blob: 5d7a4f08d1e51e7311fe44b3087efde23c562ad4 [file] [log] [blame]
//===- Attributes.cpp - MLIR Affine Expr Classes --------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Attributes.h"
#include "AttributeDetail.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Twine.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// AttributeStorage
//===----------------------------------------------------------------------===//
AttributeStorage::AttributeStorage(Type type)
: type(type.getAsOpaquePointer()) {}
AttributeStorage::AttributeStorage() : type(nullptr) {}
Type AttributeStorage::getType() const {
return Type::getFromOpaquePointer(type);
}
void AttributeStorage::setType(Type newType) {
type = newType.getAsOpaquePointer();
}
//===----------------------------------------------------------------------===//
// Attribute
//===----------------------------------------------------------------------===//
/// Return the type of this attribute.
Type Attribute::getType() const { return impl->getType(); }
/// Return the context this attribute belongs to.
MLIRContext *Attribute::getContext() const { return getType().getContext(); }
/// Get the dialect this attribute is registered to.
Dialect &Attribute::getDialect() const { return impl->getDialect(); }
//===----------------------------------------------------------------------===//
// AffineMapAttr
//===----------------------------------------------------------------------===//
AffineMapAttr AffineMapAttr::get(AffineMap value) {
return Base::get(value.getContext(), StandardAttributes::AffineMap, value);
}
AffineMap AffineMapAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// ArrayAttr
//===----------------------------------------------------------------------===//
ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) {
return Base::get(context, StandardAttributes::Array, value);
}
ArrayRef<Attribute> ArrayAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// BoolAttr
//===----------------------------------------------------------------------===//
bool BoolAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// DictionaryAttr
//===----------------------------------------------------------------------===//
/// Perform a three-way comparison between the names of the specified
/// NamedAttributes.
static int compareNamedAttributes(const NamedAttribute *lhs,
const NamedAttribute *rhs) {
return lhs->first.strref().compare(rhs->first.strref());
}
DictionaryAttr DictionaryAttr::get(ArrayRef<NamedAttribute> value,
MLIRContext *context) {
assert(llvm::all_of(value,
[](const NamedAttribute &attr) { return attr.second; }) &&
"value cannot have null entries");
// We need to sort the element list to canonicalize it, but we also don't want
// to do a ton of work in the super common case where the element list is
// already sorted.
SmallVector<NamedAttribute, 8> storage;
switch (value.size()) {
case 0:
break;
case 1:
// A single element is already sorted.
break;
case 2:
assert(value[0].first != value[1].first &&
"DictionaryAttr element names must be unique");
// Don't invoke a general sort for two element case.
if (value[0].first.strref() > value[1].first.strref()) {
storage.push_back(value[1]);
storage.push_back(value[0]);
value = storage;
}
break;
default:
// Check to see they are sorted already.
bool isSorted = true;
for (unsigned i = 0, e = value.size() - 1; i != e; ++i) {
if (value[i].first.strref() > value[i + 1].first.strref()) {
isSorted = false;
break;
}
}
// If not, do a general sort.
if (!isSorted) {
storage.append(value.begin(), value.end());
llvm::array_pod_sort(storage.begin(), storage.end(),
compareNamedAttributes);
value = storage;
}
// Ensure that the attribute elements are unique.
assert(std::adjacent_find(value.begin(), value.end(),
[](NamedAttribute l, NamedAttribute r) {
return l.first == r.first;
}) == value.end() &&
"DictionaryAttr element names must be unique");
}
return Base::get(context, StandardAttributes::Dictionary, value);
}
ArrayRef<NamedAttribute> DictionaryAttr::getValue() const {
return getImpl()->getElements();
}
/// Return the specified attribute if present, null otherwise.
