| # Copyright 2016 The TensorFlow Authors. All Rights Reserved. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # ============================================================================== |
| """Tests for Keras regularizers.""" |
| |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| |
| from absl.testing import parameterized |
| import numpy as np |
| |
| from tensorflow.python import keras |
| from tensorflow.python.eager import context |
| from tensorflow.python.keras import keras_parameterized |
| from tensorflow.python.keras import regularizers |
| from tensorflow.python.keras import testing_utils |
| from tensorflow.python.keras.utils import np_utils |
| from tensorflow.python.ops import math_ops |
| from tensorflow.python.platform import test |
| |
| |
| DATA_DIM = 5 |
| NUM_CLASSES = 2 |
| |
| |
| class KerasRegularizersTest(keras_parameterized.TestCase, |
| parameterized.TestCase): |
| |
| def create_model(self, kernel_regularizer=None, activity_regularizer=None): |
| model = keras.models.Sequential() |
| model.add(keras.layers.Dense(NUM_CLASSES, |
| kernel_regularizer=kernel_regularizer, |
| activity_regularizer=activity_regularizer, |
| input_shape=(DATA_DIM,))) |
| return model |
| |
| def get_data(self): |
| (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( |
| train_samples=10, |
| test_samples=10, |
| input_shape=(DATA_DIM,), |
| num_classes=NUM_CLASSES) |
| y_train = np_utils.to_categorical(y_train, NUM_CLASSES) |
| y_test = np_utils.to_categorical(y_test, NUM_CLASSES) |
| return (x_train, y_train), (x_test, y_test) |
| |
| def create_multi_input_model_from(self, layer1, layer2): |
| input_1 = keras.layers.Input(shape=(DATA_DIM,)) |
| input_2 = keras.layers.Input(shape=(DATA_DIM,)) |
| out1 = layer1(input_1) |
| out2 = layer2(input_2) |
| out = keras.layers.Average()([out1, out2]) |
| model = keras.models.Model([input_1, input_2], out) |
| model.add_loss(keras.backend.mean(out2)) |
| model.add_loss(math_ops.reduce_sum(input_1)) |
| return model |
| |
| @keras_parameterized.run_all_keras_modes |
| @parameterized.named_parameters([ |
| ('l1', regularizers.l1()), |
| ('l2', regularizers.l2()), |
| ('l1_l2', regularizers.l1_l2()), |
| ]) |
| def test_kernel_regularization(self, regularizer): |
| (x_train, y_train), _ = self.get_data() |
| model = self.create_model(kernel_regularizer=regularizer) |
| model.compile( |
| loss='categorical_crossentropy', |
| optimizer='sgd', |
| run_eagerly=testing_utils.should_run_eagerly()) |
| self.assertEqual(len(model.losses), 1) |
| model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) |
| |
| @keras_parameterized.run_all_keras_modes |
| @parameterized.named_parameters([ |
| ('l1', regularizers.l1()), |
| ('l2', regularizers.l2()), |
| ('l1_l2', regularizers.l1_l2()), |
| ('l2_zero', keras.regularizers.l2(0.)), |
| ]) |
| def test_activity_regularization(self, regularizer): |
| (x_train, y_train), _ = self.get_data() |
| model = self.create_model(activity_regularizer=regularizer) |
| model.compile( |
| loss='categorical_crossentropy', |
| optimizer='sgd', |
| run_eagerly=testing_utils.should_run_eagerly()) |
| self.assertEqual(len(model.losses), 1 if context.executing_eagerly() else 1) |
| model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) |
| |
| @keras_parameterized.run_all_keras_modes |
| @keras_parameterized.run_with_all_model_types |
| def test_zero_regularization(self): |
| # Verifies that training with zero regularization works. |
| x, y = np.ones((10, 10)), np.ones((10, 3)) |
| model = testing_utils.get_model_from_layers( |
