blob: e5f04fa2a627139fc3c96b54ac824cced6028b7d [file] [log] [blame]
/**************************************************************************
*
* tlan.c -- Etherboot device driver for the Texas Instruments ThunderLAN
* Written 2003-2003 by Timothy Legge <tlegge@rogers.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Portions of this code based on:
* lan.c: Linux ThunderLan Driver:
*
* by James Banks
*
* (C) 1997-1998 Caldera, Inc.
* (C) 1998 James Banks
* (C) 1999-2001 Torben Mathiasen
* (C) 2002 Samuel Chessman
*
* REVISION HISTORY:
* ================
* v1.0 07-08-2003 timlegge Initial not quite working version
* v1.1 07-27-2003 timlegge Sync 5.0 and 5.1 versions
* v1.2 08-19-2003 timlegge Implement Multicast Support
* v1.3 08-23-2003 timlegge Fix the transmit Function
* v1.4 01-17-2004 timlegge Initial driver output cleanup
*
* Indent Options: indent -kr -i8
***************************************************************************/
FILE_LICENCE ( GPL2_OR_LATER );
#include "etherboot.h"
#include "nic.h"
#include <gpxe/pci.h>
#include <gpxe/ethernet.h>
#include <mii.h>
#include "tlan.h"
#define drv_version "v1.4"
#define drv_date "01-17-2004"
/* NIC specific static variables go here */
#define HZ 100
#define TX_TIME_OUT (6*HZ)
/* Condensed operations for readability. */
#define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr))
#define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr))
static void TLan_ResetLists(struct nic *nic __unused);
static void TLan_ResetAdapter(struct nic *nic __unused);
static void TLan_FinishReset(struct nic *nic __unused);
static void TLan_EeSendStart(u16);
static int TLan_EeSendByte(u16, u8, int);
static void TLan_EeReceiveByte(u16, u8 *, int);
static int TLan_EeReadByte(u16 io_base, u8, u8 *);
static void TLan_PhyDetect(struct nic *nic);
static void TLan_PhyPowerDown(struct nic *nic);
static void TLan_PhyPowerUp(struct nic *nic);
static void TLan_SetMac(struct nic *nic __unused, int areg, unsigned char *mac);
static void TLan_PhyReset(struct nic *nic);
static void TLan_PhyStartLink(struct nic *nic);
static void TLan_PhyFinishAutoNeg(struct nic *nic);
#ifdef MONITOR
static void TLan_PhyMonitor(struct nic *nic);
#endif
static void refill_rx(struct nic *nic __unused);
static int TLan_MiiReadReg(struct nic *nic __unused, u16, u16, u16 *);
static void TLan_MiiSendData(u16, u32, unsigned);
static void TLan_MiiSync(u16);
static void TLan_MiiWriteReg(struct nic *nic __unused, u16, u16, u16);
static const char *media[] = {
"10BaseT-HD ", "10BaseT-FD ", "100baseTx-HD ",
"100baseTx-FD", "100baseT4", 0
};
/* This much match tlan_pci_tbl[]! */
enum tlan_nics {
NETEL10 = 0, NETEL100 = 1, NETFLEX3I = 2, THUNDER = 3, NETFLEX3B =
4, NETEL100PI = 5,
NETEL100D = 6, NETEL100I = 7, OC2183 = 8, OC2325 = 9, OC2326 =
10, NETELLIGENT_10_100_WS_5100 = 11,
NETELLIGENT_10_T2 = 12
};
struct pci_id_info {
const char *name;
int nic_id;
struct match_info {
u32 pci, pci_mask, subsystem, subsystem_mask;
u32 revision, revision_mask; /* Only 8 bits. */
} id;
u32 flags;
u16 addrOfs; /* Address Offset */
};
static const struct pci_id_info tlan_pci_tbl[] = {
{"Compaq Netelligent 10 T PCI UTP", NETEL10,
{0xae340e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_ACTIVITY_LED, 0x83},
{"Compaq Netelligent 10/100 TX PCI UTP", NETEL100,
{0xae320e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_ACTIVITY_LED, 0x83},
{"Compaq Integrated NetFlex-3/P", NETFLEX3I,
{0xae350e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_NONE, 0x83},
{"Compaq NetFlex-3/P", THUNDER,
{0xf1300e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_UNMANAGED_PHY | TLAN_ADAPTER_BIT_RATE_PHY, 0x83},
{"Compaq NetFlex-3/P", NETFLEX3B,
{0xf1500e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_NONE, 0x83},
{"Compaq Netelligent Integrated 10/100 TX UTP", NETEL100PI,
{0xae430e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_ACTIVITY_LED, 0x83},
{"Compaq Netelligent Dual 10/100 TX PCI UTP", NETEL100D,
{0xae400e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_NONE, 0x83},
{"Compaq Netelligent 10/100 TX Embedded UTP", NETEL100I,
{0xb0110e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_NONE, 0x83},
{"Olicom OC-2183/2185", OC2183,
{0x0013108d, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_USE_INTERN_10, 0x83},
{"Olicom OC-2325", OC2325,
{0x0012108d, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_UNMANAGED_PHY, 0xF8},
{"Olicom OC-2326", OC2326,
{0x0014108d, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_USE_INTERN_10, 0xF8},
{"Compaq Netelligent 10/100 TX UTP", NETELLIGENT_10_100_WS_5100,
{0xb0300e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_ACTIVITY_LED, 0x83},
{"Compaq Netelligent 10 T/2 PCI UTP/Coax", NETELLIGENT_10_T2,
{0xb0120e11, 0xffffffff, 0, 0, 0, 0},
TLAN_ADAPTER_NONE, 0x83},
{"Compaq NetFlex-3/E", 0, /* EISA card */
{0, 0, 0, 0, 0, 0},
TLAN_ADAPTER_ACTIVITY_LED | TLAN_ADAPTER_UNMANAGED_PHY |
TLAN_ADAPTER_BIT_RATE_PHY, 0x83},
{"Compaq NetFlex-3/E", 0, /* EISA card */
{0, 0, 0, 0, 0, 0},
TLAN_ADAPTER_ACTIVITY_LED, 0x83},
{0, 0,
{0, 0, 0, 0, 0, 0},
0, 0},
};
struct TLanList {
u32 forward;
u16 cStat;
u16 frameSize;
struct {
u32 count;
u32 address;
} buffer[TLAN_BUFFERS_PER_LIST];
};
struct {
struct TLanList tx_ring[TLAN_NUM_TX_LISTS];
unsigned char txb[TLAN_MAX_FRAME_SIZE * TLAN_NUM_TX_LISTS];
struct TLanList rx_ring[TLAN_NUM_RX_LISTS];
unsigned char rxb[TLAN_MAX_FRAME_SIZE * TLAN_NUM_RX_LISTS];
} tlan_buffers __shared;
#define tx_ring tlan_buffers.tx_ring
#define txb tlan_buffers.txb
#define rx_ring tlan_buffers.rx_ring
#define rxb tlan_buffers.rxb
typedef u8 TLanBuffer[TLAN_MAX_FRAME_SIZE];
static int chip_idx;
/*****************************************************************
* TLAN Private Information Structure
*
****************************************************************/
static struct tlan_private {
unsigned short vendor_id; /* PCI Vendor code */
unsigned short dev_id; /* PCI Device code */
const char *nic_name;
unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indicies */
unsigned rx_buf_sz; /* Based on mtu + Slack */
struct TLanList *txList;
u32 txHead;
u32 txInProgress;
u32 txTail;
int eoc;
u32 phyOnline;
u32 aui;
u32 duplex;
u32 phy[2];
u32 phyNum;
u32 speed;
u8 tlanRev;
u8 tlanFullDuplex;
u8 link;
u8 neg_be_verbose;
} TLanPrivateInfo;
static struct tlan_private *priv;
static u32 BASE;
/***************************************************************
* TLan_ResetLists
*
* Returns:
* Nothing
* Parms:
* dev The device structure with the list
* stuctures to be reset.