Attribute DictionaryAttr::get(StringRef name) const {
ArrayRef<NamedAttribute> values = getValue();
auto compare = [](NamedAttribute attr, StringRef name) {
return attr.first.strref() < name;
};
auto it = llvm::lower_bound(values, name, compare);
return it != values.end() && it->first.is(name) ? it->second : Attribute();
}
Attribute DictionaryAttr::get(Identifier name) const {
for (auto elt : getValue())
if (elt.first == name)
return elt.second;
return nullptr;
}
DictionaryAttr::iterator DictionaryAttr::begin() const {
return getValue().begin();
}
DictionaryAttr::iterator DictionaryAttr::end() const {
return getValue().end();
}
size_t DictionaryAttr::size() const { return getValue().size(); }
//===----------------------------------------------------------------------===//
// FloatAttr
//===----------------------------------------------------------------------===//
FloatAttr FloatAttr::get(Type type, double value) {
return Base::get(type.getContext(), StandardAttributes::Float, type, value);
}
FloatAttr FloatAttr::getChecked(Type type, double value, Location loc) {
return Base::getChecked(loc, type.getContext(), StandardAttributes::Float,
type, value);
}
FloatAttr FloatAttr::get(Type type, const APFloat &value) {
return Base::get(type.getContext(), StandardAttributes::Float, type, value);
}
FloatAttr FloatAttr::getChecked(Type type, const APFloat &value, Location loc) {
return Base::getChecked(loc, type.getContext(), StandardAttributes::Float,
type, value);
}
APFloat FloatAttr::getValue() const { return getImpl()->getValue(); }
double FloatAttr::getValueAsDouble() const {
return getValueAsDouble(getValue());
}
double FloatAttr::getValueAsDouble(APFloat value) {
if (&value.getSemantics() != &APFloat::IEEEdouble()) {
bool losesInfo = false;
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&losesInfo);
}
return value.convertToDouble();
}
/// Verify construction invariants.
static LogicalResult verifyFloatTypeInvariants(llvm::Optional<Location> loc,
Type type) {
if (!type.isa<FloatType>()) {
if (loc)
emitError(*loc, "expected floating point type");
return failure();
}
return success();
}
LogicalResult FloatAttr::verifyConstructionInvariants(
llvm::Optional<Location> loc, MLIRContext *ctx, Type type, double value) {
return verifyFloatTypeInvariants(loc, type);
}
LogicalResult
FloatAttr::verifyConstructionInvariants(llvm::Optional<Location> loc,
MLIRContext *ctx, Type type,
const APFloat &value) {
// Verify that the type is correct.
if (failed(verifyFloatTypeInvariants(loc, type)))
return failure();
// Verify that the type semantics match that of the value.
if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
if (loc)
emitError(*loc,
"FloatAttr type doesn't match the type implied by its value");
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// SymbolRefAttr
//===----------------------------------------------------------------------===//
FlatSymbolRefAttr SymbolRefAttr::get(StringRef value, MLIRContext *ctx) {
return Base::get(ctx, StandardAttributes::SymbolRef, value, llvm::None)
.cast<FlatSymbolRefAttr>();
}
SymbolRefAttr SymbolRefAttr::get(StringRef value,
ArrayRef<FlatSymbolRefAttr> nestedReferences,
MLIRContext *ctx) {
return Base::get(ctx, StandardAttributes::SymbolRef, value, nestedReferences);
}
StringRef SymbolRefAttr::getRootReference() const { return getImpl()->value; }
StringRef SymbolRefAttr::getLeafReference() const {
ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getValue();
}
ArrayRef<FlatSymbolRefAttr> SymbolRefAttr::getNestedReferences() const {
return getImpl()->getNestedRefs();
}
//===----------------------------------------------------------------------===//
// IntegerAttr
//===----------------------------------------------------------------------===//
IntegerAttr IntegerAttr::get(Type type, const APInt &value) {
return Base::get(type.getContext(), StandardAttributes::Integer, type, value);
}
IntegerAttr IntegerAttr::get(Type type, int64_t value) {
// This uses 64 bit APInts by default for index type.
