blob: cfbf10475ce70f606ee38f782574bb5980539c8b [file] [log] [blame]
#ifdef ALLMULTI
#error multicast support is not yet implemented
#endif
/*------------------------------------------------------------------------
* smc9000.c
* This is a Etherboot driver for SMC's 9000 series of Ethernet cards.
*
* Copyright (C) 1998 Daniel Engström <daniel.engstrom@riksnett.no>
* Based on the Linux SMC9000 driver, smc9194.c by Eric Stahlman
* Copyright (C) 1996 by Erik Stahlman <eric@vt.edu>
*
* This software may be used and distributed according to the terms
* of the GNU Public License, incorporated herein by reference.
*
* "Features" of the SMC chip:
* 4608 byte packet memory. ( for the 91C92/4. Others have more )
* EEPROM for configuration
* AUI/TP selection
*
* Authors
* Erik Stahlman <erik@vt.edu>
* Daniel Engström <daniel.engstrom@riksnett.no>
*
* History
* 98-09-25 Daniel Engström Etherboot driver crated from Eric's
* Linux driver.
*
*---------------------------------------------------------------------------*/
FILE_LICENCE ( GPL_ANY );
#define LINUX_OUT_MACROS 1
#define SMC9000_DEBUG 0
#if SMC9000_DEBUG > 1
#define PRINTK2 printf
#else
#define PRINTK2(args...)
#endif
#include <gpxe/ethernet.h>
#include <errno.h>
#include "etherboot.h"
#include "nic.h"
#include <gpxe/isa.h>
#include "smc9000.h"
# define _outb outb
# define _outw outw
static const char smc9000_version[] = "Version 0.99 98-09-30";
static const char *interfaces[ 2 ] = { "TP", "AUI" };
static const char *chip_ids[ 15 ] = {
NULL, NULL, NULL,
/* 3 */ "SMC91C90/91C92",
/* 4 */ "SMC91C94",
/* 5 */ "SMC91C95",
NULL,
/* 7 */ "SMC91C100",
/* 8 */ "SMC91C100FD",
/* 9 */ "SMC91C11xFD",
NULL, NULL,
NULL, NULL, NULL
};
static const char smc91c96_id[] = "SMC91C96";
/*------------------------------------------------------------
. Reads a register from the MII Management serial interface
.-------------------------------------------------------------*/
static word smc_read_phy_register(int ioaddr, byte phyaddr, byte phyreg)
{
int oldBank;
unsigned int i;
byte mask;
word mii_reg;
byte bits[64];
int clk_idx = 0;
int input_idx;
word phydata;
// 32 consecutive ones on MDO to establish sync
for (i = 0; i < 32; ++i)
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Start code <01>
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Read command <10>
bits[clk_idx++] = MII_MDOE | MII_MDO;
bits[clk_idx++] = MII_MDOE;
// Output the PHY address, msb first
mask = (byte)0x10;
for (i = 0; i < 5; ++i)
{
if (phyaddr & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Output the phy register number, msb first
mask = (byte)0x10;
for (i = 0; i < 5; ++i)
{
if (phyreg & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Tristate and turnaround (2 bit times)
bits[clk_idx++] = 0;
//bits[clk_idx++] = 0;
// Input starts at this bit time
input_idx = clk_idx;
// Will input 16 bits
for (i = 0; i < 16; ++i)
bits[clk_idx++] = 0;
// Final clock bit
bits[clk_idx++] = 0;
// Save the current bank
oldBank = inw( ioaddr+BANK_SELECT );
// Select bank 3
SMC_SELECT_BANK(ioaddr, 3);
// Get the current MII register value
mii_reg = inw( ioaddr+MII_REG );
// Turn off all MII Interface bits
mii_reg &= ~(MII_MDOE|MII_MCLK|MII_MDI|MII_MDO);
// Clock all 64 cycles
for (i = 0; i < sizeof(bits); ++i)
{
// Clock Low - output data
outw( mii_reg | bits[i], ioaddr+MII_REG );
udelay(50);
// Clock Hi - input data
outw( mii_reg | bits[i] | MII_MCLK, ioaddr+MII_REG );
udelay(50);
bits[i] |= inw( ioaddr+MII_REG ) & MII_MDI;
}
// Return to idle state
// Set clock to low, data to low, and output tristated
outw( mii_reg, ioaddr+MII_REG );
udelay(50);
// Restore original bank select