*
* This routine sets the variables associated with managing
* the TLAN lists to their initial values.
*
**************************************************************/
static void TLan_ResetLists(struct nic *nic __unused)
{
int i;
struct TLanList *list;
priv->txHead = 0;
priv->txTail = 0;
for (i = 0; i < TLAN_NUM_TX_LISTS; i++) {
list = &tx_ring[i];
list->cStat = TLAN_CSTAT_UNUSED;
list->buffer[0].address = virt_to_bus(txb +
(i * TLAN_MAX_FRAME_SIZE));
list->buffer[2].count = 0;
list->buffer[2].address = 0;
list->buffer[9].address = 0;
}
priv->cur_rx = 0;
priv->rx_buf_sz = (TLAN_MAX_FRAME_SIZE);
// priv->rx_head_desc = &rx_ring[0];
/* Initialize all the Rx descriptors */
for (i = 0; i < TLAN_NUM_RX_LISTS; i++) {
rx_ring[i].forward = virt_to_le32desc(&rx_ring[i + 1]);
rx_ring[i].cStat = TLAN_CSTAT_READY;
rx_ring[i].frameSize = TLAN_MAX_FRAME_SIZE;
rx_ring[i].buffer[0].count =
TLAN_MAX_FRAME_SIZE | TLAN_LAST_BUFFER;
rx_ring[i].buffer[0].address =
virt_to_le32desc(&rxb[i * TLAN_MAX_FRAME_SIZE]);
rx_ring[i].buffer[1].count = 0;
rx_ring[i].buffer[1].address = 0;
}
/* Mark the last entry as wrapping the ring */
rx_ring[i - 1].forward = virt_to_le32desc(&rx_ring[0]);
priv->dirty_rx = (unsigned int) (i - TLAN_NUM_RX_LISTS);
} /* TLan_ResetLists */
/***************************************************************
* TLan_Reset
*
* Returns:
* 0
* Parms:
* dev Pointer to device structure of adapter
* to be reset.
*
* This function resets the adapter and it's physical
* device. See Chap. 3, pp. 9-10 of the "ThunderLAN
* Programmer's Guide" for details. The routine tries to
* implement what is detailed there, though adjustments
* have been made.
*
**************************************************************/
void TLan_ResetAdapter(struct nic *nic __unused)
{
int i;
u32 addr;
u32 data;
u8 data8;
priv->tlanFullDuplex = FALSE;
priv->phyOnline = 0;
/* 1. Assert reset bit. */
data = inl(BASE + TLAN_HOST_CMD);
data |= TLAN_HC_AD_RST;
outl(data, BASE + TLAN_HOST_CMD);
udelay(1000);
/* 2. Turn off interrupts. ( Probably isn't necessary ) */
data = inl(BASE + TLAN_HOST_CMD);
data |= TLAN_HC_INT_OFF;
outl(data, BASE + TLAN_HOST_CMD);
/* 3. Clear AREGs and HASHs. */
for (i = TLAN_AREG_0; i <= TLAN_HASH_2; i += 4) {
TLan_DioWrite32(BASE, (u16) i, 0);
}
/* 4. Setup NetConfig register. */
data =
TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN;
TLan_DioWrite16(BASE, TLAN_NET_CONFIG, (u16) data);
/* 5. Load Ld_Tmr and Ld_Thr in HOST_CMD. */
outl(TLAN_HC_LD_TMR | 0x3f, BASE + TLAN_HOST_CMD);
outl(TLAN_HC_LD_THR | 0x0, BASE + TLAN_HOST_CMD);
/* 6. Unreset the MII by setting NMRST (in NetSio) to 1. */
outw(TLAN_NET_SIO, BASE + TLAN_DIO_ADR);
addr = BASE + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_SetBit(TLAN_NET_SIO_NMRST, addr);
/* 7. Setup the remaining registers. */
if (priv->tlanRev >= 0x30) {
data8 = TLAN_ID_TX_EOC | TLAN_ID_RX_EOC;
TLan_DioWrite8(BASE, TLAN_INT_DIS, data8);
}
TLan_PhyDetect(nic);
data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN;
if (tlan_pci_tbl[chip_idx].flags & TLAN_ADAPTER_BIT_RATE_PHY) {
data |= TLAN_NET_CFG_BIT;
if (priv->aui == 1) {
TLan_DioWrite8(BASE, TLAN_ACOMMIT, 0x0a);
} else if (priv->duplex == TLAN_DUPLEX_FULL) {
TLan_DioWrite8(BASE, TLAN_ACOMMIT, 0x00);
priv->tlanFullDuplex = TRUE;
} else {
TLan_DioWrite8(BASE, TLAN_ACOMMIT, 0x08);
}
}
if (priv->phyNum == 0) {
data |= TLAN_NET_CFG_PHY_EN;
}
TLan_DioWrite16(BASE, TLAN_NET_CONFIG, (u16) data);
if (tlan_pci_tbl[chip_idx].flags & TLAN_ADAPTER_UNMANAGED_PHY) {
TLan_FinishReset(nic);
} else {
TLan_PhyPowerDown(nic);
}
} /* TLan_ResetAdapter */
void TLan_FinishReset(struct nic *nic)
{
u8 data;
u32 phy;
u8 sio;
u16 status;
u16 partner;
u16 tlphy_ctl;
u16 tlphy_par;
u16 tlphy_id1, tlphy_id2;
int i;
phy = priv->phy[priv->phyNum];
data = TLAN_NET_CMD_NRESET | TLAN_NET_CMD_NWRAP;
if (priv->tlanFullDuplex) {
data |= TLAN_NET_CMD_DUPLEX;
}
TLan_DioWrite8(BASE, TLAN_NET_CMD, data);
data = TLAN_NET_MASK_MASK4 | TLAN_NET_MASK_MASK5;
if (priv->phyNum == 0) {
data |= TLAN_NET_MASK_MASK7;
}
TLan_DioWrite8(BASE, TLAN_NET_MASK, data);
TLan_DioWrite16(BASE, TLAN_MAX_RX, ((1536) + 7) & ~7);
TLan_MiiReadReg(nic, phy, MII_PHYSID1, &tlphy_id1);
TLan_MiiReadReg(nic, phy, MII_PHYSID2, &tlphy_id2);
if ((tlan_pci_tbl[chip_idx].flags & TLAN_ADAPTER_UNMANAGED_PHY)
|| (priv->aui)) {
status = BMSR_LSTATUS;
DBG ( "TLAN: %s: Link forced.\n", priv->nic_name );
} else {
TLan_MiiReadReg(nic, phy, MII_BMSR, &status);
udelay(1000);
TLan_MiiReadReg(nic, phy, MII_BMSR, &status);
if ((status & BMSR_LSTATUS) && /* We only support link info on Nat.Sem. PHY's */
(tlphy_id1 == NAT_SEM_ID1)
&& (tlphy_id2 == NAT_SEM_ID2)) {
TLan_MiiReadReg(nic, phy, MII_LPA, &partner);
TLan_MiiReadReg(nic, phy, TLAN_TLPHY_PAR,
&tlphy_par);
DBG ( "TLAN: %s: Link active with ",
priv->nic_name );
if (!(tlphy_par & TLAN_PHY_AN_EN_STAT)) {
DBG ( "forced 10%sMbps %s-Duplex\n",
tlphy_par & TLAN_PHY_SPEED_100 ? ""
: "0",
tlphy_par & TLAN_PHY_DUPLEX_FULL ?