if (type.isIndex())
return get(type, APInt(64, value));
auto intType = type.cast<IntegerType>();
return get(type, APInt(intType.getWidth(), value));
}
APInt IntegerAttr::getValue() const { return getImpl()->getValue(); }
int64_t IntegerAttr::getInt() const { return getValue().getSExtValue(); }
//===----------------------------------------------------------------------===//
// IntegerSetAttr
//===----------------------------------------------------------------------===//
IntegerSetAttr IntegerSetAttr::get(IntegerSet value) {
return Base::get(value.getConstraint(0).getContext(),
StandardAttributes::IntegerSet, value);
}
IntegerSet IntegerSetAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// OpaqueAttr
//===----------------------------------------------------------------------===//
OpaqueAttr OpaqueAttr::get(Identifier dialect, StringRef attrData, Type type,
MLIRContext *context) {
return Base::get(context, StandardAttributes::Opaque, dialect, attrData,
type);
}
OpaqueAttr OpaqueAttr::getChecked(Identifier dialect, StringRef attrData,
Type type, Location location) {
return Base::getChecked(location, type.getContext(),
StandardAttributes::Opaque, dialect, attrData, type);
}
/// Returns the dialect namespace of the opaque attribute.
Identifier OpaqueAttr::getDialectNamespace() const {
return getImpl()->dialectNamespace;
}
/// Returns the raw attribute data of the opaque attribute.
StringRef OpaqueAttr::getAttrData() const { return getImpl()->attrData; }
/// Verify the construction of an opaque attribute.
LogicalResult OpaqueAttr::verifyConstructionInvariants(
llvm::Optional<Location> loc, MLIRContext *context, Identifier dialect,
StringRef attrData, Type type) {
if (!Dialect::isValidNamespace(dialect.strref())) {
if (loc)
emitError(*loc) << "invalid dialect namespace '" << dialect << "'";
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// StringAttr
//===----------------------------------------------------------------------===//
StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) {
return get(bytes, NoneType::get(context));
}
/// Get an instance of a StringAttr with the given string and Type.
StringAttr StringAttr::get(StringRef bytes, Type type) {
return Base::get(type.getContext(), StandardAttributes::String, bytes, type);
}
StringRef StringAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// TypeAttr
//===----------------------------------------------------------------------===//
TypeAttr TypeAttr::get(Type value) {
return Base::get(value.getContext(), StandardAttributes::Type, value);
}
Type TypeAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// ElementsAttr
//===----------------------------------------------------------------------===//
ShapedType ElementsAttr::getType() const {
return Attribute::getType().cast<ShapedType>();
}
/// Returns the number of elements held by this attribute.
int64_t ElementsAttr::getNumElements() const {
return getType().getNumElements();
}
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute ElementsAttr::getValue(ArrayRef<uint64_t> index) const {
switch (getKind()) {
case StandardAttributes::DenseElements:
return cast<DenseElementsAttr>().getValue(index);
case StandardAttributes::OpaqueElements:
return cast<OpaqueElementsAttr>().getValue(index);
case StandardAttributes::SparseElements:
return cast<SparseElementsAttr>().getValue(index);
default:
llvm_unreachable("unknown ElementsAttr kind");
}
}
/// Return if the given 'index' refers to a valid element in this attribute.
bool ElementsAttr::isValidIndex(ArrayRef<uint64_t> index) const {
auto type = getType();
// Verify that the rank of the indices matches the held type.
auto rank = type.getRank();
if (rank != static_cast<int64_t>(index.size()))
return false;
// Verify that all of the indices are within the shape dimensions.
auto shape = type.getShape();
return llvm::all_of(llvm::seq<int>(0, rank), [&](int i) {
return static_cast<int64_t>(index[i]) < shape[i];
});
}
ElementsAttr ElementsAttr::mapValues(
Type newElementType,
llvm::function_ref<APInt(const APInt &)> mapping) const {
switch (getKind()) {
case StandardAttributes::DenseElements:
return cast<DenseElementsAttr>().mapValues(newElementType, mapping);
default:
llvm_unreachable("unsupported ElementsAttr subtype");
}
}
ElementsAttr ElementsAttr::mapValues(
Type newElementType,
llvm::function_ref<APInt(const APFloat &)> mapping) const {
switch (getKind()) {
case StandardAttributes::DenseElements:
return cast<DenseElementsAttr>().mapValues(newElementType, mapping);
default:
llvm_unreachable("unsupported ElementsAttr subtype");
}
}
/// Returns the 1 dimensional flattened row-major index from the given
/// multi-dimensional index.