SMC_SELECT_BANK(ioaddr, oldBank);
// Recover input data
phydata = 0;
for (i = 0; i < 16; ++i)
{
phydata <<= 1;
if (bits[input_idx++] & MII_MDI)
phydata |= 0x0001;
}
#if (SMC_DEBUG > 2 )
printf("smc_read_phy_register(): phyaddr=%x,phyreg=%x,phydata=%x\n",
phyaddr, phyreg, phydata);
#endif
return(phydata);
}
/*------------------------------------------------------------
. Writes a register to the MII Management serial interface
.-------------------------------------------------------------*/
static void smc_write_phy_register(int ioaddr,
byte phyaddr, byte phyreg, word phydata)
{
int oldBank;
unsigned int i;
word mask;
word mii_reg;
byte bits[65];
int clk_idx = 0;
// 32 consecutive ones on MDO to establish sync
for (i = 0; i < 32; ++i)
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Start code <01>
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Write command <01>
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Output the PHY address, msb first
mask = (byte)0x10;
for (i = 0; i < 5; ++i)
{
if (phyaddr & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Output the phy register number, msb first
mask = (byte)0x10;
for (i = 0; i < 5; ++i)
{
if (phyreg & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Tristate and turnaround (2 bit times)
bits[clk_idx++] = 0;
bits[clk_idx++] = 0;
// Write out 16 bits of data, msb first
mask = 0x8000;
for (i = 0; i < 16; ++i)
{
if (phydata & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Final clock bit (tristate)
bits[clk_idx++] = 0;
// Save the current bank
oldBank = inw( ioaddr+BANK_SELECT );
// Select bank 3
SMC_SELECT_BANK(ioaddr, 3);
// Get the current MII register value
mii_reg = inw( ioaddr+MII_REG );
// Turn off all MII Interface bits
mii_reg &= ~(MII_MDOE|MII_MCLK|MII_MDI|MII_MDO);
// Clock all cycles
for (i = 0; i < sizeof(bits); ++i)
{
// Clock Low - output data
outw( mii_reg | bits[i], ioaddr+MII_REG );
udelay(50);
// Clock Hi - input data
outw( mii_reg | bits[i] | MII_MCLK, ioaddr+MII_REG );
udelay(50);
bits[i] |= inw( ioaddr+MII_REG ) & MII_MDI;
}
// Return to idle state
// Set clock to low, data to low, and output tristated
outw( mii_reg, ioaddr+MII_REG );
udelay(50);
// Restore original bank select
SMC_SELECT_BANK(ioaddr, oldBank);
#if (SMC_DEBUG > 2 )
printf("smc_write_phy_register(): phyaddr=%x,phyreg=%x,phydata=%x\n",
phyaddr, phyreg, phydata);
#endif
}
/*------------------------------------------------------------
. Finds and reports the PHY address
.-------------------------------------------------------------*/
static int smc_detect_phy(int ioaddr, byte *pphyaddr)
{
word phy_id1;
word phy_id2;
int phyaddr;
int found = 0;
// Scan all 32 PHY addresses if necessary
for (phyaddr = 0; phyaddr < 32; ++phyaddr)
{
// Read the PHY identifiers
phy_id1 = smc_read_phy_register(ioaddr, phyaddr, PHY_ID1_REG);
phy_id2 = smc_read_phy_register(ioaddr, phyaddr, PHY_ID2_REG);
// Make sure it is a valid identifier
if ((phy_id2 > 0x0000) && (phy_id2 < 0xffff) &&
(phy_id1 > 0x0000) && (phy_id1 < 0xffff))
{
if ((phy_id1 != 0x8000) && (phy_id2 != 0x8000))
{
// Save the PHY's address
*pphyaddr = phyaddr;
found = 1;
break;
}
}
}
if (!found)
{
printf("No PHY found\n");
return(0);
}
// Set the PHY type
if ( (phy_id1 == 0x0016) && ((phy_id2 & 0xFFF0) == 0xF840 ) )
{
printf("PHY=LAN83C183 (LAN91C111 Internal)\n");
}
if ( (phy_id1 == 0x0282) && ((phy_id2 & 0xFFF0) == 0x1C50) )
{
printf("PHY=LAN83C180\n");
}
return(1);
}
/*------------------------------------------------------------
. Configures the specified PHY using Autonegotiation. Calls
. smc_phy_fixed() if the user has requested a certain config.