"Full" : "Half" );
} else {
DBG
( "AutoNegotiation enabled, at 10%sMbps %s-Duplex\n",
tlphy_par & TLAN_PHY_SPEED_100 ? "" :
"0",
tlphy_par & TLAN_PHY_DUPLEX_FULL ?
"Full" : "Half" );
DBG ( "TLAN: Partner capability: " );
for (i = 5; i <= 10; i++)
if (partner & (1 << i)) {
DBG ( "%s", media[i - 5] );
}
DBG ( "\n" );
}
TLan_DioWrite8(BASE, TLAN_LED_REG, TLAN_LED_LINK);
#ifdef MONITOR
/* We have link beat..for now anyway */
priv->link = 1;
/*Enabling link beat monitoring */
/* TLan_SetTimer( nic, (10*HZ), TLAN_TIMER_LINK_BEAT ); */
mdelay(10000);
TLan_PhyMonitor(nic);
#endif
} else if (status & BMSR_LSTATUS) {
DBG ( "TLAN: %s: Link active\n", priv->nic_name );
TLan_DioWrite8(BASE, TLAN_LED_REG, TLAN_LED_LINK);
}
}
if (priv->phyNum == 0) {
TLan_MiiReadReg(nic, phy, TLAN_TLPHY_CTL, &tlphy_ctl);
tlphy_ctl |= TLAN_TC_INTEN;
TLan_MiiWriteReg(nic, phy, TLAN_TLPHY_CTL, tlphy_ctl);
sio = TLan_DioRead8(BASE, TLAN_NET_SIO);
sio |= TLAN_NET_SIO_MINTEN;
TLan_DioWrite8(BASE, TLAN_NET_SIO, sio);
}
if (status & BMSR_LSTATUS) {
TLan_SetMac(nic, 0, nic->node_addr);
priv->phyOnline = 1;
outb((TLAN_HC_INT_ON >> 8), BASE + TLAN_HOST_CMD + 1);
outl(virt_to_bus(&rx_ring), BASE + TLAN_CH_PARM);
outl(TLAN_HC_GO | TLAN_HC_RT, BASE + TLAN_HOST_CMD);
} else {
DBG
( "TLAN: %s: Link inactive, will retry in 10 secs...\n",
priv->nic_name );
/* TLan_SetTimer( nic, (10*HZ), TLAN_TIMER_FINISH_RESET ); */
mdelay(10000);
TLan_FinishReset(nic);
return;
}
} /* TLan_FinishReset */
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int tlan_poll(struct nic *nic, int retrieve)
{
/* return true if there's an ethernet packet ready to read */
/* nic->packet should contain data on return */
/* nic->packetlen should contain length of data */
u32 framesize;
u32 host_cmd = 0;
u32 ack = 1;
int eoc = 0;
int entry = priv->cur_rx % TLAN_NUM_RX_LISTS;
u16 tmpCStat = le32_to_cpu(rx_ring[entry].cStat);
u16 host_int = inw(BASE + TLAN_HOST_INT);
if ((tmpCStat & TLAN_CSTAT_FRM_CMP) && !retrieve)
return 1;
outw(host_int, BASE + TLAN_HOST_INT);
if (!(tmpCStat & TLAN_CSTAT_FRM_CMP))
return 0;
/* printf("PI-1: 0x%hX\n", host_int); */
if (tmpCStat & TLAN_CSTAT_EOC)
eoc = 1;
framesize = rx_ring[entry].frameSize;
nic->packetlen = framesize;
DBG ( ".%d.", (unsigned int) framesize );
memcpy(nic->packet, rxb +
(priv->cur_rx * TLAN_MAX_FRAME_SIZE), nic->packetlen);
rx_ring[entry].cStat = 0;
DBG ( "%d", entry );
entry = (entry + 1) % TLAN_NUM_RX_LISTS;
priv->cur_rx = entry;
if (eoc) {
if ((rx_ring[entry].cStat & TLAN_CSTAT_READY) ==
TLAN_CSTAT_READY) {
ack |= TLAN_HC_GO | TLAN_HC_RT;
host_cmd = TLAN_HC_ACK | ack | 0x001C0000;
outl(host_cmd, BASE + TLAN_HOST_CMD);
}
} else {
host_cmd = TLAN_HC_ACK | ack | (0x000C0000);
outl(host_cmd, BASE + TLAN_HOST_CMD);
DBG ( "AC: 0x%hX\n", inw(BASE + TLAN_CH_PARM) );
DBG ( "PI-2: 0x%hX\n", inw(BASE + TLAN_HOST_INT) );
}
refill_rx(nic);
return (1); /* initially as this is called to flush the input */
}
static void refill_rx(struct nic *nic __unused)
{
int entry = 0;
for (;
(priv->cur_rx - priv->dirty_rx +
TLAN_NUM_RX_LISTS) % TLAN_NUM_RX_LISTS > 0;
priv->dirty_rx = (priv->dirty_rx + 1) % TLAN_NUM_RX_LISTS) {
entry = priv->dirty_rx % TLAN_NUM_TX_LISTS;
rx_ring[entry].frameSize = TLAN_MAX_FRAME_SIZE;
rx_ring[entry].cStat = TLAN_CSTAT_READY;
}
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void tlan_transmit(struct nic *nic, const char *d, /* Destination */
unsigned int t, /* Type */
unsigned int s, /* size */
const char *p)
{ /* Packet */
u16 nstype;
u32 to;
struct TLanList *tail_list;
struct TLanList *head_list;
u8 *tail_buffer;
u32 ack = 0;
u32 host_cmd;
int eoc = 0;
u16 tmpCStat;
u16 host_int = inw(BASE + TLAN_HOST_INT);
int entry = 0;
DBG ( "INT0-0x%hX\n", host_int );
if (!priv->phyOnline) {
printf("TRANSMIT: %s PHY is not ready\n", priv->nic_name);
return;
}
tail_list = priv->txList + priv->txTail;
if (tail_list->cStat != TLAN_CSTAT_UNUSED) {
printf("TRANSMIT: %s is busy (Head=%p Tail=%x)\n",
priv->nic_name, priv->txList, (unsigned int) priv->txTail);
tx_ring[entry].cStat = TLAN_CSTAT_UNUSED;
// priv->txBusyCount++;
return;
}
tail_list->forward = 0;
tail_buffer = txb + (priv->txTail * TLAN_MAX_FRAME_SIZE);
/* send the packet to destination */
memcpy(tail_buffer, d, ETH_ALEN);
memcpy(tail_buffer + ETH_ALEN, nic->node_addr, ETH_ALEN);
nstype = htons((u16) t);
memcpy(tail_buffer + 2 * ETH_ALEN, (u8 *) & nstype, 2);
memcpy(tail_buffer + ETH_HLEN, p, s);
s += ETH_HLEN;
s &= 0x0FFF;
while (s < ETH_ZLEN)
tail_buffer[s++] = '\0';
/*=====================================================*/
/* Receive
* 0000 0000 0001 1100
* 0000 0000 0000 1100
* 0000 0000 0000 0011 = 0x0003
*
* 0000 0000 0000 0000 0000 0000 0000 0011
* 0000 0000 0000 1100 0000 0000 0000 0000 = 0x000C0000
*
* Transmit
* 0000 0000 0001 1100
* 0000 0000 0000 0100
* 0000 0000 0000 0001 = 0x0001
*
* 0000 0000 0000 0000 0000 0000 0000 0001
* 0000 0000 0000 0100 0000 0000 0000 0000 = 0x00040000
* */
/* Setup the transmit descriptor */
tail_list->frameSize = (u16) s;
tail_list->buffer[0].count = TLAN_LAST_BUFFER | (u32) s;
