blob: f6d93e2f24e5fa822a5bf75fa4f6340fc7a98c4c [file] [log] [blame]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Class to hold a library of OpDefs and use it to create Brain operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
from google.protobuf import text_format
from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import tensor_pb2
from tensorflow.core.framework import tensor_shape_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import op_callbacks
from tensorflow.python.framework import op_def_registry
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import _pywrap_utils
from tensorflow.python.util import compat
from tensorflow.python.util import tf_contextlib
def _Attr(op_def, name):
for attr in op_def.attr:
if attr.name == name:
return attr
raise TypeError("Inconsistent OpDef for '%s', missing attr '%s'" %
(op_def.name, name))
def _AttrValue(attr_protos, name):
if name in attr_protos:
return attr_protos[name]
raise TypeError("Inconsistent OpDef, missing attr '%s' from '%s'." %
(name, attr_protos))
def _SatisfiesTypeConstraint(dtype, attr_def, param_name):
if attr_def.HasField("allowed_values"):
allowed_list = attr_def.allowed_values.list.type
if dtype not in allowed_list:
raise TypeError(
"Value passed to parameter '%s' has DataType %s not in list of "
"allowed values: %s" %
(param_name, dtypes.as_dtype(dtype).name,
", ".join(dtypes.as_dtype(x).name for x in allowed_list)))
def _SatisfiesLengthConstraint(length, attr_def, param_name, op_type_name):
if attr_def.has_minimum and length < attr_def.minimum:
raise ValueError("Attr '%s' of '%s' Op passed list of length %d "
"less than minimum %d." %
(param_name, op_type_name, length, attr_def.minimum))
def _SatisfiesAllowedStringsConstraint(value, attr_def, arg_name, op_type_name):
if value not in attr_def.allowed_values.list.s:
raise ValueError(
"Attr '%s' of '%s' Op passed string '%s' not in: \"%s\"." %
(arg_name, op_type_name, compat.as_text(value), '", "'.join(
map(compat.as_text, attr_def.allowed_values.list.s))))
def _SatisfiesIntMinimumConstraint(value, attr_def, arg_name, op_type_name):
if value < attr_def.minimum:
raise ValueError("Attr '%s' of '%s' Op passed %d less than minimum %d." %
(arg_name, op_type_name, value, attr_def.minimum))
def _IsListParameter(arg):
if arg.number_attr:
return True
elif arg.type_list_attr:
return True
return False
def _NumTypeFields(arg):
num = 0
if arg.type != types_pb2.DT_INVALID: num += 1
if arg.type_attr: num += 1
if arg.type_list_attr: num += 1
return num
def _IsListValue(v):
return isinstance(v, (list, tuple))
def _Flatten(l):
"""Converts [1, 2, [3, 4], [5]] to [1, 2, 3, 4, 5]."""
# [1, 2, [3, 4], [5]] -> [[1], [2], [3, 4], [5]]
l_of_l = [x if _IsListValue(x) else [x] for x in l]
# [[1], [2], [3, 4], [5]] -> [1, 2, 3, 4, 5]
return [item for sublist in l_of_l for item in sublist]
def _Restructure(l, structure):
"""Returns the elements of list l structured according to the given structure.
A structure is represented by a list whose elements are either
`None` or a non-negative integer. `None` corresponds to a single
element in the output list, and an integer N corresponds to a nested
list of length N.
The function returns a data structure whose shape is given by
`structure`, and whose elements are taken from `l`. If `structure`
is a singleton, the function returns the single data structure
implied by the 0th element of `structure`. For example:
_Restructure(["foo", "bar", "baz", "qux"], [None, 2, None])
-> ["foo", ["bar", "baz"], "qux"]
_Restructure(["foo"], [None]) -> "foo"
_Restructure(["foo"], [1]) -> ["foo"]
_Restructure([], [0]) -> []
Args:
l: A list.
structure: A list whose elements are either `None` or a non-negative
integer.
Returns:
The elements of `l`, restructured according to `structure`. If
`structure` is a list of length 1, this function returns the
single data structure implied by `structure[0]`.