.-------------------------------------------------------------*/
static void smc_phy_configure(int ioaddr)
{
int timeout;
byte phyaddr;
word my_phy_caps; // My PHY capabilities
word my_ad_caps; // My Advertised capabilities
word status;
int failed = 0;
int rpc_cur_mode = RPC_DEFAULT;
int lastPhy18;
// Find the address and type of our phy
if (!smc_detect_phy(ioaddr, &phyaddr))
{
return;
}
// Reset the PHY, setting all other bits to zero
smc_write_phy_register(ioaddr, phyaddr, PHY_CNTL_REG, PHY_CNTL_RST);
// Wait for the reset to complete, or time out
timeout = 6; // Wait up to 3 seconds
while (timeout--)
{
if (!(smc_read_phy_register(ioaddr, phyaddr, PHY_CNTL_REG)
& PHY_CNTL_RST))
{
// reset complete
break;
}
mdelay(500); // wait 500 millisecs
}
if (timeout < 1)
{
PRINTK2("PHY reset timed out\n");
return;
}
// Read PHY Register 18, Status Output
lastPhy18 = smc_read_phy_register(ioaddr, phyaddr, PHY_INT_REG);
// Enable PHY Interrupts (for register 18)
// Interrupts listed here are disabled
smc_write_phy_register(ioaddr, phyaddr, PHY_MASK_REG,
PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
PHY_INT_SPDDET | PHY_INT_DPLXDET);
/* Configure the Receive/Phy Control register */
SMC_SELECT_BANK(ioaddr, 0);
outw( rpc_cur_mode, ioaddr + RPC_REG );
// Copy our capabilities from PHY_STAT_REG to PHY_AD_REG
my_phy_caps = smc_read_phy_register(ioaddr, phyaddr, PHY_STAT_REG);
my_ad_caps = PHY_AD_CSMA; // I am CSMA capable
if (my_phy_caps & PHY_STAT_CAP_T4)
my_ad_caps |= PHY_AD_T4;
if (my_phy_caps & PHY_STAT_CAP_TXF)
my_ad_caps |= PHY_AD_TX_FDX;
if (my_phy_caps & PHY_STAT_CAP_TXH)
my_ad_caps |= PHY_AD_TX_HDX;
if (my_phy_caps & PHY_STAT_CAP_TF)
my_ad_caps |= PHY_AD_10_FDX;
if (my_phy_caps & PHY_STAT_CAP_TH)
my_ad_caps |= PHY_AD_10_HDX;
// Update our Auto-Neg Advertisement Register
smc_write_phy_register(ioaddr, phyaddr, PHY_AD_REG, my_ad_caps);
PRINTK2("phy caps=%x\n", my_phy_caps);
PRINTK2("phy advertised caps=%x\n", my_ad_caps);
// Restart auto-negotiation process in order to advertise my caps
smc_write_phy_register( ioaddr, phyaddr, PHY_CNTL_REG,
PHY_CNTL_ANEG_EN | PHY_CNTL_ANEG_RST );
// Wait for the auto-negotiation to complete. This may take from
// 2 to 3 seconds.