tail_list->buffer[1].count = 0;
tail_list->buffer[1].address = 0;
tail_list->cStat = TLAN_CSTAT_READY;
DBG ( "INT1-0x%hX\n", inw(BASE + TLAN_HOST_INT) );
if (!priv->txInProgress) {
priv->txInProgress = 1;
outl(virt_to_le32desc(tail_list), BASE + TLAN_CH_PARM);
outl(TLAN_HC_GO, BASE + TLAN_HOST_CMD);
} else {
if (priv->txTail == 0) {
DBG ( "Out buffer\n" );
(priv->txList + (TLAN_NUM_TX_LISTS - 1))->forward =
virt_to_le32desc(tail_list);
} else {
DBG ( "Fix this \n" );
(priv->txList + (priv->txTail - 1))->forward =
virt_to_le32desc(tail_list);
}
}
CIRC_INC(priv->txTail, TLAN_NUM_TX_LISTS);
DBG ( "INT2-0x%hX\n", inw(BASE + TLAN_HOST_INT) );
to = currticks() + TX_TIME_OUT;
while ((tail_list->cStat == TLAN_CSTAT_READY) && currticks() < to);
head_list = priv->txList + priv->txHead;
while (((tmpCStat = head_list->cStat) & TLAN_CSTAT_FRM_CMP)
&& (ack < 255)) {
ack++;
if(tmpCStat & TLAN_CSTAT_EOC)
eoc =1;
head_list->cStat = TLAN_CSTAT_UNUSED;
CIRC_INC(priv->txHead, TLAN_NUM_TX_LISTS);
head_list = priv->txList + priv->txHead;
}
if(!ack)
printf("Incomplete TX Frame\n");
if(eoc) {
head_list = priv->txList + priv->txHead;
if ((head_list->cStat & TLAN_CSTAT_READY) == TLAN_CSTAT_READY) {
outl(virt_to_le32desc(head_list), BASE + TLAN_CH_PARM);
ack |= TLAN_HC_GO;
} else {
priv->txInProgress = 0;
}
}
if(ack) {
host_cmd = TLAN_HC_ACK | ack;
outl(host_cmd, BASE + TLAN_HOST_CMD);
}
if(priv->tlanRev < 0x30 ) {
ack = 1;
head_list = priv->txList + priv->txHead;
if ((head_list->cStat & TLAN_CSTAT_READY) == TLAN_CSTAT_READY) {
outl(virt_to_le32desc(head_list), BASE + TLAN_CH_PARM);
ack |= TLAN_HC_GO;
} else {
priv->txInProgress = 0;
}
host_cmd = TLAN_HC_ACK | ack | 0x00140000;
outl(host_cmd, BASE + TLAN_HOST_CMD);
}
if (currticks() >= to) {
printf("TX Time Out");
}
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void tlan_disable ( struct nic *nic __unused ) {
/* put the card in its initial state */
/* This function serves 3 purposes.
* This disables DMA and interrupts so we don't receive
* unexpected packets or interrupts from the card after
* etherboot has finished.
* This frees resources so etherboot may use
* this driver on another interface
* This allows etherboot to reinitialize the interface
* if something is something goes wrong.
*
*/
outl(TLAN_HC_AD_RST, BASE + TLAN_HOST_CMD);
}
/**************************************************************************
IRQ - Enable, Disable, or Force interrupts
***************************************************************************/
static void tlan_irq(struct nic *nic __unused, irq_action_t action __unused)
{
switch ( action ) {
case DISABLE :
break;
case ENABLE :
break;
case FORCE :
break;
}
}
static struct nic_operations tlan_operations = {
.connect = dummy_connect,
.poll = tlan_poll,
.transmit = tlan_transmit,
.irq = tlan_irq,
};
static void TLan_SetMulticastList(struct nic *nic) {
int i;
u8 tmp;
/* !IFF_PROMISC */
tmp = TLan_DioRead8(BASE, TLAN_NET_CMD);
TLan_DioWrite8(BASE, TLAN_NET_CMD, tmp & ~TLAN_NET_CMD_CAF);
/* IFF_ALLMULTI */
for(i = 0; i< 3; i++)
TLan_SetMac(nic, i + 1, NULL);
TLan_DioWrite32(BASE, TLAN_HASH_1, 0xFFFFFFFF);
TLan_DioWrite32(BASE, TLAN_HASH_2, 0xFFFFFFFF);
}
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/
#define board_found 1
#define valid_link 0
static int tlan_probe ( struct nic *nic, struct pci_device *pci ) {
u16 data = 0;
int err;
int i;
if (pci->ioaddr == 0)
return 0;
nic->irqno = 0;
nic->ioaddr = pci->ioaddr;
BASE = pci->ioaddr;
/* Set nic as PCI bus master */
adjust_pci_device(pci);
/* Point to private storage */
priv = &TLanPrivateInfo;
/* Figure out which chip we're dealing with */
i = 0;
chip_idx = -1;
while (tlan_pci_tbl[i].name) {
if ((((u32) pci->device << 16) | pci->vendor) ==
(tlan_pci_tbl[i].id.pci & 0xffffffff)) {
chip_idx = i;
break;
}
i++;
}
priv->vendor_id = pci->vendor;
priv->dev_id = pci->device;
priv->nic_name = pci->driver_name;
priv->eoc = 0;
err = 0;
for (i = 0; i < 6; i++)
err |= TLan_EeReadByte(BASE,
(u8) tlan_pci_tbl[chip_idx].
addrOfs + i,
(u8 *) & nic->node_addr[i]);
if (err) {
printf ( "TLAN: %s: Error reading MAC from eeprom: %d\n",
pci->driver_name, err);
} else {
DBG ( "%s: %s at ioaddr %#lX, ",
pci->driver_name, eth_ntoa ( nic->node_addr ), pci->ioaddr );
}
priv->tlanRev = TLan_DioRead8(BASE, TLAN_DEF_REVISION);
printf("revision: 0x%hX\n", priv->tlanRev);
TLan_ResetLists(nic);
TLan_ResetAdapter(nic);
data = inl(BASE + TLAN_HOST_CMD);
data |= TLAN_HC_INT_OFF;
outw(data, BASE + TLAN_HOST_CMD);
TLan_SetMulticastList(nic);
udelay(100);
priv->txList = tx_ring;
/* if (board_found && valid_link)
{*/
/* point to NIC specific routines */
nic->nic_op = &tlan_operations;
return 1;
}
/*****************************************************************************
******************************************************************************
ThunderLAN Driver Eeprom routines
The Compaq Netelligent 10 and 10/100 cards use a Microchip 24C02A
EEPROM. These functions are based on information in Microchip's
data sheet. I don't know how well this functions will work with
other EEPROMs.
