| //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| |
| #include "mlir/IR/SymbolTable.h" |
| #include "llvm/ADT/SmallString.h" |
| |
| using namespace mlir; |
| |
| /// Return true if the given operation is unknown and may potentially define a |
| /// symbol table. |
| static bool isPotentiallyUnknownSymbolTable(Operation *op) { |
| return !op->getDialect() && op->getNumRegions() == 1; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable |
| //===----------------------------------------------------------------------===// |
| |
| /// Build a symbol table with the symbols within the given operation. |
| SymbolTable::SymbolTable(Operation *symbolTableOp) |
| : symbolTableOp(symbolTableOp) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && |
| "expected operation to have SymbolTable trait"); |
| assert(symbolTableOp->getNumRegions() == 1 && |
| "expected operation to have a single region"); |
| assert(has_single_element(symbolTableOp->getRegion(0)) && |
| "expected operation to have a single block"); |
| |
| for (auto &op : symbolTableOp->getRegion(0).front()) { |
| auto nameAttr = op.getAttrOfType<StringAttr>(getSymbolAttrName()); |
| if (!nameAttr) |
| continue; |
| |
| auto inserted = symbolTable.insert({nameAttr.getValue(), &op}); |
| (void)inserted; |
| assert(inserted.second && |
| "expected region to contain uniquely named symbol operations"); |
| } |
| } |
| |
| /// Look up a symbol with the specified name, returning null if no such name |
| /// exists. Names never include the @ on them. |
| Operation *SymbolTable::lookup(StringRef name) const { |
| return symbolTable.lookup(name); |
| } |
| |
| /// Erase the given symbol from the table. |
| void SymbolTable::erase(Operation *symbol) { |
| auto nameAttr = symbol->getAttrOfType<StringAttr>(getSymbolAttrName()); |
| assert(nameAttr && "expected valid 'name' attribute"); |
| assert(symbol->getParentOp() == symbolTableOp && |
| "expected this operation to be inside of the operation with this " |
| "SymbolTable"); |
| |
| auto it = symbolTable.find(nameAttr.getValue()); |
| if (it != symbolTable.end() && it->second == symbol) { |
| symbolTable.erase(it); |
| symbol->erase(); |
| } |
| } |
| |
| /// Insert a new symbol into the table and associated operation, and rename it |
| /// as necessary to avoid collisions. |
| void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { |
| auto nameAttr = symbol->getAttrOfType<StringAttr>(getSymbolAttrName()); |
| assert(nameAttr && "expected valid 'name' attribute"); |
| |
| auto &body = symbolTableOp->getRegion(0).front(); |
| if (insertPt == Block::iterator() || insertPt == body.end()) |
| insertPt = Block::iterator(body.getTerminator()); |
| |
| assert(insertPt->getParentOp() == symbolTableOp && |
| "expected insertPt to be in the associated module operation"); |
| |
| body.getOperations().insert(insertPt, symbol); |
| |
| // Add this symbol to the symbol table, uniquing the name if a conflict is |
| // detected. |
| if (symbolTable.insert({nameAttr.getValue(), symbol}).second) |
| return; |
| |
| // If a conflict was detected, then the symbol will not have been added to |
| // the symbol table. Try suffixes until we get to a unique name that works. |
| SmallString<128> nameBuffer(nameAttr.getValue()); |
| unsigned originalLength = nameBuffer.size(); |
| |
| // Iteratively try suffixes until we find one that isn't used. |
| do { |
| nameBuffer.resize(originalLength); |
| nameBuffer += '_'; |
| nameBuffer += std::to_string(uniquingCounter++); |
| } while (!symbolTable.insert({nameBuffer, symbol}).second); |
| symbol->setAttr(getSymbolAttrName(), |
| StringAttr::get(nameBuffer, symbolTableOp->getContext())); |
| } |
| |
| /// Returns the operation registered with the given symbol name with the |
| /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation |
| /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol |
| /// was found. |
| Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, |
| StringRef symbol) { |
| assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); |
| |
| // Look for a symbol with the given name. |
| for (auto &block : symbolTableOp->getRegion(0)) { |
| for (auto &op : block) { |
| auto nameAttr = op.template getAttrOfType<StringAttr>( |
| mlir::SymbolTable::getSymbolAttrName()); |
| if (nameAttr && nameAttr.getValue() == symbol) |
| return &op; |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Returns the operation registered with the given symbol name within the |
| /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns |
| /// nullptr if no valid symbol was found. |
| Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, |
| StringRef symbol) { |
| assert(from && "expected valid operation"); |
| while (!from->hasTrait<OpTrait::SymbolTable>()) { |
| from = from->getParentOp(); |
| |
| // Check that this is a valid op and isn't an unknown symbol table. |
| if (!from || isPotentiallyUnknownSymbolTable(from)) |
| return nullptr; |
| } |
| return lookupSymbolIn(from, symbol); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SymbolTable Trait Types |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) { |
| if (op->getNumRegions() != 1) |
| return op->emitOpError() |
| << "Operations with a 'SymbolTable' must have exactly one region"; |
| if (!has_single_element(op->getRegion(0))) |
| return op->emitOpError() |
| << "Operations with a 'SymbolTable' must have exactly one block"; |
| |
| // Check that all symbols are uniquely named within child regions. |
| llvm::StringMap<Location> nameToOrigLoc; |
| for (auto &block : op->getRegion(0)) { |
| for (auto &op : block) { |
| // Check for a symbol name attribute. |
| auto nameAttr = |
| op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); |
| if (!nameAttr) |
| continue; |
| |
| // Try to insert this symbol into the table. |
| auto it = nameToOrigLoc.try_emplace(nameAttr.getValue(), op.getLoc()); |
| if (!it.second) |
| return op.emitError() |
| .append("redefinition of symbol named '", nameAttr.getValue(), "'") |
| .attachNote(it.first->second) |
| .append("see existing symbol definition here"); |
| } |
| } |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifySymbol(Operation *op) { |
| if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) |
| return op->emitOpError() << "requires string attribute '" |
| << mlir::SymbolTable::getSymbolAttrName() << "'"; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Symbol Use Lists |
| //===----------------------------------------------------------------------===// |
| |
| /// Walk all of the symbol references within the given operation, invoking the |
| /// provided callback for each found use. The callbacks takes as arguments: the |
| /// use of the symbol, and the nested access chain to the attribute within the |
| /// operation dictionary. An access chain is a set of indices into nested |
| /// container attributes. For example, a symbol use in an attribute dictionary |
| /// that looks like the following: |
| /// |
| /// {use = [{other_attr, @symbol}]} |
| /// |
| /// May have the following access chain: |
| /// |
| /// [0, 0, 1] |
| /// |
| static WalkResult walkSymbolRefs( |
| Operation *op, |
| function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { |
| // Check to see if the operation has any attributes. |
| DictionaryAttr attrDict = op->getAttrList().getDictionary(); |
| if (!attrDict) |
| return WalkResult::advance(); |
| |
| // A worklist of a container attribute and the current index into the held |
| // attribute list. |
| SmallVector<Attribute, 1> attrWorklist(1, attrDict); |
| SmallVector<int, 1> curAccessChain(1, /*Value=*/-1); |
| |
| // Process the symbol references within the given nested attribute range. |
| auto processAttrs = [&](int &index, auto attrRange) -> WalkResult { |
| for (Attribute attr : llvm::drop_begin(attrRange, index)) { |
| /// Check for a nested container attribute, these will also need to be |
| /// walked. |
| if (attr.isa<ArrayAttr>() || attr.isa<DictionaryAttr>()) { |
| attrWorklist.push_back(attr); |
| curAccessChain.push_back(-1); |
| return WalkResult::advance(); |
| } |
| |
| // Invoke the provided callback if we find a symbol use and check for a |
| // requested interrupt. |
| if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) |
| if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) |
| return WalkResult::interrupt(); |
| |
| // Make sure to keep the index counter in sync. |
| ++index; |
| } |
| |
| // Pop this container attribute from the worklist. |
| attrWorklist.pop_back(); |
| curAccessChain.pop_back(); |
| return WalkResult::advance(); |
| }; |
| |
| WalkResult result = WalkResult::advance(); |
| do { |
| Attribute attr = attrWorklist.back(); |
| int &index = curAccessChain.back(); |
| ++index; |
| |
| // Process the given attribute, which is guaranteed to be a container. |
| if (auto dict = attr.dyn_cast<DictionaryAttr>()) |
| result = processAttrs(index, make_second_range(dict.getValue())); |
| else |
| result = processAttrs(index, attr.cast<ArrayAttr>().getValue()); |
| } while (!attrWorklist.empty() && !result.wasInterrupted()); |
