={1}, rhs_contracting_dims={0}
)",
/*print_operand_shape=*/true);
}
}
} // namespace
} // namespace gpu
} // namespace xla