******************************************************************************
*****************************************************************************/
/***************************************************************
* TLan_EeSendStart
*
* Returns:
* Nothing
* Parms:
* io_base The IO port base address for the
* TLAN device with the EEPROM to
* use.
*
* This function sends a start cycle to an EEPROM attached
* to a TLAN chip.
*
**************************************************************/
void TLan_EeSendStart(u16 io_base)
{
u16 sio;
outw(TLAN_NET_SIO, io_base + TLAN_DIO_ADR);
sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_SetBit(TLAN_NET_SIO_ECLOK, sio);
TLan_SetBit(TLAN_NET_SIO_EDATA, sio);
TLan_SetBit(TLAN_NET_SIO_ETXEN, sio);
TLan_ClearBit(TLAN_NET_SIO_EDATA, sio);
TLan_ClearBit(TLAN_NET_SIO_ECLOK, sio);
} /* TLan_EeSendStart */
/***************************************************************
* TLan_EeSendByte
*
* Returns:
* If the correct ack was received, 0, otherwise 1
* Parms: io_base The IO port base address for the
* TLAN device with the EEPROM to
* use.
* data The 8 bits of information to
* send to the EEPROM.
* stop If TLAN_EEPROM_STOP is passed, a
* stop cycle is sent after the
* byte is sent after the ack is
* read.
*
* This function sends a byte on the serial EEPROM line,
* driving the clock to send each bit. The function then
* reverses transmission direction and reads an acknowledge
* bit.
*
**************************************************************/
int TLan_EeSendByte(u16 io_base, u8 data, int stop)
{
int err;
u8 place;
u16 sio;
outw(TLAN_NET_SIO, io_base + TLAN_DIO_ADR);
sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO;
/* Assume clock is low, tx is enabled; */
for (place = 0x80; place != 0; place >>= 1) {
if (place & data)
TLan_SetBit(TLAN_NET_SIO_EDATA, sio);
else
TLan_ClearBit(TLAN_NET_SIO_EDATA, sio);
TLan_SetBit(TLAN_NET_SIO_ECLOK, sio);
TLan_ClearBit(TLAN_NET_SIO_ECLOK, sio);
}
TLan_ClearBit(TLAN_NET_SIO_ETXEN, sio);
TLan_SetBit(TLAN_NET_SIO_ECLOK, sio);
err = TLan_GetBit(TLAN_NET_SIO_EDATA, sio);
TLan_ClearBit(TLAN_NET_SIO_ECLOK, sio);
TLan_SetBit(TLAN_NET_SIO_ETXEN, sio);
if ((!err) && stop) {
TLan_ClearBit(TLAN_NET_SIO_EDATA, sio); /* STOP, raise data while clock is high */
TLan_SetBit(TLAN_NET_SIO_ECLOK, sio);
TLan_SetBit(TLAN_NET_SIO_EDATA, sio);
}
return (err);
} /* TLan_EeSendByte */
/***************************************************************
* TLan_EeReceiveByte
*
* Returns:
* Nothing
* Parms:
* io_base The IO port base address for the
* TLAN device with the EEPROM to
* use.
* data An address to a char to hold the
* data sent from the EEPROM.
* stop If TLAN_EEPROM_STOP is passed, a
* stop cycle is sent after the
* byte is received, and no ack is
* sent.
*
* This function receives 8 bits of data from the EEPROM
* over the serial link. It then sends and ack bit, or no
* ack and a stop bit. This function is used to retrieve
* data after the address of a byte in the EEPROM has been
* sent.
*
**************************************************************/
void TLan_EeReceiveByte(u16 io_base, u8 * data, int stop)
{
u8 place;
u16 sio;
outw(TLAN_NET_SIO, io_base + TLAN_DIO_ADR);
sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO;
*data = 0;
/* Assume clock is low, tx is enabled; */
TLan_ClearBit(TLAN_NET_SIO_ETXEN, sio);
for (place = 0x80; place; place >>= 1) {
TLan_SetBit(TLAN_NET_SIO_ECLOK, sio);
if (TLan_GetBit(TLAN_NET_SIO_EDATA, sio))
*data |= place;
TLan_ClearBit(TLAN_NET_SIO_ECLOK, sio);
}
TLan_SetBit(TLAN_NET_SIO_ETXEN, sio);
if (!stop) {
TLan_ClearBit(TLAN_NET_SIO_EDATA, sio); /* Ack = 0 */
TLan_SetBit(TLAN_NET_SIO_ECLOK, sio);
TLan_ClearBit(TLAN_NET_SIO_ECLOK, sio);
} else {
TLan_SetBit(TLAN_NET_SIO_EDATA, sio); /* No ack = 1 (?) */
TLan_SetBit(TLAN_NET_SIO_ECLOK, sio);
TLan_ClearBit(TLAN_NET_SIO_ECLOK, sio);
TLan_ClearBit(TLAN_NET_SIO_EDATA, sio); /* STOP, raise data while clock is high */
TLan_SetBit(TLAN_NET_SIO_ECLOK, sio);
TLan_SetBit(TLAN_NET_SIO_EDATA, sio);
}
} /* TLan_EeReceiveByte */
/***************************************************************
* TLan_EeReadByte
*
* Returns:
* No error = 0, else, the stage at which the error
* occurred.
* Parms:
* io_base The IO port base address for the
* TLAN device with the EEPROM to
* use.
* ee_addr The address of the byte in the
* EEPROM whose contents are to be
* retrieved.
* data An address to a char to hold the
* data obtained from the EEPROM.
*
* This function reads a byte of information from an byte
* cell in the EEPROM.
*
**************************************************************/
int TLan_EeReadByte(u16 io_base, u8 ee_addr, u8 * data)
{
int err;
int ret = 0;
TLan_EeSendStart(io_base);
err = TLan_EeSendByte(io_base, 0xA0, TLAN_EEPROM_ACK);
if (err) {
ret = 1;
goto fail;
}
err = TLan_EeSendByte(io_base, ee_addr, TLAN_EEPROM_ACK);
if (err) {
ret = 2;
goto fail;
}
TLan_EeSendStart(io_base);
err = TLan_EeSendByte(io_base, 0xA1, TLAN_EEPROM_ACK);
if (err) {
ret = 3;
goto fail;
}
TLan_EeReceiveByte(io_base, data, TLAN_EEPROM_STOP);
fail:
return ret;
} /* TLan_EeReadByte */
/*****************************************************************************
******************************************************************************
ThunderLAN Driver MII Routines
These routines are based on the information in Chap. 2 of the
"ThunderLAN Programmer's Guide", pp. 15-24.