"""
result = []
current_index = 0
for element in structure:
if element is None:
result.append(l[current_index])
current_index += 1
else:
result.append(l[current_index:current_index+element])
current_index += element
if len(result) == 1:
return result[0]
else:
return tuple(result)
def _MakeFloat(v, arg_name):
if not isinstance(v, compat.real_types):
raise TypeError("Expected float for argument '%s' not %s." %
(arg_name, repr(v)))
return float(v)
def _MakeInt(v, arg_name):
if isinstance(v, six.string_types):
raise TypeError("Expected int for argument '%s' not %s." %
(arg_name, repr(v)))
try:
return int(v)
except (ValueError, TypeError):
raise TypeError("Expected int for argument '%s' not %s." %
(arg_name, repr(v)))
def _MakeStr(v, arg_name):
if not isinstance(v, compat.bytes_or_text_types):
raise TypeError("Expected string for argument '%s' not %s." %
(arg_name, repr(v)))
return compat.as_bytes(v) # Convert unicode strings to bytes.
def _MakeBool(v, arg_name):
if not isinstance(v, bool):
raise TypeError("Expected bool for argument '%s' not %s." %
(arg_name, repr(v)))
return v
def _MakeType(v, arg_name):
try:
v = dtypes.as_dtype(v).base_dtype
except TypeError:
raise TypeError("Expected DataType for argument '%s' not %s." %
(arg_name, repr(v)))
return v.as_datatype_enum
def _MakeShape(v, arg_name):
"""Convert v into a TensorShapeProto."""
# Args:
# v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
# arg_name: String, for error messages.
# Returns:
# A TensorShapeProto.
if isinstance(v, tensor_shape_pb2.TensorShapeProto):
for d in v.dim:
if d.name:
logging.warning("Warning: TensorShapeProto with a named dimension: %s",
str(v))
break
return v
try:
return tensor_shape.as_shape(v).as_proto()
except TypeError as e:
raise TypeError("Error converting %s to a TensorShape: %s" % (arg_name, e))
except ValueError as e:
raise ValueError("Error converting %s to a TensorShape: %s" % (arg_name, e))
def _MakeTensor(v, arg_name):
"""Ensure v is a TensorProto."""
if isinstance(v, tensor_pb2.TensorProto):
return v
raise TypeError(
"Don't know how to convert %s to a TensorProto for argument '%s'" %
(repr(v), arg_name))
def _MakeFunc(v, arg_name):
"""Ensure v is a func."""
if isinstance(v, attr_value_pb2.NameAttrList):
return v
if isinstance(v, compat.bytes_or_text_types):
fn_attr = attr_value_pb2.NameAttrList(name=v)
elif hasattr(v, "add_to_graph"):
v.add_to_graph(ops.get_default_graph())
if hasattr(v, "_as_name_attr_list"):
fn_attr = v._as_name_attr_list # pylint: disable=protected-access
else:
fn_attr = attr_value_pb2.NameAttrList(name=v.name)
else:
raise TypeError("Don't know how to convert {} to a func for "
"argument {}".format(v, arg_name))
return fn_attr
# pylint: disable=g-doc-return-or-yield
@tf_contextlib.contextmanager
def _MaybeColocateWith(inputs):
"""A context manager for (maybe) colocating with a list of input tensors.
Args:
inputs: A list of `Tensor` or `Operation` objects.
Returns:
A context manager.
"""
if not inputs:
yield
else:
# NOTE(mrry): The `ops.colocate_with()` function accepts only a single
# op or tensor, so we create one context manager per element in the list.
with ops.colocate_with(inputs[0]), _MaybeColocateWith(inputs[1:]):
yield
# pylint: enable=g-doc-return-or-yield
def apply_op(op_type_name, name=None, **keywords): # pylint: disable=invalid-name
"""Add a node invoking a registered Op to a graph.
Example usage:
# input1 and input2 can be Tensors or anything ops.convert_to_tensor()
# will convert to a Tensor.
op_def_library.apply_op("op", input1=input1, input2=input2)
# Can specify a node name.
op_def_library.apply_op("op", input1=input1, name="node_name")
# Must use keyword arguments, with the names specified in the OpDef.
op_def_library.apply_op("op", input_name=input, attr_name=attr)
All attrs must either be inferred from an input or specified.