// Wait for the reset to complete, or time out
timeout = 20; // Wait up to 10 seconds
while (timeout--)
{
status = smc_read_phy_register(ioaddr, phyaddr, PHY_STAT_REG);
if (status & PHY_STAT_ANEG_ACK)
{
// auto-negotiate complete
break;
}
mdelay(500); // wait 500 millisecs
// Restart auto-negotiation if remote fault
if (status & PHY_STAT_REM_FLT)
{
PRINTK2("PHY remote fault detected\n");
// Restart auto-negotiation
PRINTK2("PHY restarting auto-negotiation\n");
smc_write_phy_register( ioaddr, phyaddr, PHY_CNTL_REG,
PHY_CNTL_ANEG_EN | PHY_CNTL_ANEG_RST |
PHY_CNTL_SPEED | PHY_CNTL_DPLX);
}
}
if (timeout < 1)
{
PRINTK2("PHY auto-negotiate timed out\n");
failed = 1;
}
// Fail if we detected an auto-negotiate remote fault
if (status & PHY_STAT_REM_FLT)
{
PRINTK2("PHY remote fault detected\n");
failed = 1;
}
// Set our sysctl parameters to match auto-negotiation results
if ( lastPhy18 & PHY_INT_SPDDET )
{
PRINTK2("PHY 100BaseT\n");
rpc_cur_mode |= RPC_SPEED;
}
else
{
PRINTK2("PHY 10BaseT\n");
rpc_cur_mode &= ~RPC_SPEED;
}
if ( lastPhy18 & PHY_INT_DPLXDET )
{
PRINTK2("PHY Full Duplex\n");
rpc_cur_mode |= RPC_DPLX;
}
else
{
PRINTK2("PHY Half Duplex\n");
rpc_cur_mode &= ~RPC_DPLX;
}
// Re-Configure the Receive/Phy Control register
outw( rpc_cur_mode, ioaddr + RPC_REG );
}
/*
* Function: smc_reset( int ioaddr )
* Purpose:
* This sets the SMC91xx chip to its normal state, hopefully from whatever
* mess that any other DOS driver has put it in.
*
* Maybe I should reset more registers to defaults in here? SOFTRESET should
* do that for me.
*
* Method:
* 1. send a SOFT RESET
* 2. wait for it to finish
* 3. reset the memory management unit
* 4. clear all interrupts
*
*/
static void smc_reset(int ioaddr)
{
/* This resets the registers mostly to defaults, but doesn't
* affect EEPROM. That seems unnecessary */
SMC_SELECT_BANK(ioaddr, 0);
_outw( RCR_SOFTRESET, ioaddr + RCR );
/* this should pause enough for the chip to be happy */
SMC_DELAY(ioaddr);
/* Set the transmit and receive configuration registers to
* default values */
_outw(RCR_CLEAR, ioaddr + RCR);
_outw(TCR_CLEAR, ioaddr + TCR);
/* Reset the MMU */
SMC_SELECT_BANK(ioaddr, 2);
_outw( MC_RESET, ioaddr + MMU_CMD );
/* Note: It doesn't seem that waiting for the MMU busy is needed here,
* but this is a place where future chipsets _COULD_ break. Be wary
* of issuing another MMU command right after this */
_outb(0, ioaddr + INT_MASK);
}
/*----------------------------------------------------------------------
* Function: smc9000_probe_addr( int ioaddr )
*
* Purpose:
* Tests to see if a given ioaddr points to an SMC9xxx chip.
* Returns a 1 on success
*
* Algorithm:
* (1) see if the high byte of BANK_SELECT is 0x33
* (2) compare the ioaddr with the base register's address
* (3) see if I recognize the chip ID in the appropriate register
*
* ---------------------------------------------------------------------
*/
static int smc9000_probe_addr( isa_probe_addr_t ioaddr )
{
word bank;
word revision_register;
word base_address_register;
/* First, see if the high byte is 0x33 */
bank = inw(ioaddr + BANK_SELECT);
if ((bank & 0xFF00) != 0x3300) {
return 0;
}
/* The above MIGHT indicate a device, but I need to write to further
* test this. */
_outw(0x0, ioaddr + BANK_SELECT);
bank = inw(ioaddr + BANK_SELECT);
if ((bank & 0xFF00) != 0x3300) {
return 0;
}
/* well, we've already written once, so hopefully another time won't
* hurt. This time, I need to switch the bank register to bank 1,
* so I can access the base address register */
SMC_SELECT_BANK(ioaddr, 1);
base_address_register = inw(ioaddr + BASE);
if (ioaddr != (base_address_register >> 3 & 0x3E0)) {
DBG("SMC9000: IOADDR %hX doesn't match configuration (%hX)."