******************************************************************************
*****************************************************************************/
/***************************************************************
* TLan_MiiReadReg
*
* Returns:
* 0 if ack received ok
* 1 otherwise.
*
* Parms:
* dev The device structure containing
* The io address and interrupt count
* for this device.
* phy The address of the PHY to be queried.
* reg The register whose contents are to be
* retreived.
* val A pointer to a variable to store the
* retrieved value.
*
* This function uses the TLAN's MII bus to retreive the contents
* of a given register on a PHY. It sends the appropriate info
* and then reads the 16-bit register value from the MII bus via
* the TLAN SIO register.
*
**************************************************************/
int TLan_MiiReadReg(struct nic *nic __unused, u16 phy, u16 reg, u16 * val)
{
u8 nack;
u16 sio, tmp;
u32 i;
int err;
int minten;
err = FALSE;
outw(TLAN_NET_SIO, BASE + TLAN_DIO_ADR);
sio = BASE + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_MiiSync(BASE);
minten = TLan_GetBit(TLAN_NET_SIO_MINTEN, sio);
if (minten)
TLan_ClearBit(TLAN_NET_SIO_MINTEN, sio);
TLan_MiiSendData(BASE, 0x1, 2); /* Start ( 01b ) */
TLan_MiiSendData(BASE, 0x2, 2); /* Read ( 10b ) */
TLan_MiiSendData(BASE, phy, 5); /* Device # */
TLan_MiiSendData(BASE, reg, 5); /* Register # */
TLan_ClearBit(TLAN_NET_SIO_MTXEN, sio); /* Change direction */
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Clock Idle bit */
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Wait 300ns */
nack = TLan_GetBit(TLAN_NET_SIO_MDATA, sio); /* Check for ACK */
TLan_SetBit(TLAN_NET_SIO_MCLK, sio); /* Finish ACK */
if (nack) { /* No ACK, so fake it */
for (i = 0; i < 16; i++) {
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio);
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
}
tmp = 0xffff;
err = TRUE;
} else { /* ACK, so read data */
for (tmp = 0, i = 0x8000; i; i >>= 1) {
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio);
if (TLan_GetBit(TLAN_NET_SIO_MDATA, sio))
tmp |= i;
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
}
}
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Idle cycle */
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
if (minten)
TLan_SetBit(TLAN_NET_SIO_MINTEN, sio);
*val = tmp;
return err;
} /* TLan_MiiReadReg */
/***************************************************************
* TLan_MiiSendData
*
* Returns:
* Nothing
* Parms:
* base_port The base IO port of the adapter in
* question.
* dev The address of the PHY to be queried.
* data The value to be placed on the MII bus.
* num_bits The number of bits in data that are to
* be placed on the MII bus.
*
* This function sends on sequence of bits on the MII
* configuration bus.
*
**************************************************************/
void TLan_MiiSendData(u16 base_port, u32 data, unsigned num_bits)
{
u16 sio;
u32 i;
if (num_bits == 0)
return;
outw(TLAN_NET_SIO, base_port + TLAN_DIO_ADR);
sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_SetBit(TLAN_NET_SIO_MTXEN, sio);
for (i = (0x1 << (num_bits - 1)); i; i >>= 1) {
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio);
(void) TLan_GetBit(TLAN_NET_SIO_MCLK, sio);
if (data & i)
TLan_SetBit(TLAN_NET_SIO_MDATA, sio);
else
TLan_ClearBit(TLAN_NET_SIO_MDATA, sio);
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
(void) TLan_GetBit(TLAN_NET_SIO_MCLK, sio);
}
} /* TLan_MiiSendData */
/***************************************************************
* TLan_MiiSync
*
* Returns:
* Nothing
* Parms:
* base_port The base IO port of the adapter in
* question.
*
* This functions syncs all PHYs in terms of the MII configuration
* bus.
*
**************************************************************/
void TLan_MiiSync(u16 base_port)
{
int i;
u16 sio;
outw(TLAN_NET_SIO, base_port + TLAN_DIO_ADR);
sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_ClearBit(TLAN_NET_SIO_MTXEN, sio);
for (i = 0; i < 32; i++) {
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio);
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
}
} /* TLan_MiiSync */
/***************************************************************
* TLan_MiiWriteReg
*
* Returns:
* Nothing
* Parms:
* dev The device structure for the device
* to write to.
* phy The address of the PHY to be written to.
* reg The register whose contents are to be
* written.
* val The value to be written to the register.
*
* This function uses the TLAN's MII bus to write the contents of a
* given register on a PHY. It sends the appropriate info and then
* writes the 16-bit register value from the MII configuration bus
* via the TLAN SIO register.
*
**************************************************************/
void TLan_MiiWriteReg(struct nic *nic __unused, u16 phy, u16 reg, u16 val)
{
u16 sio;
int minten;
outw(TLAN_NET_SIO, BASE + TLAN_DIO_ADR);
sio = BASE + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_MiiSync(BASE);
minten = TLan_GetBit(TLAN_NET_SIO_MINTEN, sio);
if (minten)
TLan_ClearBit(TLAN_NET_SIO_MINTEN, sio);
TLan_MiiSendData(BASE, 0x1, 2); /* Start ( 01b ) */
TLan_MiiSendData(BASE, 0x1, 2); /* Write ( 01b ) */
TLan_MiiSendData(BASE, phy, 5); /* Device # */
TLan_MiiSendData(BASE, reg, 5); /* Register # */
TLan_MiiSendData(BASE, 0x2, 2); /* Send ACK */
TLan_MiiSendData(BASE, val, 16); /* Send Data */
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Idle cycle */
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
if (minten)
TLan_SetBit(TLAN_NET_SIO_MINTEN, sio);
} /* TLan_MiiWriteReg */
/***************************************************************
* TLan_SetMac
*
* Returns:
* Nothing
* Parms:
* dev Pointer to device structure of adapter
* on which to change the AREG.
* areg The AREG to set the address in (0 - 3).
* mac A pointer to an array of chars. Each
* element stores one byte of the address.
* IE, it isn't in ascii.
*
* This function transfers a MAC address to one of the
* TLAN AREGs (address registers). The TLAN chip locks
* the register on writing to offset 0 and unlocks the
* register after writing to offset 5. If NULL is passed
* in mac, then the AREG is filled with 0's.
*
**************************************************************/
void TLan_SetMac(struct nic *nic __unused, int areg, unsigned char *mac)
{
int i;
areg *= 6;
if (mac != NULL) {
for (i = 0; i < 6; i++)
TLan_DioWrite8(BASE, TLAN_AREG_0 + areg + i,
mac[i]);
} else {
for (i = 0; i < 6; i++)
TLan_DioWrite8(BASE, TLAN_AREG_0 + areg + i, 0);
}
} /* TLan_SetMac */
/*********************************************************************
* TLan_PhyDetect
*
* Returns:
* Nothing
* Parms:
* dev A pointer to the device structure of the adapter
* for which the PHY needs determined.
*
* So far I've found that adapters which have external PHYs
* may also use the internal PHY for part of the functionality.