(If inferred, the attr must not be specified.) If an attr has a default
value specified in the Op's OpDef, then you may pass None as the value
of that attr to get the default.
Args:
op_type_name: string. Must match the name field of a registered Op.
name: string. Optional name of the created op.
**keywords: input Tensor and attr arguments specified by name,
and optional parameters to pass when constructing the Operation.
Returns:
The Tensor(s) representing the output of the operation, or the Operation
itself if there are no outputs.
Raises:
RuntimeError: On some errors.
TypeError: On some errors.
ValueError: On some errors.
"""
output_structure, is_stateful, op, outputs = _apply_op_helper(
op_type_name, name, **keywords)
if output_structure:
res = _Restructure(ops.convert_n_to_tensor(outputs), output_structure)
if isinstance(res, list) and not res and is_stateful:
return op
else:
return res
else:
return op
def _apply_op_helper(op_type_name, name=None, **keywords): # pylint: disable=invalid-name
"""Implementation of apply_op that returns output_structure, op."""
op_def = op_def_registry.get(op_type_name)
if op_def is None:
raise RuntimeError("Unrecognized Op name " + op_type_name)
# Determine the graph context.
try:
# Need to flatten all the arguments into a list.
# pylint: disable=protected-access
g = ops._get_graph_from_inputs(_Flatten(keywords.values()))
# pylint: enable=protected-access
except AssertionError as e:
raise RuntimeError(
"Cannot determine graph for Op '%s' due to: %s"
% (op_type_name, e.message))
# Default name if not specified.
if name is None:
name = op_type_name
# Check for deprecation
deprecation_version = op_def.deprecation.version
if deprecation_version:
producer = g.graph_def_versions.producer
if producer >= deprecation_version:
raise NotImplementedError(
("Op %s is not available in GraphDef version %d. "
"It has been removed in version %d. %s.") %
(op_type_name, producer, deprecation_version,
op_def.deprecation.explanation))
# Fill in the list of default types for all "type" attrs. This
# will be used to choose a preferred dtype to convert to in the
# absence of input type information.
#
# TODO(b/31302892): Currently the defaults don't work in the right
# way if you have two inputs, one of whose type resolution depends
# on the other. Handling this will require restructuring this code
# significantly.
default_type_attr_map = {}
allowed_list_attr_map = {}
for attr_def in op_def.attr:
if attr_def.type != "type":
continue
key = attr_def.name
if attr_def.HasField("default_value"):
default_type_attr_map[key] = dtypes.as_dtype(
attr_def.default_value.type)
if attr_def.HasField("allowed_values"):
allowed_list_attr_map[key] = attr_def.allowed_values.list.type
# Requires that op_def has passed validation (using the C++
# ValidateOpDef() from ../framework/op_def_util.h).
attrs = {}
inputs = []
input_types = []
with g.as_default(), ops.name_scope(name) as scope:
# Perform input type inference
inferred_from = {}
for input_arg in op_def.input_arg:
input_name = input_arg.name
if input_name in keywords:
values = keywords.pop(input_name)
elif input_name + "_" in keywords:
# Handle the case where the name is a keyword or built-in
# for Python so we use the name + _ instead.
input_name += "_"
values = keywords.pop(input_name)
else:
raise TypeError("No argument for input " + input_name)