| [keras.layers.Dense(3, kernel_regularizer=keras.regularizers.l2(0))], |
| input_shape=(10,)) |
| model.compile( |
| 'sgd', |
| 'mse', |
| run_eagerly=testing_utils.should_run_eagerly()) |
| model.fit(x, y, batch_size=5, epochs=1) |
| |
| def test_custom_regularizer_saving(self): |
| |
| def my_regularizer(weights): |
| return math_ops.reduce_sum(math_ops.abs(weights)) |
| |
| inputs = keras.Input((10,)) |
| outputs = keras.layers.Dense(1, kernel_regularizer=my_regularizer)(inputs) |
| model = keras.Model(inputs, outputs) |
| model2 = model.from_config( |
| model.get_config(), custom_objects={'my_regularizer': my_regularizer}) |
| self.assertEqual(model2.layers[1].kernel_regularizer, my_regularizer) |
| |
| @keras_parameterized.run_all_keras_modes |
| @parameterized.named_parameters([ |
| ('l1', regularizers.l1()), |
| ('l2', regularizers.l2()), |
| ('l1_l2', regularizers.l1_l2()), |
| ]) |
| def test_regularization_shared_layer(self, regularizer): |
| dense_layer = keras.layers.Dense( |
| NUM_CLASSES, |
| kernel_regularizer=regularizer, |
| activity_regularizer=regularizer) |
| model = self.create_multi_input_model_from(dense_layer, dense_layer) |
| model.compile( |
| loss='categorical_crossentropy', |
| optimizer='sgd', |
| run_eagerly=testing_utils.should_run_eagerly()) |
| self.assertLen(model.losses, 5) |
| |
| @keras_parameterized.run_all_keras_modes |
| @parameterized.named_parameters([ |
| ('l1', regularizers.l1()), |
| ('l2', regularizers.l2()), |
| ('l1_l2', regularizers.l1_l2()), |
| ]) |
| def test_regularization_shared_model(self, regularizer): |
| dense_layer = keras.layers.Dense( |
| NUM_CLASSES, |
| kernel_regularizer=regularizer, |
| activity_regularizer=regularizer) |
| |
| input_tensor = keras.layers.Input(shape=(DATA_DIM,)) |
| dummy_model = keras.models.Model(input_tensor, dense_layer(input_tensor)) |
| |
| model = self.create_multi_input_model_from(dummy_model, dummy_model) |
| model.compile( |
| loss='categorical_crossentropy', |
| optimizer='sgd', |
| run_eagerly=testing_utils.should_run_eagerly()) |
| self.assertLen(model.losses, 6) |
| |
| @keras_parameterized.run_all_keras_modes |
| @parameterized.named_parameters([ |
| ('l1', regularizers.l1()), |
| ('l2', regularizers.l2()), |
| ('l1_l2', regularizers.l1_l2()), |
| ]) |
| def test_regularization_shared_layer_in_different_models(self, regularizer): |
| shared_dense = keras.layers.Dense( |
| NUM_CLASSES, |
| kernel_regularizer=regularizer, |
| activity_regularizer=regularizer) |
| models = [] |
| for _ in range(2): |
| input_tensor = keras.layers.Input(shape=(DATA_DIM,)) |
| unshared_dense = keras.layers.Dense( |
| NUM_CLASSES, kernel_regularizer=regularizer) |
| out = unshared_dense(shared_dense(input_tensor)) |
| models.append(keras.models.Model(input_tensor, out)) |
| |
| model = self.create_multi_input_model_from( |
| layer1=models[0], layer2=models[1]) |
| model.compile( |
| loss='categorical_crossentropy', |
| optimizer='sgd', |
| run_eagerly=testing_utils.should_run_eagerly()) |
| |
| # We expect to see 9 losses on the model: |
| # - 2 from the 2 add_loss calls on the outer model. |
| # - 3 from the weight regularizers on the shared_dense layer, unshared_dense |
| # in inner model 1, unshared_dense in inner model 2. |
| # - 4 from activity regularizers on the shared_dense layer. |
| self.assertLen(model.losses, 9) |
| |
| def test_deserialization_error(self): |
| with self.assertRaisesRegex(ValueError, 'Could not interpret regularizer'): |
| keras.regularizers.get(0) |
| |
| |
| if __name__ == '__main__': |
| test.main() |