* (eg, AUI/Thinnet). This function finds out if this TLAN
* chip has an internal PHY, and then finds the first external
* PHY (starting from address 0) if it exists).
*
********************************************************************/
void TLan_PhyDetect(struct nic *nic)
{
u16 control;
u16 hi;
u16 lo;
u32 phy;
if (tlan_pci_tbl[chip_idx].flags & TLAN_ADAPTER_UNMANAGED_PHY) {
priv->phyNum = 0xFFFF;
return;
}
TLan_MiiReadReg(nic, TLAN_PHY_MAX_ADDR, MII_PHYSID1, &hi);
if (hi != 0xFFFF) {
priv->phy[0] = TLAN_PHY_MAX_ADDR;
} else {
priv->phy[0] = TLAN_PHY_NONE;
}
priv->phy[1] = TLAN_PHY_NONE;
for (phy = 0; phy <= TLAN_PHY_MAX_ADDR; phy++) {
TLan_MiiReadReg(nic, phy, MII_BMCR, &control);
TLan_MiiReadReg(nic, phy, MII_PHYSID1, &hi);
TLan_MiiReadReg(nic, phy, MII_PHYSID2, &lo);
if ((control != 0xFFFF) || (hi != 0xFFFF)
|| (lo != 0xFFFF)) {
printf("PHY found at %hX %hX %hX %hX\n",
(unsigned int) phy, control, hi, lo);
if ((priv->phy[1] == TLAN_PHY_NONE)
&& (phy != TLAN_PHY_MAX_ADDR)) {
priv->phy[1] = phy;
}
}
}
if (priv->phy[1] != TLAN_PHY_NONE) {
priv->phyNum = 1;
} else if (priv->phy[0] != TLAN_PHY_NONE) {
priv->phyNum = 0;
} else {
printf
("TLAN: Cannot initialize device, no PHY was found!\n");
}
} /* TLan_PhyDetect */
void TLan_PhyPowerDown(struct nic *nic)
{
u16 value;
DBG ( "%s: Powering down PHY(s).\n", priv->nic_name );
value = BMCR_PDOWN | BMCR_LOOPBACK | BMCR_ISOLATE;
TLan_MiiSync(BASE);
TLan_MiiWriteReg(nic, priv->phy[priv->phyNum], MII_BMCR, value);
if ((priv->phyNum == 0) && (priv->phy[1] != TLAN_PHY_NONE)
&&
(!(tlan_pci_tbl[chip_idx].
flags & TLAN_ADAPTER_USE_INTERN_10))) {
TLan_MiiSync(BASE);
TLan_MiiWriteReg(nic, priv->phy[1], MII_BMCR, value);
}
/* Wait for 50 ms and powerup
* This is abitrary. It is intended to make sure the
* tranceiver settles.
*/
/* TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_PUP ); */
mdelay(50);
TLan_PhyPowerUp(nic);
} /* TLan_PhyPowerDown */
void TLan_PhyPowerUp(struct nic *nic)
{
u16 value;
DBG ( "%s: Powering up PHY.\n", priv->nic_name );
TLan_MiiSync(BASE);
value = BMCR_LOOPBACK;
TLan_MiiWriteReg(nic, priv->phy[priv->phyNum], MII_BMCR, value);
TLan_MiiSync(BASE);
/* Wait for 500 ms and reset the
* tranceiver. The TLAN docs say both 50 ms and
* 500 ms, so do the longer, just in case.
*/
mdelay(500);
TLan_PhyReset(nic);
/* TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_RESET ); */
} /* TLan_PhyPowerUp */
void TLan_PhyReset(struct nic *nic)
{
u16 phy;
u16 value;
phy = priv->phy[priv->phyNum];
DBG ( "%s: Reseting PHY.\n", priv->nic_name );
TLan_MiiSync(BASE);
value = BMCR_LOOPBACK | BMCR_RESET;
TLan_MiiWriteReg(nic, phy, MII_BMCR, value);
TLan_MiiReadReg(nic, phy, MII_BMCR, &value);
while (value & BMCR_RESET) {
TLan_MiiReadReg(nic, phy, MII_BMCR, &value);
}
/* Wait for 500 ms and initialize.
* I don't remember why I wait this long.
* I've changed this to 50ms, as it seems long enough.
*/
/* TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_START_LINK ); */
mdelay(50);
TLan_PhyStartLink(nic);
} /* TLan_PhyReset */
void TLan_PhyStartLink(struct nic *nic)
{
u16 ability;
u16 control;
u16 data;
u16 phy;
u16 status;
u16 tctl;
phy = priv->phy[priv->phyNum];
DBG ( "%s: Trying to activate link.\n", priv->nic_name );
TLan_MiiReadReg(nic, phy, MII_BMSR, &status);
TLan_MiiReadReg(nic, phy, MII_BMSR, &ability);
if ((status & BMSR_ANEGCAPABLE) && (!priv->aui)) {
ability = status >> 11;
if (priv->speed == TLAN_SPEED_10 &&
priv->duplex == TLAN_DUPLEX_HALF) {
TLan_MiiWriteReg(nic, phy, MII_BMCR, 0x0000);
} else if (priv->speed == TLAN_SPEED_10 &&
priv->duplex == TLAN_DUPLEX_FULL) {
priv->tlanFullDuplex = TRUE;
TLan_MiiWriteReg(nic, phy, MII_BMCR, 0x0100);
} else if (priv->speed == TLAN_SPEED_100 &&
priv->duplex == TLAN_DUPLEX_HALF) {
TLan_MiiWriteReg(nic, phy, MII_BMCR, 0x2000);
} else if (priv->speed == TLAN_SPEED_100 &&
priv->duplex == TLAN_DUPLEX_FULL) {
priv->tlanFullDuplex = TRUE;
TLan_MiiWriteReg(nic, phy, MII_BMCR, 0x2100);
} else {
/* Set Auto-Neg advertisement */
TLan_MiiWriteReg(nic, phy, MII_ADVERTISE,
(ability << 5) | 1);
/* Enablee Auto-Neg */
TLan_MiiWriteReg(nic, phy, MII_BMCR, 0x1000);
/* Restart Auto-Neg */
TLan_MiiWriteReg(nic, phy, MII_BMCR, 0x1200);
/* Wait for 4 sec for autonegotiation
* to complete. The max spec time is less than this
* but the card need additional time to start AN.
* .5 sec should be plenty extra.
*/
DBG ( "TLAN: %s: Starting autonegotiation.\n",
priv->nic_name );
mdelay(4000);
TLan_PhyFinishAutoNeg(nic);
/* TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_PHY_FINISH_AN ); */
return;
}
}
if ((priv->aui) && (priv->phyNum != 0)) {
priv->phyNum = 0;
data =
TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN |
TLAN_NET_CFG_PHY_EN;
TLan_DioWrite16(BASE, TLAN_NET_CONFIG, data);
mdelay(50);
/* TLan_SetTimer( dev, (40*HZ/1000), TLAN_TIMER_PHY_PDOWN ); */
TLan_PhyPowerDown(nic);
return;
} else if (priv->phyNum == 0) {
control = 0;
TLan_MiiReadReg(nic, phy, TLAN_TLPHY_CTL, &tctl);
if (priv->aui) {
tctl |= TLAN_TC_AUISEL;
} else {
tctl &= ~TLAN_TC_AUISEL;
if (priv->duplex == TLAN_DUPLEX_FULL) {
control |= BMCR_FULLDPLX;
priv->tlanFullDuplex = TRUE;
}
if (priv->speed == TLAN_SPEED_100) {
control |= BMCR_SPEED100;
}
}
TLan_MiiWriteReg(nic, phy, MII_BMCR, control);
TLan_MiiWriteReg(nic, phy, TLAN_TLPHY_CTL, tctl);
}
/* Wait for 2 sec to give the tranceiver time
* to establish link.