# Goals:
# * Convert values to Tensors if it contains constants.
# * Verify that values is a list if that matches the input_arg's
# type.
# * If the input_arg's type is determined by attrs, either set
# those attrs and validate those attr values are legal (if
# they have not yet been set) or validate the input matches
# the type indicated by the attrs (if they have already been
# inferred via an earlier input).
# * If the input_arg has an explicit type, make sure the input
# conforms.
if _IsListParameter(input_arg):
if not _IsListValue(values):
raise TypeError(
"Expected list for '%s' argument to '%s' Op, not %s." %
(input_name, op_type_name, values))
# In cases where we expect all elements of the list to have the
# same dtype, try to cast non-Tensor elements to that type.
dtype = None
default_dtype = None
if input_arg.type != types_pb2.DT_INVALID:
dtype = input_arg.type
elif input_arg.number_attr:
if input_arg.type_attr in attrs:
dtype = attrs[input_arg.type_attr]
else:
for t in values:
if isinstance(t, ops.Tensor):
dtype = t.dtype
break
# dtype still not found, prefer using the default dtype
# from the attr.
if dtype is None and input_arg.type_attr in default_type_attr_map:
default_dtype = default_type_attr_map[input_arg.type_attr]
try:
if not input_arg.is_ref and dtype:
dtype = dtypes.as_dtype(dtype).base_dtype
values = ops.internal_convert_n_to_tensor(
values,
name=input_arg.name,
dtype=dtype if dtype else None,
preferred_dtype=default_dtype,
as_ref=input_arg.is_ref)
if input_arg.number_attr and len(
set(v.dtype.base_dtype for v in values)) > 1:
raise TypeError() # All types should match.
except (TypeError, ValueError):
# What types does the conversion function think values have?
observed_types = []
for value in values:
try:
converted_value = ops.convert_to_tensor(
value, as_ref=input_arg.is_ref)
observed_types.append(converted_value.dtype.base_dtype.name)
except (TypeError, ValueError):
observed_types.append("<NOT CONVERTIBLE TO TENSOR>")
observed = ", ".join(observed_types)
prefix = (
"Tensors in list passed to '%s' of '%s' Op have types [%s]" %
(input_name, op_type_name, observed))
if input_arg.number_attr:
if input_arg.type != types_pb2.DT_INVALID:
raise TypeError("%s that do not match expected type %s." %
(prefix, dtype.name))
elif input_arg.type_attr in attrs:
raise TypeError("%s that do not match type %s inferred from "
"earlier arguments." %
(prefix, dtype.name))
else:
raise TypeError("%s that don't all match." % prefix)
else:
raise TypeError(
"%s that are invalid. Tensors: %s" % (prefix, values))
types = [x.dtype for x in values]
inputs.extend(values)
else:
# In cases where we have an expected type, try to convert non-Tensor
# arguments to that type.
dtype = None
default_dtype = None
allowed_list = None
if input_arg.type != types_pb2.DT_INVALID:
dtype = input_arg.type
elif input_arg.type_attr in attrs:
dtype = attrs[input_arg.type_attr]
elif input_arg.type_attr in default_type_attr_map:
# The dtype could not be inferred solely from the inputs,
# so we prefer the attr's default, so code that adds a new attr
# with a default is backwards compatible.
default_dtype = default_type_attr_map[input_arg.type_attr]
allowed_list = allowed_list_attr_map.get(input_arg.type_attr)
try:
# First see if we can get a valid dtype with the default conversion
# and see if it matches an allowed dtypes. Some ops like ConcatV2 may
# not list allowed dtypes, in which case we should skip this.
if dtype is None and allowed_list:
inferred = None
try:
inferred = ops.convert_to_tensor(
values, name=input_arg.name, as_ref=input_arg.is_ref)
except TypeError as err:
# When converting a python object such as a list of Dimensions, we
# need a dtype to be specified, thus tensor conversion may throw
# an exception which we will ignore and try again below.
pass
# If we did not match an allowed dtype, try again with the default
# dtype. This could be because we have an empty tensor and thus we
# picked the wrong type.
if inferred is not None and inferred.dtype in allowed_list:
values = inferred
else:
values = ops.convert_to_tensor(
values,
name=input_arg.name,
as_ref=input_arg.is_ref,
preferred_dtype=default_dtype)
else:
values = ops.convert_to_tensor(
values,
name=input_arg.name,
dtype=dtype,
as_ref=input_arg.is_ref,
preferred_dtype=default_dtype)
except TypeError as err:
if dtype is None:
raise err
else:
raise TypeError(
"Expected %s passed to parameter '%s' of op '%s', got %s of "
"type '%s' instead. Error: %s" %
(dtypes.as_dtype(dtype).name, input_arg.name, op_type_name,
repr(values), type(values).__name__, err))
except ValueError:
# What type does convert_to_tensor think it has?
try:
observed = ops.convert_to_tensor(
values, as_ref=input_arg.is_ref).dtype.name
except ValueError as err:
raise ValueError(
"Tried to convert '%s' to a tensor and failed. Error: %s" %
(input_name, err))
prefix = ("Input '%s' of '%s' Op has type %s that does not match" %
(input_name, op_type_name, observed))
if input_arg.type != types_pb2.DT_INVALID:
raise TypeError("%s expected type of %s." %
(prefix, dtypes.as_dtype(input_arg.type).name))
else:
# Update the maps with the default, if needed.
k = input_arg.type_attr
if k in default_type_attr_map:
if k not in attrs:
attrs[k] = default_type_attr_map[k]
if k not in inferred_from:
inferred_from[k] = "Default in OpDef"
raise TypeError(
"%s type %s of argument '%s'." %
(prefix, dtypes.as_dtype(attrs[input_arg.type_attr]).name,
inferred_from[input_arg.type_attr]))
types = [values.dtype]
inputs.append(values)
base_types = [x.base_dtype for x in types]
if input_arg.number_attr:
# <number-attr> * <type> or <number-attr> * <type-attr>
if input_arg.number_attr in attrs:
if len(values) != attrs[input_arg.number_attr]:
raise ValueError(
"List argument '%s' to '%s' Op with length %d must match "
"length %d of argument '%s'." %
(input_name, op_type_name, len(values),
attrs[input_arg.number_attr],
inferred_from[input_arg.number_attr]))
else:
attrs[input_arg.number_attr] = len(values)
inferred_from[input_arg.number_attr] = input_name
num_attr = _Attr(op_def, input_arg.number_attr)
if num_attr.has_minimum and len(values) < num_attr.minimum:
raise ValueError(
"List argument '%s' to '%s' Op with length %d shorter "
"than minimum length %d." %
(input_name, op_type_name, len(values), num_attr.minimum))
# All tensors must have the same base type.
if any(bt != base_types[0] for bt in base_types):
raise TypeError(
"All tensors passed to '%s' of '%s' Op "
"must have the same type." %
(input_name, op_type_name))
if input_arg.type != types_pb2.DT_INVALID:
# <number-attr> * <type> case
if base_types and base_types[0] != input_arg.type:
assert False, "Unreachable"
elif input_arg.type_attr in attrs:
# <number-attr> * <type-attr> case, where <type-attr> already
# has an inferred value.
if base_types and base_types[0] != attrs[input_arg.type_attr]:
assert False, "Unreachable"
else:
# <number-attr> * <type-attr> case, where we are now setting
# the <type-attr> based on this input
if not base_types:
# If it's in default_type_attr_map, then wait to set it
# (in "process remaining attrs", below).
if input_arg.type_attr not in default_type_attr_map:
raise TypeError(
"Don't know how to infer type variable from empty input "
"list passed to input '%s' of '%s' Op." %
(input_name, op_type_name))
else:
attrs[input_arg.type_attr] = base_types[0]
inferred_from[input_arg.type_attr] = input_name
type_attr = _Attr(op_def, input_arg.type_attr)
_SatisfiesTypeConstraint(base_types[0], type_attr,
param_name=input_name)
elif input_arg.type_attr:
# <type-attr>
attr_value = base_types[0]
if input_arg.type_attr in attrs:
if attrs[input_arg.type_attr] != attr_value:
raise TypeError(
"Input '%s' of '%s' Op has type %s that does not "
"match type %s of argument '%s'." %
(input_name, op_type_name, dtypes.as_dtype(attr_value).name,
dtypes.as_dtype(attrs[input_arg.type_attr]).name,
inferred_from[input_arg.type_attr]))
else:
for base_type in base_types:
_SatisfiesTypeConstraint(base_type,
_Attr(op_def, input_arg.type_attr),
param_name=input_name)
attrs[input_arg.type_attr] = attr_value
inferred_from[input_arg.type_attr] = input_name
elif input_arg.type_list_attr:
# <type-list-attr>
attr_value = base_types
if input_arg.type_list_attr in attrs:
if attrs[input_arg.type_list_attr] != attr_value:
raise TypeError(
"Input '%s' of '%s' Op has type list of %s that does not "
"match type list %s of argument '%s'." %
(input_name, op_type_name,
", ".join(dtypes.as_dtype(x).name for x in attr_value),
", ".join(dtypes.as_dtype(x).name
for x in attrs[input_arg.type_list_attr]),
inferred_from[input_arg.type_list_attr]))
else:
for base_type in base_types:
_SatisfiesTypeConstraint(base_type,
_Attr(op_def, input_arg.type_list_attr),
param_name=input_name)
attrs[input_arg.type_list_attr] = attr_value
inferred_from[input_arg.type_list_attr] = input_name
else:
# single Tensor with specified type
if base_types[0] != input_arg.type:
assert False, "Unreachable"
if input_arg.is_ref:
if not all(x._is_ref_dtype for x in types): # pylint: disable=protected-access
raise TypeError(
("'%s' Op requires that input '%s' be a mutable tensor "
"(e.g.: a tf.Variable)") % (op_type_name, input_name))
input_types.extend(types)
else:
input_types.extend(base_types)
# Process remaining attrs
for attr in op_def.attr:
# Skip attrs that have already had their values inferred
if attr.name in attrs:
if attr.name in keywords:
raise TypeError(
"Should not specify value for inferred attr '%s'." % attr.name)
continue
if attr.name in keywords:
attrs[attr.name] = keywords.pop(attr.name)
elif attr.name + "_" in keywords:
# Attrs whose names match Python keywords have an extra '_'
# appended, so we must check for that as well.
attrs[attr.name] = keywords.pop(attr.name + "_")
elif attr.name in default_type_attr_map:
attrs[attr.name] = default_type_attr_map[attr.name]
inferred_from.setdefault(attr.name, "Default in OpDef")
else:
raise TypeError("No argument for attr " + attr.name)
# Convert attr values to AttrValue protos.
attr_protos = {}
for attr_def in op_def.attr:
key = attr_def.name
value = attrs[key]
if attr_def.HasField("default_value") and value is None:
attr_value = attr_value_pb2.AttrValue()
attr_value.CopyFrom(attr_def.default_value)
attr_protos[key] = attr_value
continue
attr_value = value_to_attr_value(value, attr_def.type, key)
if attr_def.type.startswith("list("):
_SatisfiesLengthConstraint(len(value), attr_def, key, op_type_name)
if attr_def.HasField("allowed_values"):
if attr_def.type == "string":
_SatisfiesAllowedStringsConstraint(attr_value.s, attr_def, key,
op_type_name)
elif attr_def.type == "list(string)":
for value in attr_value.list.s:
_SatisfiesAllowedStringsConstraint(value, attr_def, key,
op_type_name)
if attr_def.has_minimum and attr_def.type == "int":
_SatisfiesIntMinimumConstraint(attr_value.i, attr_def, key,
op_type_name)
if attr_def.type == "type":
_SatisfiesTypeConstraint(attr_value.type, attr_def, key)
if attr_def.type == "list(type)":
for value in attr_value.list.type:
_SatisfiesTypeConstraint(value, attr_def, key)
attr_protos[key] = attr_value
del attrs # attrs is no longer authoritative, use attr_protos instead
# Determine output types (possibly using attrs)
output_structure = []
for arg in op_def.output_arg:
if arg.number_attr:
n = _AttrValue(attr_protos, arg.number_attr).i
output_structure.append(n)
elif arg.type_attr:
t = _AttrValue(attr_protos, arg.type_attr)
output_structure.append(None)
elif arg.type_list_attr:
t = _AttrValue(attr_protos, arg.type_list_attr)
output_structure.append(len(t.list.type))
else:
output_structure.append(None)
if keywords:
raise TypeError("apply_op() got unexpected keyword arguments: " +
", ".join(sorted(keywords.keys())))