"Probably not a SMC chip\n",
ioaddr, base_address_register >> 3 & 0x3E0);
/* well, the base address register didn't match. Must not have
* been a SMC chip after all. */
return 0;
}
/* check if the revision register is something that I recognize.
* These might need to be added to later, as future revisions
* could be added. */
SMC_SELECT_BANK(ioaddr, 3);
revision_register = inw(ioaddr + REVISION);
if (!chip_ids[(revision_register >> 4) & 0xF]) {
/* I don't recognize this chip, so... */
DBG( "SMC9000: IO %hX: Unrecognized revision register:"
" %hX, Contact author.\n", ioaddr, revision_register );
return 0;
}
/* at this point I'll assume that the chip is an SMC9xxx.
* It might be prudent to check a listing of MAC addresses
* against the hardware address, or do some other tests. */
return 1;
}
/**************************************************************************
* ETH_TRANSMIT - Transmit a frame
***************************************************************************/
static void smc9000_transmit(
struct nic *nic,
const char *d, /* Destination */
unsigned int t, /* Type */
unsigned int s, /* size */
const char *p) /* Packet */
{
word length; /* real, length incl. header */
word numPages;
unsigned long time_out;
byte packet_no;
word status;
int i;
/* We dont pad here since we can have the hardware doing it for us */
length = (s + ETH_HLEN + 1)&~1;
/* convert to MMU pages */
numPages = length / 256;
if (numPages > 7 ) {
DBG("SMC9000: Far too big packet error. \n");
return;
}
/* dont try more than, say 30 times */
for (i=0;i<30;i++) {
/* now, try to allocate the memory */
SMC_SELECT_BANK(nic->ioaddr, 2);
_outw(MC_ALLOC | numPages, nic->ioaddr + MMU_CMD);
status = 0;
/* wait for the memory allocation to finnish */
for (time_out = currticks() + 5*TICKS_PER_SEC; currticks() < time_out; ) {
status = inb(nic->ioaddr + INTERRUPT);
if ( status & IM_ALLOC_INT ) {
/* acknowledge the interrupt */
_outb(IM_ALLOC_INT, nic->ioaddr + INTERRUPT);
break;
}
}
if ((status & IM_ALLOC_INT) != 0 ) {
/* We've got the memory */
break;
} else {
printf("SMC9000: Memory allocation timed out, resetting MMU.\n");
_outw(MC_RESET, nic->ioaddr + MMU_CMD);
}
}
/* If I get here, I _know_ there is a packet slot waiting for me */
packet_no = inb(nic->ioaddr + PNR_ARR + 1);
if (packet_no & 0x80) {
/* or isn't there? BAD CHIP! */
printf("SMC9000: Memory allocation failed. \n");
return;
}
/* we have a packet address, so tell the card to use it */
_outb(packet_no, nic->ioaddr + PNR_ARR);
/* point to the beginning of the packet */
_outw(PTR_AUTOINC, nic->ioaddr + POINTER);
#if SMC9000_DEBUG > 2
printf("Trying to xmit packet of length %hX\n", length );
#endif
/* send the packet length ( +6 for status, length and ctl byte )
* and the status word ( set to zeros ) */
_outw(0, nic->ioaddr + DATA_1 );
/* send the packet length ( +6 for status words, length, and ctl) */
_outb((length+6) & 0xFF, nic->ioaddr + DATA_1);
_outb((length+6) >> 8 , nic->ioaddr + DATA_1);
/* Write the contents of the packet */
/* The ethernet header first... */
outsw(nic->ioaddr + DATA_1, d, ETH_ALEN >> 1);
outsw(nic->ioaddr + DATA_1, nic->node_addr, ETH_ALEN >> 1);
_outw(htons(t), nic->ioaddr + DATA_1);
/* ... the data ... */
outsw(nic->ioaddr + DATA_1 , p, s >> 1);
/* ... and the last byte, if there is one. */
if ((s & 1) == 0) {
_outw(0, nic->ioaddr + DATA_1);
} else {
_outb(p[s-1], nic->ioaddr + DATA_1);
_outb(0x20, nic->ioaddr + DATA_1);
}
/* and let the chipset deal with it */
_outw(MC_ENQUEUE , nic->ioaddr + MMU_CMD);
status = 0; time_out = currticks() + 5*TICKS_PER_SEC;
do {
status = inb(nic->ioaddr + INTERRUPT);
if ((status & IM_TX_INT ) != 0) {
word tx_status;
/* ack interrupt */
_outb(IM_TX_INT, nic->ioaddr + INTERRUPT);
packet_no = inw(nic->ioaddr + FIFO_PORTS);