*/
/* TLan_SetTimer( dev, (4*HZ), TLAN_TIMER_FINISH_RESET ); */
mdelay(2000);
TLan_FinishReset(nic);
} /* TLan_PhyStartLink */
void TLan_PhyFinishAutoNeg(struct nic *nic)
{
u16 an_adv;
u16 an_lpa;
u16 data;
u16 mode;
u16 phy;
u16 status;
phy = priv->phy[priv->phyNum];
TLan_MiiReadReg(nic, phy, MII_BMSR, &status);
udelay(1000);
TLan_MiiReadReg(nic, phy, MII_BMSR, &status);
if (!(status & BMSR_ANEGCOMPLETE)) {
/* Wait for 8 sec to give the process
* more time. Perhaps we should fail after a while.
*/
if (!priv->neg_be_verbose++) {
printf
("TLAN: Giving autonegotiation more time.\n");
printf
("TLAN: Please check that your adapter has\n");
printf
("TLAN: been properly connected to a HUB or Switch.\n");
printf
("TLAN: Trying to establish link in the background...\n");
}
mdelay(8000);
TLan_PhyFinishAutoNeg(nic);
/* TLan_SetTimer( dev, (8*HZ), TLAN_TIMER_PHY_FINISH_AN ); */
return;
}
DBG ( "TLAN: %s: Autonegotiation complete.\n", priv->nic_name );
TLan_MiiReadReg(nic, phy, MII_ADVERTISE, &an_adv);
TLan_MiiReadReg(nic, phy, MII_LPA, &an_lpa);
mode = an_adv & an_lpa & 0x03E0;
if (mode & 0x0100) {
printf("Full Duplex\n");
priv->tlanFullDuplex = TRUE;
} else if (!(mode & 0x0080) && (mode & 0x0040)) {
priv->tlanFullDuplex = TRUE;
printf("Full Duplex\n");
}
if ((!(mode & 0x0180))
&& (tlan_pci_tbl[chip_idx].flags & TLAN_ADAPTER_USE_INTERN_10)
&& (priv->phyNum != 0)) {
priv->phyNum = 0;
data =
TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN |
TLAN_NET_CFG_PHY_EN;
TLan_DioWrite16(BASE, TLAN_NET_CONFIG, data);
/* TLan_SetTimer( nic, (400*HZ/1000), TLAN_TIMER_PHY_PDOWN ); */
mdelay(400);
TLan_PhyPowerDown(nic);
return;
}
if (priv->phyNum == 0) {
if ((priv->duplex == TLAN_DUPLEX_FULL)
|| (an_adv & an_lpa & 0x0040)) {
TLan_MiiWriteReg(nic, phy, MII_BMCR,
BMCR_ANENABLE | BMCR_FULLDPLX);
DBG
( "TLAN: Starting internal PHY with FULL-DUPLEX\n" );
} else {
TLan_MiiWriteReg(nic, phy, MII_BMCR,
BMCR_ANENABLE);
DBG
( "TLAN: Starting internal PHY with HALF-DUPLEX\n" );
}
}
/* Wait for 100 ms. No reason in partiticular.
*/
/* TLan_SetTimer( dev, (HZ/10), TLAN_TIMER_FINISH_RESET ); */
mdelay(100);
TLan_FinishReset(nic);
} /* TLan_PhyFinishAutoNeg */
#ifdef MONITOR
/*********************************************************************
*
* TLan_phyMonitor
*
* Returns:
* None
*
* Params:
* dev The device structure of this device.
*
*
* This function monitors PHY condition by reading the status
* register via the MII bus. This can be used to give info
* about link changes (up/down), and possible switch to alternate
* media.
*
********************************************************************/
void TLan_PhyMonitor(struct net_device *dev)
{
TLanPrivateInfo *priv = dev->priv;
u16 phy;
u16 phy_status;
phy = priv->phy[priv->phyNum];
/* Get PHY status register */
TLan_MiiReadReg(nic, phy, MII_BMSR, &phy_status);
/* Check if link has been lost */
if (!(phy_status & BMSR_LSTATUS)) {
if (priv->link) {
priv->link = 0;
printf("TLAN: %s has lost link\n", priv->nic_name);
priv->flags &= ~IFF_RUNNING;
mdelay(2000);
TLan_PhyMonitor(nic);
/* TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_LINK_BEAT ); */
return;
}
}
/* Link restablished? */
if ((phy_status & BMSR_LSTATUS) && !priv->link) {
priv->link = 1;
printf("TLAN: %s has reestablished link\n",
priv->nic_name);
priv->flags |= IFF_RUNNING;
}
/* Setup a new monitor */
/* TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_LINK_BEAT ); */
mdelay(2000);
TLan_PhyMonitor(nic);
}
#endif /* MONITOR */
static struct pci_device_id tlan_nics[] = {
PCI_ROM(0x0e11, 0xae34, "netel10", "Compaq Netelligent 10 T PCI UTP", 0),
PCI_ROM(0x0e11, 0xae32, "netel100","Compaq Netelligent 10/100 TX PCI UTP", 0),
PCI_ROM(0x0e11, 0xae35, "netflex3i", "Compaq Integrated NetFlex-3/P", 0),
PCI_ROM(0x0e11, 0xf130, "thunder", "Compaq NetFlex-3/P", 0),
PCI_ROM(0x0e11, 0xf150, "netflex3b", "Compaq NetFlex-3/P", 0),
PCI_ROM(0x0e11, 0xae43, "netel100pi", "Compaq Netelligent Integrated 10/100 TX UTP", 0),
PCI_ROM(0x0e11, 0xae40, "netel100d", "Compaq Netelligent Dual 10/100 TX PCI UTP", 0),
PCI_ROM(0x0e11, 0xb011, "netel100i", "Compaq Netelligent 10/100 TX Embedded UTP", 0),
PCI_ROM(0x108d, 0x0013, "oc2183", "Olicom OC-2183/2185", 0),
PCI_ROM(0x108d, 0x0012, "oc2325", "Olicom OC-2325", 0),
PCI_ROM(0x108d, 0x0014, "oc2326", "Olicom OC-2326", 0),
PCI_ROM(0x0e11, 0xb030, "netelligent_10_100_ws_5100", "Compaq Netelligent 10/100 TX UTP", 0),
PCI_ROM(0x0e11, 0xb012, "netelligent_10_t2", "Compaq Netelligent 10 T/2 PCI UTP/Coax", 0),
};
PCI_DRIVER ( tlan_driver, tlan_nics, PCI_NO_CLASS );
DRIVER ( "TLAN/PCI", nic_driver, pci_driver, tlan_driver,
tlan_probe, tlan_disable );
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/