uint64_t ElementsAttr::getFlattenedIndex(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
auto type = getType();
// Reduce the provided multidimensional index into a flattended 1D row-major
// index.
auto rank = type.getRank();
auto shape = type.getShape();
uint64_t valueIndex = 0;
uint64_t dimMultiplier = 1;
for (int i = rank - 1; i >= 0; --i) {
valueIndex += index[i] * dimMultiplier;
dimMultiplier *= shape[i];
}
return valueIndex;
}
//===----------------------------------------------------------------------===//
// DenseElementAttr Utilities
//===----------------------------------------------------------------------===//
static size_t getDenseElementBitwidth(Type eltType) {
// FIXME(b/121118307): using 64 bits for BF16 because it is currently stored
// with double semantics.
return eltType.isBF16() ? 64 : eltType.getIntOrFloatBitWidth();
}
/// Get the bitwidth of a dense element type within the buffer.
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
static size_t getDenseElementStorageWidth(size_t origWidth) {
return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
}
/// Set a bit to a specific value.
static void setBit(char *rawData, size_t bitPos, bool value) {
if (value)
rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
else
rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
}
/// Return the value of the specified bit.
static bool getBit(const char *rawData, size_t bitPos) {
return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
}
/// Writes value to the bit position `bitPos` in array `rawData`.
static void writeBits(char *rawData, size_t bitPos, APInt value) {
size_t bitWidth = value.getBitWidth();
// If the bitwidth is 1 we just toggle the specific bit.
if (bitWidth == 1)
return setBit(rawData, bitPos, value.isOneValue());
// Otherwise, the bit position is guaranteed to be byte aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
llvm::divideCeil(bitWidth, CHAR_BIT),
rawData + (bitPos / CHAR_BIT));
}
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
/// `rawData`.
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
// Handle a boolean bit position.
if (bitWidth == 1)
return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
// Otherwise, the bit position must be 8-bit aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
APInt result(bitWidth, 0);
std::copy_n(
rawData + (bitPos / CHAR_BIT), llvm::divideCeil(bitWidth, CHAR_BIT),
const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())));
return result;
}
/// Returns if 'values' corresponds to a splat, i.e. one element, or has the
/// same element count as 'type'.
template <typename Values>
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
return (values.size() == 1) ||
(type.getNumElements() == static_cast<int64_t>(values.size()));
}
//===----------------------------------------------------------------------===//
// DenseElementAttr Iterators
//===----------------------------------------------------------------------===//
/// Constructs a new iterator.
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
DenseElementsAttr attr, size_t index)
: indexed_accessor_iterator<AttributeElementIterator, const void *,
Attribute, Attribute, Attribute>(
attr.getAsOpaquePointer(), index) {}
/// Accesses the Attribute value at this iterator position.
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
auto owner = getFromOpaquePointer(object).cast<DenseElementsAttr>();
Type eltTy = owner.getType().getElementType();
if (auto intEltTy = eltTy.dyn_cast<IntegerType>()) {
if (intEltTy.getWidth() == 1)
return BoolAttr::get((*IntElementIterator(owner, index)).isOneValue(),
owner.getContext());
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
}
if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
IntElementIterator intIt(owner, index);
FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
return FloatAttr::get(eltTy, *floatIt);
}
llvm_unreachable("unexpected element type");
}
/// Constructs a new iterator.
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
attr.getRawData().data(), attr.isSplat(), dataIndex) {}
/// Accesses the bool value at this iterator position.
bool DenseElementsAttr::BoolElementIterator::operator*() const {
return getBit(getData(), getDataIndex());
}
/// Constructs a new iterator.
DenseElementsAttr::IntElementIterator::IntElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
attr.getRawData().data(), attr.isSplat(), dataIndex),
bitWidth(getDenseElementBitwidth(attr.getType().getElementType())) {}
/// Accesses the raw APInt value at this iterator position.