packet_no &= 0x7F;
/* select this as the packet to read from */
_outb( packet_no, nic->ioaddr + PNR_ARR );
/* read the first word from this packet */
_outw( PTR_AUTOINC | PTR_READ, nic->ioaddr + POINTER );
tx_status = inw( nic->ioaddr + DATA_1 );
if (0 == (tx_status & TS_SUCCESS)) {
DBG("SMC9000: TX FAIL STATUS: %hX \n", tx_status);
/* re-enable transmit */
SMC_SELECT_BANK(nic->ioaddr, 0);
_outw(inw(nic->ioaddr + TCR ) | TCR_ENABLE, nic->ioaddr + TCR );
}
/* kill the packet */
SMC_SELECT_BANK(nic->ioaddr, 2);
_outw(MC_FREEPKT, nic->ioaddr + MMU_CMD);
return;
}
}while(currticks() < time_out);
printf("SMC9000: TX timed out, resetting board\n");
smc_reset(nic->ioaddr);
return;
}
/**************************************************************************
* ETH_POLL - Wait for a frame
***************************************************************************/
static int smc9000_poll(struct nic *nic, int retrieve)
{
SMC_SELECT_BANK(nic->ioaddr, 2);
if (inw(nic->ioaddr + FIFO_PORTS) & FP_RXEMPTY)
return 0;
if ( ! retrieve ) return 1;
/* start reading from the start of the packet */
_outw(PTR_READ | PTR_RCV | PTR_AUTOINC, nic->ioaddr + POINTER);
/* First read the status and check that we're ok */
if (!(inw(nic->ioaddr + DATA_1) & RS_ERRORS)) {
/* Next: read the packet length and mask off the top bits */
nic->packetlen = (inw(nic->ioaddr + DATA_1) & 0x07ff);
/* the packet length includes the 3 extra words */
nic->packetlen -= 6;
#if SMC9000_DEBUG > 2
printf(" Reading %d words (and %d byte(s))\n",
(nic->packetlen >> 1), nic->packetlen & 1);
#endif
/* read the packet (and the last "extra" word) */
insw(nic->ioaddr + DATA_1, nic->packet, (nic->packetlen+2) >> 1);
/* is there an odd last byte ? */
if (nic->packet[nic->packetlen+1] & 0x20)
nic->packetlen++;
/* error or good, tell the card to get rid of this packet */
_outw(MC_RELEASE, nic->ioaddr + MMU_CMD);
return 1;
}
printf("SMC9000: RX error\n");
/* error or good, tell the card to get rid of this packet */
_outw(MC_RELEASE, nic->ioaddr + MMU_CMD);
return 0;
}
static void smc9000_disable ( struct nic *nic, struct isa_device *isa __unused ) {
smc_reset(nic->ioaddr);
/* no more interrupts for me */
SMC_SELECT_BANK(nic->ioaddr, 2);
_outb( 0, nic->ioaddr + INT_MASK);
/* and tell the card to stay away from that nasty outside world */
SMC_SELECT_BANK(nic->ioaddr, 0);
_outb( RCR_CLEAR, nic->ioaddr + RCR );
_outb( TCR_CLEAR, nic->ioaddr + TCR );
}
static void smc9000_irq(struct nic *nic __unused, irq_action_t action __unused)
{
switch ( action ) {
case DISABLE :
break;
case ENABLE :
break;
case FORCE :
break;
}
}
static struct nic_operations smc9000_operations = {
.connect = dummy_connect,
.poll = smc9000_poll,
.transmit = smc9000_transmit,
.irq = smc9000_irq,
};
/**************************************************************************
* ETH_PROBE - Look for an adapter
***************************************************************************/
static int smc9000_probe ( struct nic *nic, struct isa_device *isa ) {
unsigned short revision;
int memory;
int media;
const char * version_string;
const char * if_string;
int i;
nic->irqno = 0;
nic->ioaddr = isa->ioaddr;
/*
* Get the MAC address ( bank 1, regs 4 - 9 )
*/
SMC_SELECT_BANK(nic->ioaddr, 1);
for ( i = 0; i < 6; i += 2 ) {
word address;
address = inw(nic->ioaddr + ADDR0 + i);
nic->node_addr[i+1] = address >> 8;
nic->node_addr[i] = address & 0xFF;
}
/* get the memory information */
SMC_SELECT_BANK(nic->ioaddr, 0);
memory = ( inw(nic->ioaddr + MCR) >> 9 ) & 0x7; /* multiplier */
memory *= 256 * (inw(nic->ioaddr + MIR) & 0xFF);
/*
* Now, I want to find out more about the chip. This is sort of
* redundant, but it's cleaner to have it in both, rather than having
* one VERY long probe procedure.
