blob: 5ccf740f2fb953a51369f94fd19bf592f6386bbf [file] [log] [blame]
//===- LowerToLLVMDialect.cpp - conversion from Linalg to LLVM dialect ----===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/Conversion/VectorToLLVM/VectorToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
template <typename T>
static LLVM::LLVMType getPtrToElementType(T containerType,
LLVMTypeConverter &lowering) {
return lowering.convertType(containerType.getElementType())
.template cast<LLVM::LLVMType>()
.getPointerTo();
}
class ExtractElementOpConversion : public LLVMOpLowering {
public:
explicit ExtractElementOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
auto extractOp = cast<vector::ExtractElementOp>(op);
auto vectorType = extractOp.vector()->getType().cast<VectorType>();
auto resultType = extractOp.getResult()->getType();
auto llvmResultType = lowering.convertType(resultType);
auto positionArrayAttr = extractOp.position();
// One-shot extraction of vector from array (only requires extractvalue).
if (resultType.isa<VectorType>()) {
Value *extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
rewriter.replaceOp(op, extracted);
return matchSuccess();
}
// Potential extraction of 1-D vector from struct.
auto *context = op->getContext();
Value *extracted = adaptor.vector();
auto positionAttrs = positionArrayAttr.getValue();
auto i32Type = rewriter.getIntegerType(32);
if (positionAttrs.size() > 1) {
auto nDVectorType = vectorType;
auto oneDVectorType = VectorType::get(nDVectorType.getShape().take_back(),
nDVectorType.getElementType());
auto nMinusOnePositionAttrs =
ArrayAttr::get(positionAttrs.drop_back(), context);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, lowering.convertType(oneDVectorType), extracted,
nMinusOnePositionAttrs);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = positionAttrs.back().cast<IntegerAttr>();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, lowering.convertType(i32Type), position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(op, extracted);
return matchSuccess();
}
};
class OuterProductOpConversion : public LLVMOpLowering {
public:
explicit OuterProductOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::OuterProductOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
auto *ctx = op->getContext();
auto vLHS = adaptor.lhs()->getType().cast<LLVM::LLVMType>();
auto vRHS = adaptor.rhs()->getType().cast<LLVM::LLVMType>();
auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
auto llvmArrayOfVectType = lowering.convertType(
cast<vector::OuterProductOp>(op).getResult()->getType());
Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
Value *a = adaptor.lhs(), *b = adaptor.rhs();
Value *acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
SmallVector<Value *, 8> lhs, accs;
lhs.reserve(rankLHS);
accs.reserve(rankLHS);
for (unsigned d = 0, e = rankLHS; d < e; ++d) {
// shufflevector explicitly requires i32.
auto attr = rewriter.getI32IntegerAttr(d);
SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
Value *aD = nullptr, *accD = nullptr;
// 1. Broadcast the element a[d] into vector aD.
aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
// 2. If acc is present, extract 1-d vector acc[d] into accD.
if (acc)
accD = rewriter.create<LLVM::ExtractValueOp>(
loc, vRHS, acc, rewriter.getI64ArrayAttr(d));
// 3. Compute aD outer b (plus accD, if relevant).
Value *aOuterbD =
accD ? rewriter.create<LLVM::FMulAddOp>(loc, vRHS, aD, b, accD)
.getResult()
: rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
// 4. Insert as value `d` in the descriptor.
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType,
desc, aOuterbD,
rewriter.getI64ArrayAttr(d));
}
rewriter.replaceOp(op, desc);
return matchSuccess();
}
};
class VectorTypeCastOpConversion : public LLVMOpLowering {
public:
explicit VectorTypeCastOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::VectorTypeCastOp::getOperationName(), context,
typeConverter) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
vector::VectorTypeCastOp castOp = cast<vector::VectorTypeCastOp>(op);
MemRefType sourceMemRefType =
castOp.getOperand()->getType().cast<MemRefType>();
MemRefType targetMemRefType =
castOp.getResult()->getType().cast<MemRefType>();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return matchFailure();
Value *sourceMemRef = operands[0];
auto llvmSourceDescriptorTy =
sourceMemRef->getType().dyn_cast<LLVM::LLVMType>();
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
return matchFailure();
auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType)
.dyn_cast_or_null<LLVM::LLVMType>();
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
return matchFailure();
Type llvmSourceElementTy = llvmSourceDescriptorTy.getStructElementType(
LLVMTypeConverter::kAlignedPtrPosInMemRefDescriptor);
Type llvmTargetElementTy = llvmTargetDescriptorTy.getStructElementType(
LLVMTypeConverter::kAlignedPtrPosInMemRefDescriptor);
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides =
getStridesAndOffset(targetMemRefType, strides, offset);
bool isContiguous = (strides.back() == 1);
if (isContiguous) {
auto sizes = targetMemRefType.getShape();
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
if (strides[index] != strides[index + 1] * sizes[index + 1]) {
isContiguous = false;
break;
}
}
}
// Only contiguous tensors supported atm.
if (failed(successStrides) || !isContiguous)
return matchFailure();
auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
// Create descriptor.
Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmTargetDescriptorTy);
// Set allocated ptr.
Value *allocated = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmSourceElementTy, sourceMemRef,
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kAllocatedPtrPosInMemRefDescriptor));
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, allocated,
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kAllocatedPtrPosInMemRefDescriptor));
// Set ptr.
Value *ptr = rewriter.create<LLVM::ExtractValueOp>(
loc, llvmSourceElementTy, sourceMemRef,
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kAlignedPtrPosInMemRefDescriptor));
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, ptr,
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kAlignedPtrPosInMemRefDescriptor));
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, zero,
rewriter.getIndexArrayAttr(
LLVMTypeConverter::kOffsetPosInMemRefDescriptor));
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, size,
rewriter.getI64ArrayAttr(
{LLVMTypeConverter::kSizePosInMemRefDescriptor, index}));
auto strideAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), llvmTargetDescriptorTy, desc, stride,
rewriter.getI64ArrayAttr(
{LLVMTypeConverter::kStridePosInMemRefDescriptor, index}));
}
rewriter.replaceOp(op, desc);
return matchSuccess();
}
};
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
patterns.insert<ExtractElementOpConversion, OuterProductOpConversion,
VectorTypeCastOpConversion>(
converter.getDialect()->getContext(), converter);
}
namespace {
struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
void runOnModule() override;
};
} // namespace
void LowerVectorToLLVMPass::runOnModule() {
// Convert to the LLVM IR dialect using the converter defined above.
OwningRewritePatternList patterns;
LLVMTypeConverter converter(&getContext());
populateVectorToLLVMConversionPatterns(converter, patterns);
populateStdToLLVMConversionPatterns(converter, patterns);
ConversionTarget target(getContext());
target.addLegalDialect<LLVM::LLVMDialect>();
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
if (failed(
applyPartialConversion(getModule(), target, patterns, &converter))) {
signalPassFailure();
}
}
OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
return new LowerVectorToLLVMPass();
}
static PassRegistration<LowerVectorToLLVMPass>
pass("convert-vector-to-llvm",
"Lower the operations from the vector dialect into the LLVM dialect");