APInt DenseElementsAttr::IntElementIterator::operator*() const {
return readBits(getData(),
getDataIndex() * getDenseElementStorageWidth(bitWidth),
bitWidth);
}
DenseElementsAttr::FloatElementIterator::FloatElementIterator(
const llvm::fltSemantics &smt, IntElementIterator it)
: llvm::mapped_iterator<IntElementIterator,
std::function<APFloat(const APInt &)>>(
it, [&](const APInt &val) { return APFloat(smt, val); }) {}
//===----------------------------------------------------------------------===//
// DenseElementsAttr
//===----------------------------------------------------------------------===//
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<Attribute> values) {
assert(type.getElementType().isIntOrFloat() &&
"expected int or float element type");
assert(hasSameElementsOrSplat(type, values));
auto eltType = type.getElementType();
size_t bitWidth = getDenseElementBitwidth(eltType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
// Compress the attribute values into a character buffer.
SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
values.size());
APInt intVal;
for (unsigned i = 0, e = values.size(); i < e; ++i) {
assert(eltType == values[i].getType() &&
"expected attribute value to have element type");
switch (eltType.getKind()) {
case StandardTypes::BF16:
case StandardTypes::F16:
case StandardTypes::F32:
case StandardTypes::F64:
intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
break;
case StandardTypes::Integer:
intVal = values[i].isa<BoolAttr>()
? APInt(1, values[i].cast<BoolAttr>().getValue() ? 1 : 0)
: values[i].cast<IntegerAttr>().getValue();
break;
default:
llvm_unreachable("unexpected element type");
}
assert(intVal.getBitWidth() == bitWidth &&
"expected value to have same bitwidth as element type");
writeBits(data.data(), i * storageBitWidth, intVal);
}
return getRaw(type, data, /*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<bool> values) {
assert(hasSameElementsOrSplat(type, values));
assert(type.getElementType().isInteger(1));
std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
for (int i = 0, e = values.size(); i != e; ++i)
setBit(buff.data(), i, values[i]);
return getRaw(type, buff, /*isSplat=*/(values.size() == 1));
}
/// Constructs a dense integer elements attribute from an array of APInt
/// values. Each APInt value is expected to have the same bitwidth as the
/// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APInt> values) {
assert(type.getElementType().isa<IntegerType>());
return getRaw(type, values);
}
// Constructs a dense float elements attribute from an array of APFloat
// values. Each APFloat value is expected to have the same bitwidth as the
// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APFloat> values) {
assert(type.getElementType().isa<FloatType>());
// Convert the APFloat values to APInt and create a dense elements attribute.
std::vector<APInt> intValues(values.size());
for (unsigned i = 0, e = values.size(); i != e; ++i)
intValues[i] = values[i].bitcastToAPInt();
return getRaw(type, intValues);
}
// Constructs a dense elements attribute from an array of raw APInt values.
// Each APInt value is expected to have the same bitwidth as the element type
// of 'type'.
DenseElementsAttr DenseElementsAttr::getRaw(ShapedType type,
ArrayRef<APInt> values) {
assert(hasSameElementsOrSplat(type, values));
size_t bitWidth = getDenseElementBitwidth(type.getElementType());
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
std::vector<char> elementData(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
values.size());
for (unsigned i = 0, e = values.size(); i != e; ++i) {
assert(values[i].getBitWidth() == bitWidth);
writeBits(elementData.data(), i * storageBitWidth, values[i]);
}
return getRaw(type, elementData, /*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::getRaw(ShapedType type,
ArrayRef<char> data, bool isSplat) {
assert((type.isa<RankedTensorType>() || type.isa<VectorType>()) &&
"type must be ranked tensor or vector");
assert(type.hasStaticShape() && "type must have static shape");
return Base::get(type.getContext(), StandardAttributes::DenseElements, type,
data, isSplat);
}
/// Check the information for a c++ data type, check if this type is valid for
/// the current attribute. This method is used to verify specific type
/// invariants that the templatized 'getValues' method cannot.
static bool isValidIntOrFloat(ShapedType type, int64_t dataEltSize,
bool isInt) {
// Make sure that the data element size is the same as the type element width.
if ((dataEltSize * CHAR_BIT) != type.getElementTypeBitWidth())
return false;
// Check that the element type is valid.
return isInt ? type.getElementType().isa<IntegerType>()
: type.getElementType().isa<FloatType>();
}
/// Overload of the 'getRaw' method that asserts that the given type is of
/// integer type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt) {
assert(::isValidIntOrFloat(type, dataEltSize, isInt));
int64_t numElements = data.size() / dataEltSize;
assert(numElements == 1 || numElements == type.getNumElements());
return getRaw(type, data, /*isSplat=*/numElements == 1);
}
/// A method used to verify specific type invariants that the templatized 'get'
/// method cannot.