*/
SMC_SELECT_BANK(nic->ioaddr, 3);
revision = inw(nic->ioaddr + REVISION);
version_string = chip_ids[(revision >> 4) & 0xF];
if (((revision & 0xF0) >> 4 == CHIP_9196) &&
((revision & 0x0F) >= REV_9196)) {
/* This is a 91c96. 'c96 has the same chip id as 'c94 (4) but
* a revision starting at 6 */
version_string = smc91c96_id;
}
if ( !version_string ) {
/* I shouldn't get here because this call was done before.... */
return 0;
}
/* is it using AUI or 10BaseT ? */
SMC_SELECT_BANK(nic->ioaddr, 1);
if (inw(nic->ioaddr + CONFIG) & CFG_AUI_SELECT)
media = 2;
else
media = 1;
if_string = interfaces[media - 1];
/* now, reset the chip, and put it into a known state */
smc_reset(nic->ioaddr);
printf("SMC9000 %s\n", smc9000_version);
DBG("Copyright (C) 1998 Daniel Engstr\x94m\n");
DBG("Copyright (C) 1996 Eric Stahlman\n");
printf("%s rev:%d I/O port:%hX Interface:%s RAM:%d bytes \n",
version_string, revision & 0xF,
nic->ioaddr, if_string, memory );
DBG ( "Ethernet MAC address: %s\n", eth_ntoa ( nic->node_addr ) );
SMC_SELECT_BANK(nic->ioaddr, 0);
/* see the header file for options in TCR/RCR NORMAL*/
_outw(TCR_NORMAL, nic->ioaddr + TCR);
_outw(RCR_NORMAL, nic->ioaddr + RCR);
/* Select which interface to use */
SMC_SELECT_BANK(nic->ioaddr, 1);
if ( media == 1 ) {
_outw( inw( nic->ioaddr + CONFIG ) & ~CFG_AUI_SELECT,
nic->ioaddr + CONFIG );
}
else if ( media == 2 ) {
_outw( inw( nic->ioaddr + CONFIG ) | CFG_AUI_SELECT,
nic->ioaddr + CONFIG );
}
smc_phy_configure(nic->ioaddr);
nic->nic_op = &smc9000_operations;
return 1;
}
/*
* The SMC9000 can be at any of the following port addresses. To
* change for a slightly different card, you can add it to the array.
*
*/
static isa_probe_addr_t smc9000_probe_addrs[] = {
0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0,
0x300, 0x320, 0x340, 0x360, 0x380, 0x3A0, 0x3C0, 0x3E0,
};
ISA_DRIVER ( smc9000_driver, smc9000_probe_addrs, smc9000_probe_addr,
GENERIC_ISAPNP_VENDOR, 0x8228 );
DRIVER ( "SMC9000", nic_driver, isa_driver, smc9000_driver,
smc9000_probe, smc9000_disable );
ISA_ROM ( "smc9000", "SMC9000" );
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/