| return result; |
| } |
| |
| /// Walk all of the uses, for any symbol, that are nested within the given |
| /// operation 'from', invoking the provided callback for each. This does not |
| /// traverse into any nested symbol tables, and will also only return uses on |
| /// 'from' if it does not also define a symbol table. |
| static Optional<WalkResult> walkSymbolUses( |
| Operation *from, |
| function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { |
| // If from is not a symbol table, check for uses. A symbol table defines a new |
| // scope, so we can't walk the attributes from the symbol table op. |
| if (!from->hasTrait<OpTrait::SymbolTable>()) { |
| if (walkSymbolRefs(from, callback).wasInterrupted()) |
| return WalkResult::interrupt(); |
| } |
| |
| SmallVector<Region *, 1> worklist; |
| worklist.reserve(from->getNumRegions()); |
| for (Region ®ion : from->getRegions()) |
| worklist.push_back(®ion); |
| |
| while (!worklist.empty()) { |
| Region *region = worklist.pop_back_val(); |
| for (Block &block : *region) { |
| for (Operation &op : block) { |
| if (walkSymbolRefs(&op, callback).wasInterrupted()) |
| return WalkResult::interrupt(); |
| |
| // If this operation has regions, and it as well as its dialect aren't |
| // registered then conservatively fail. The operation may define a |
| // symbol table, so we can't opaquely know if we should traverse to find |
| // nested uses. |
| if (isPotentiallyUnknownSymbolTable(&op)) |
| return llvm::None; |
| |
| // If this op defines a new symbol table scope, we can't traverse. Any |
| // symbol references nested within 'op' are different semantically. |
| if (!op.hasTrait<OpTrait::SymbolTable>()) { |
| for (Region ®ion : op.getRegions()) |
| worklist.push_back(®ion); |
| } |
| } |
| } |
| } |
| return WalkResult::advance(); |
| } |
| |
| /// Get an iterator range for all of the uses, for any symbol, that are nested |
| /// within the given operation 'from'. This does not traverse into any nested |
| /// symbol tables, and will also only return uses on 'from' if it does not |
| /// also define a symbol table. This is because we treat the region as the |
| /// boundary of the symbol table, and not the op itself. This function returns |
| /// None if there are any unknown operations that may potentially be symbol |
| /// tables. |
| auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> { |
| std::vector<SymbolUse> uses; |
| Optional<WalkResult> result = |
| walkSymbolUses(from, [&](SymbolUse symbolUse, ArrayRef<int>) { |
| uses.push_back(symbolUse); |
| return WalkResult::advance(); |
| }); |
| return result ? Optional<UseRange>(std::move(uses)) : Optional<UseRange>(); |
| } |
| |
| /// Get all of the uses of the given symbol that are nested within the given |
| /// operation 'from', invoking the provided callback for each. This does not |
| /// traverse into any nested symbol tables, and will also only return uses on |
| /// 'from' if it does not also define a symbol table. This is because we treat |
| /// the region as the boundary of the symbol table, and not the op itself. This |
| /// function returns None if there are any unknown operations that may |
| /// potentially be symbol tables. |
| auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from) |
| -> Optional<UseRange> { |
| SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext()); |
| |
| std::vector<SymbolUse> uses; |
| Optional<WalkResult> result = |
| walkSymbolUses(from, [&](SymbolUse symbolUse, ArrayRef<int>) { |
| if (symbolRefAttr == symbolUse.getSymbolRef()) |
| uses.push_back(symbolUse); |
| return WalkResult::advance(); |
| }); |
| return result ? Optional<UseRange>(std::move(uses)) : Optional<UseRange>(); |
| } |
| |
| /// Return if the given symbol is known to have no uses that are nested within |
| /// the given operation 'from'. This does not traverse into any nested symbol |
| /// tables, and will also only count uses on 'from' if it does not also define |
| /// a symbol table. This is because we treat the region as the boundary of the |
| /// symbol table, and not the op itself. This function will also return false if |
| /// there are any unknown operations that may potentially be symbol tables. |
| bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) { |
| SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext()); |
| |
| // Walk all of the symbol uses looking for a reference to 'symbol'. |
| Optional<WalkResult> walkResult = |
| walkSymbolUses(from, [&](SymbolUse symbolUse, ArrayRef<int>) { |