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize,
bool isInt) const {
return ::isValidIntOrFloat(getType(), dataEltSize, isInt);
}
/// Return the raw storage data held by this attribute.
ArrayRef<char> DenseElementsAttr::getRawData() const {
return static_cast<ImplType *>(impl)->data;
}
/// Returns if this attribute corresponds to a splat, i.e. if all element
/// values are the same.
bool DenseElementsAttr::isSplat() const { return getImpl()->isSplat; }
/// Return the held element values as a range of Attributes.
auto DenseElementsAttr::getAttributeValues() const
-> llvm::iterator_range<AttributeElementIterator> {
return {attr_value_begin(), attr_value_end()};
}
auto DenseElementsAttr::attr_value_begin() const -> AttributeElementIterator {
return AttributeElementIterator(*this, 0);
}
auto DenseElementsAttr::attr_value_end() const -> AttributeElementIterator {
return AttributeElementIterator(*this, getNumElements());
}
/// Return the held element values as a range of bool. The element type of
/// this attribute must be of integer type of bitwidth 1.
auto DenseElementsAttr::getBoolValues() const
-> llvm::iterator_range<BoolElementIterator> {
auto eltType = getType().getElementType().dyn_cast<IntegerType>();
assert(eltType && eltType.getWidth() == 1 && "expected i1 integer type");
(void)eltType;
return {BoolElementIterator(*this, 0),
BoolElementIterator(*this, getNumElements())};
}
/// Return the held element values as a range of APInts. The element type of
/// this attribute must be of integer type.
auto DenseElementsAttr::getIntValues() const
-> llvm::iterator_range<IntElementIterator> {
assert(getType().getElementType().isa<IntegerType>() &&
"expected integer type");
return {raw_int_begin(), raw_int_end()};
}
auto DenseElementsAttr::int_value_begin() const -> IntElementIterator {
assert(getType().getElementType().isa<IntegerType>() &&
"expected integer type");
return raw_int_begin();
}
auto DenseElementsAttr::int_value_end() const -> IntElementIterator {
assert(getType().getElementType().isa<IntegerType>() &&
"expected integer type");
return raw_int_end();
}
/// Return the held element values as a range of APFloat. The element type of
/// this attribute must be of float type.
auto DenseElementsAttr::getFloatValues() const
-> llvm::iterator_range<FloatElementIterator> {
auto elementType = getType().getElementType().cast<FloatType>();
assert(elementType.isa<FloatType>() && "expected float type");
const auto &elementSemantics = elementType.getFloatSemantics();
return {FloatElementIterator(elementSemantics, raw_int_begin()),
FloatElementIterator(elementSemantics, raw_int_end())};
}
auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
return getFloatValues().begin();
}
auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
return getFloatValues().end();
}
/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has been reshaped to 'newType'. The new type must have the
/// same total number of elements as well as element type.
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
ShapedType curType = getType();
if (curType == newType)
return *this;
(void)curType;
assert(newType.getElementType() == curType.getElementType() &&
"expected the same element type");
assert(newType.getNumElements() == curType.getNumElements() &&
"expected the same number of elements");
return getRaw(newType, getRawData(), isSplat());
}
DenseElementsAttr DenseElementsAttr::mapValues(
Type newElementType,
llvm::function_ref<APInt(const APInt &)> mapping) const {
return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
}
DenseElementsAttr DenseElementsAttr::mapValues(
Type newElementType,
llvm::function_ref<APInt(const APFloat &)> mapping) const {
return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
}
//===----------------------------------------------------------------------===//
// DenseFPElementsAttr
//===----------------------------------------------------------------------===//
template <typename Fn, typename Attr>
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
Type newElementType,
llvm::SmallVectorImpl<char> &data) {
size_t bitWidth = getDenseElementBitwidth(newElementType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
ShapedType newArrayType;
if (inType.isa<RankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<UnrankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<VectorType>())
newArrayType = VectorType::get(inType.getShape(), newElementType);
else
assert(newArrayType && "Unhandled tensor type");
size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
// Functor used to process a single element value of the attribute.
auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
auto newInt = mapping(value);
assert(newInt.getBitWidth() == bitWidth);
writeBits(data.data(), index * storageBitWidth, newInt);
};
// Check for the splat case.
if (attr.isSplat()) {
processElt(*attr.begin(), /*index=*/0);
return newArrayType;
}
// Otherwise, process all of the element values.
uint64_t elementIdx = 0;
for (auto value : attr)
processElt(value, elementIdx++);
return newArrayType;
}
DenseElementsAttr DenseFPElementsAttr::mapValues(
Type newElementType,
llvm::function_ref<APInt(const APFloat &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseFPElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
}
//===----------------------------------------------------------------------===//
// DenseIntElementsAttr
//===----------------------------------------------------------------------===//
DenseElementsAttr DenseIntElementsAttr::mapValues(
Type newElementType,
llvm::function_ref<APInt(const APInt &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseIntElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isa<IntegerType>();
}
//===----------------------------------------------------------------------===//
// OpaqueElementsAttr
//===----------------------------------------------------------------------===//
OpaqueElementsAttr OpaqueElementsAttr::get(Dialect *dialect, ShapedType type,
StringRef bytes) {
assert(TensorType::isValidElementType(type.getElementType()) &&
"Input element type should be a valid tensor element type");
return Base::get(type.getContext(), StandardAttributes::OpaqueElements, type,
dialect, bytes);
}
StringRef OpaqueElementsAttr::getValue() const { return getImpl()->bytes; }
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute OpaqueElementsAttr::getValue(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
if (Dialect *dialect = getDialect())
return dialect->extractElementHook(*this, index);
return Attribute();
}
Dialect *OpaqueElementsAttr::getDialect() const { return getImpl()->dialect; }
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
if (auto *d = getDialect())
return d->decodeHook(*this, result);
return true;
}
//===----------------------------------------------------------------------===//
// SparseElementsAttr
//===----------------------------------------------------------------------===//
SparseElementsAttr SparseElementsAttr::get(ShapedType type,
DenseElementsAttr indices,
DenseElementsAttr values) {
assert(indices.getType().getElementType().isInteger(64) &&
"expected sparse indices to be 64-bit integer values");
assert((type.isa<RankedTensorType>() || type.isa<VectorType>()) &&
"type must be ranked tensor or vector");
assert(type.hasStaticShape() && "type must have static shape");
return Base::get(type.getContext(), StandardAttributes::SparseElements, type,
indices.cast<DenseIntElementsAttr>(), values);
}
DenseIntElementsAttr SparseElementsAttr::getIndices() const {
return getImpl()->indices;
}
DenseElementsAttr SparseElementsAttr::getValues() const {
return getImpl()->values;
}
/// Return the value of the element at the given index.
Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
auto type = getType();
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
// Check to see if the indices are a splat.
if (sparseIndices.isSplat()) {
// If the index is also not a splat of the index value, we know that the
// value is zero.
auto splatIndex = *sparseIndexValues.begin();
if (llvm::any_of(index, [=](uint64_t i) { return i != splatIndex; }))
return getZeroAttr();
// If the indices are a splat, we also expect the values to be a splat.
assert(getValues().isSplat() && "expected splat values");
return getValues().getSplatValue();
}
// Build a mapping between known indices and the offset of the stored element.
llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices;
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = type.getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
mappedIndices.try_emplace(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}, i);
// Look for the provided index key within the mapped indices. If the provided
// index is not found, then return a zero attribute.
auto it = mappedIndices.find(index);
if (it == mappedIndices.end())
return getZeroAttr();
// Otherwise, return the held sparse value element.
return getValues().getValue(it->second);
}
/// Get a zero APFloat for the given sparse attribute.