# NOTE(mrry): We add an explicit colocation constraint between
# the newly created op and any of its reference-typed inputs.
must_colocate_inputs = [val for arg, val in zip(op_def.input_arg, inputs)
if arg.is_ref]
with _MaybeColocateWith(must_colocate_inputs):
# Add Op to graph
# pylint: disable=protected-access
op = g._create_op_internal(op_type_name, inputs, dtypes=None,
name=scope, input_types=input_types,
attrs=attr_protos, op_def=op_def)
# `outputs` is returned as a separate return value so that the output
# tensors can the `op` per se can be decoupled so that the
# `op_callbacks` can function properly. See framework/op_callbacks.py
# for more details.
outputs = op.outputs
# Conditionally invoke tfdbg v2's op callback(s).
if op_callbacks.should_invoke_op_callbacks():
callback_outputs = op_callbacks.invoke_op_callbacks(
op.node_def.op, tuple(op.inputs), attr_protos, tuple(outputs),
op_name=op.name, graph=g)
if callback_outputs is not None:
outputs = callback_outputs
return output_structure, op_def.is_stateful, op, outputs
def value_to_attr_value(value, attr_type, arg_name): # pylint: disable=invalid-name
"""Encodes a Python value as an `AttrValue` proto message.
Args:
value: The value to convert.
attr_type: The value type (string) -- see the AttrValue proto definition for
valid strings.
arg_name: Argument name (for error messages).
Returns:
An AttrValue proto message that encodes `value`.
"""
attr_value = attr_value_pb2.AttrValue()
if attr_type.startswith("list("):
if not _IsListValue(value):
raise TypeError("Expected list for attr " + arg_name)
if attr_type == "string":
attr_value.s = _MakeStr(value, arg_name)
elif attr_type == "list(string)":
attr_value.list.s.extend([_MakeStr(x, arg_name) for x in value])
elif attr_type == "int":
attr_value.i = _MakeInt(value, arg_name)
elif attr_type == "list(int)":
attr_value.list.i.extend([_MakeInt(x, arg_name) for x in value])
elif attr_type == "float":
attr_value.f = _MakeFloat(value, arg_name)
elif attr_type == "list(float)":
attr_value.list.f.extend([_MakeFloat(x, arg_name) for x in value])
elif attr_type == "bool":
attr_value.b = _MakeBool(value, arg_name)
elif attr_type == "list(bool)":
attr_value.list.b.extend([_MakeBool(x, arg_name) for x in value])
elif attr_type == "type":
attr_value.type = _MakeType(value, arg_name)
elif attr_type == "list(type)":
attr_value.list.type.extend([_MakeType(x, arg_name) for x in value])
elif attr_type == "shape":
attr_value.shape.CopyFrom(_MakeShape(value, arg_name))
elif attr_type == "list(shape)":
attr_value.list.shape.extend([_MakeShape(x, arg_name) for x in value])
elif attr_type == "tensor":
attr_value.tensor.CopyFrom(_MakeTensor(value, arg_name))
elif attr_type == "list(tensor)":
attr_value.list.tensor.extend([_MakeTensor(x, arg_name) for x in value])
elif attr_type == "func":
attr_value.func.CopyFrom(_MakeFunc(value, arg_name))
elif attr_type == "list(func)":
attr_value.list.func.extend([_MakeFunc(x, arg_name) for x in value])
else:
raise TypeError("Unrecognized Attr type " + attr_type)
return attr_value
# The following symbols are used by op_def_util.cc.
_pywrap_utils.RegisterPyObject("tf.dtypes.DType", dtypes.DType)
_pywrap_utils.RegisterPyObject("tf.dtypes.as_dtype", dtypes.as_dtype)
_pywrap_utils.RegisterPyObject("tf.TensorShape", tensor_shape.TensorShape)
_pywrap_utils.RegisterPyObject("tf.as_shape", tensor_shape.as_shape)
_pywrap_utils.RegisterPyObject("tf.TensorProto", tensor_pb2.TensorProto)
_pywrap_utils.RegisterPyObject("text_format.Parse", text_format.Parse)
_pywrap_utils.RegisterPyObject("tf.convert_to_tensor", ops.convert_to_tensor)