| return symbolUse.getSymbolRef() == symbolRefAttr |
| ? WalkResult::interrupt() |
| : WalkResult::advance(); |
| }); |
| return walkResult && !walkResult->wasInterrupted(); |
| } |
| |
| /// Rebuild the given attribute container after replacing all references to a |
| /// symbol with `newSymAttr`. |
| static Attribute rebuildAttrAfterRAUW(Attribute container, |
| ArrayRef<SmallVector<int, 1>> accesses, |
| SymbolRefAttr newSymAttr, |
| unsigned depth) { |
| // Given a range of Attributes, update the ones referred to by the given |
| // access chains to point to the new symbol attribute. |
| auto updateAttrs = [&](auto &&attrRange) { |
| auto attrBegin = std::begin(attrRange); |
| for (unsigned i = 0, e = accesses.size(); i != e;) { |
| ArrayRef<int> access = accesses[i]; |
| Attribute &attr = *std::next(attrBegin, access[depth]); |
| |
| // Check to see if this is a leaf access, i.e. a SymbolRef. |
| if (access.size() == depth + 1) { |
| attr = newSymAttr; |
| ++i; |
| continue; |
| } |
| |
| // Otherwise, this is a container. Collect all of the accesses for this |
| // index and recurse. The recursion here is bounded by the size of the |
| // largest access array. |
| auto nestedAccesses = |
| accesses.drop_front(i).take_while([&](ArrayRef<int> nextAccess) { |
| return nextAccess.size() > depth + 1 && |
| nextAccess[depth] == access[depth]; |
| }); |
| attr = rebuildAttrAfterRAUW(attr, nestedAccesses, newSymAttr, depth + 1); |
| |
| // Skip over all of the accesses that refer to the nested container. |
| i += nestedAccesses.size(); |
| } |
| }; |
| |
| if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) { |
| auto newAttrs = llvm::to_vector<4>(dictAttr.getValue()); |
| updateAttrs(make_second_range(newAttrs)); |
| return DictionaryAttr::get(newAttrs, dictAttr.getContext()); |
| } |
| auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue()); |
| updateAttrs(newAttrs); |
| return ArrayAttr::get(newAttrs, container.getContext()); |
| } |
| |
| /// Attempt to replace all uses of the given symbol 'oldSymbol' with the |
| /// provided symbol 'newSymbol' that are nested within the given operation |
| /// 'from'. This does not traverse into any nested symbol tables, and will |
| /// also only replace uses on 'from' if it does not also define a symbol |
| /// table. This is because we treat the region as the boundary of the symbol |
| /// table, and not the op itself. If there are any unknown operations that may |
| /// potentially be symbol tables, no uses are replaced and failure is returned. |
| LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, |
| StringRef newSymbol, |
| Operation *from) { |
| SymbolRefAttr oldAttr = SymbolRefAttr::get(oldSymbol, from->getContext()); |
| SymbolRefAttr newSymAttr = SymbolRefAttr::get(newSymbol, from->getContext()); |
| |
| // A collection of operations along with their new attribute dictionary. |
| std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts; |
| |
| // The current operation, and its old symbol access chains, being processed. |
| Operation *curOp = nullptr; |
| SmallVector<SmallVector<int, 1>, 1> accessChains; |
| |
| // Generate a new attribute dictionary for the current operation by replacing |
| // references to the old symbol. |
| auto generateNewAttrDict = [&] { |
| auto newAttrDict = |
| rebuildAttrAfterRAUW(curOp->getAttrList().getDictionary(), accessChains, |
| newSymAttr, /*depth=*/0); |
| return newAttrDict.cast<DictionaryAttr>(); |
| }; |
| |
| // Walk the symbol uses collecting uses of the old symbol. |
| auto walkFn = [&](SymbolTable::SymbolUse symbolUse, |
| ArrayRef<int> accessChain) { |
| if (symbolUse.getSymbolRef() != oldAttr) |
| return WalkResult::advance(); |
| |
| // If there was a previous operation, generate a new attribute dict for it. |
| // This means that we've finished processing the current operation, so |
| // generate a new dictionary for it. |
| if (curOp && symbolUse.getUser() != curOp) { |
| updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); |
| accessChains.clear(); |
| } |
| |
| // Record this access. |
| curOp = symbolUse.getUser(); |
| accessChains.push_back(llvm::to_vector<1>(accessChain)); |
| return WalkResult::advance(); |
| }; |
| if (!walkSymbolUses(from, walkFn)) |
| return failure(); |
| |
| // Update the attribute dictionaries as necessary. |
| for (auto &it : updatedAttrDicts) |
| it.first->setAttrs(it.second); |
| |
| // Check to see if we have a dangling op that needs to be processed. |
| if (curOp) |
| curOp->setAttrs(generateNewAttrDict()); |
| |
| return success(); |
| } |