APFloat SparseElementsAttr::getZeroAPFloat() const {
auto eltType = getType().getElementType().cast<FloatType>();
return APFloat(eltType.getFloatSemantics());
}
/// Get a zero APInt for the given sparse attribute.
APInt SparseElementsAttr::getZeroAPInt() const {
auto eltType = getType().getElementType().cast<IntegerType>();
return APInt::getNullValue(eltType.getWidth());
}
/// Get a zero attribute for the given attribute type.
Attribute SparseElementsAttr::getZeroAttr() const {
auto eltType = getType().getElementType();
// Handle floating point elements.
if (eltType.isa<FloatType>())
return FloatAttr::get(eltType, 0);
// Otherwise, this is an integer.
auto intEltTy = eltType.cast<IntegerType>();
if (intEltTy.getWidth() == 1)
return BoolAttr::get(false, eltType.getContext());
return IntegerAttr::get(eltType, 0);
}
/// Flatten, and return, all of the sparse indices in this attribute in
/// row-major order.
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
std::vector<ptrdiff_t> flatSparseIndices;
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
if (sparseIndices.isSplat()) {
SmallVector<uint64_t, 8> indices(getType().getRank(),
*sparseIndexValues.begin());
flatSparseIndices.push_back(getFlattenedIndex(indices));
return flatSparseIndices;
}
// Otherwise, reinterpret each index as an ArrayRef when flattening.
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = getType().getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
flatSparseIndices.push_back(getFlattenedIndex(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}));
return flatSparseIndices;
}
//===----------------------------------------------------------------------===//
// NamedAttributeList
//===----------------------------------------------------------------------===//
NamedAttributeList::NamedAttributeList(ArrayRef<NamedAttribute> attributes) {
setAttrs(attributes);
}
ArrayRef<NamedAttribute> NamedAttributeList::getAttrs() const {
return attrs ? attrs.getValue() : llvm::None;
}
/// Replace the held attributes with ones provided in 'newAttrs'.
void NamedAttributeList::setAttrs(ArrayRef<NamedAttribute> attributes) {
// Don't create an attribute list if there are no attributes.
if (attributes.empty())
attrs = nullptr;
else
attrs = DictionaryAttr::get(attributes, attributes[0].second.getContext());
}
/// Return the specified attribute if present, null otherwise.
Attribute NamedAttributeList::get(StringRef name) const {
return attrs ? attrs.get(name) : nullptr;
}
/// Return the specified attribute if present, null otherwise.
Attribute NamedAttributeList::get(Identifier name) const {
return attrs ? attrs.get(name) : nullptr;
}
/// If the an attribute exists with the specified name, change it to the new
/// value. Otherwise, add a new attribute with the specified name/value.
void NamedAttributeList::set(Identifier name, Attribute value) {
assert(value && "attributes may never be null");
// If we already have this attribute, replace it.
auto origAttrs = getAttrs();
SmallVector<NamedAttribute, 8> newAttrs(origAttrs.begin(), origAttrs.end());
for (auto &elt : newAttrs)
if (elt.first == name) {
elt.second = value;
attrs = DictionaryAttr::get(newAttrs, value.getContext());
return;
}
// Otherwise, add it.
newAttrs.push_back({name, value});
attrs = DictionaryAttr::get(newAttrs, value.getContext());
}
/// Remove the attribute with the specified name if it exists. The return
/// value indicates whether the attribute was present or not.
auto NamedAttributeList::remove(Identifier name) -> RemoveResult {
auto origAttrs = getAttrs();
for (unsigned i = 0, e = origAttrs.size(); i != e; ++i) {
if (origAttrs[i].first == name) {
// Handle the simple case of removing the only attribute in the list.
if (e == 1) {
attrs = nullptr;
return RemoveResult::Removed;
}
SmallVector<NamedAttribute, 8> newAttrs;
newAttrs.reserve(origAttrs.size() - 1);
newAttrs.append(origAttrs.begin(), origAttrs.begin() + i);
newAttrs.append(origAttrs.begin() + i + 1, origAttrs.end());
attrs = DictionaryAttr::get(newAttrs, newAttrs[0].second.getContext());
return RemoveResult::Removed;
}
}
return RemoveResult::NotFound;
}