blob: c48b31447a04e9eaf5a71c42b4eb869e1f8bbafc [file] [log] [blame]
/*
* Copyright (c) 2008 Stefan Hajnoczi <stefanha@gmail.com>
* Copyright (c) 2008 Pantelis Koukousoulas <pktoss@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* This driver is a port of the b44 linux driver version 1.01
*
* Copyright (c) 2002 David S. Miller <davem@redhat.com>
* Copyright (c) Pekka Pietikainen <pp@ee.oulu.fi>
* Copyright (C) 2006 Broadcom Corporation.
*
* Some ssb bits copied from version 2.0 of the b44 driver
* Copyright (c) Michael Buesch
*
* Copyright (c) a lot of people too. Please respect their work.
*/
FILE_LICENCE ( GPL2_OR_LATER );
#include <errno.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <byteswap.h>
#include <gpxe/io.h>
#include <mii.h>
#include <gpxe/iobuf.h>
#include <gpxe/malloc.h>
#include <gpxe/pci.h>
#include <gpxe/netdevice.h>
#include <gpxe/ethernet.h>
#include <gpxe/if_ether.h>
#include <gpxe/memmap.h>
#include "b44.h"
static inline int ring_next(int index)
{
/* B44_RING_SIZE is a power of 2 :) */
return (index + 1) & (B44_RING_SIZE - 1);
}
/* Memory-mapped I/O wrappers */
static inline u32 br32(const struct b44_private *bp, u32 reg)
{
return readl(bp->regs + reg);
}
static inline void bw32(const struct b44_private *bp, u32 reg, u32 val)
{
writel(val, bp->regs + reg);
}
static inline void bflush(const struct b44_private *bp, u32 reg, u32 timeout)
{
readl(bp->regs + reg);
udelay(timeout);
}
#define VIRT_TO_B44(addr) ( virt_to_bus(addr) + SB_PCI_DMA )
/**
* Return non-zero if the installed RAM is within
* the limit given and zero if it is outside.
* Hopefully will be removed soon.
*/
int phys_ram_within_limit(u64 limit)
{
struct memory_map memmap;
struct memory_region *highest = NULL;
get_memmap(&memmap);
highest = &memmap.regions[memmap.count - 1];
return (highest->end < limit);
}
/**
* Ring cells waiting to be processed are between 'tx_cur' and 'pending'
* indexes in the ring.
*/
static u32 pending_tx_index(struct b44_private *bp)
{
u32 pending = br32(bp, B44_DMATX_STAT);
pending &= DMATX_STAT_CDMASK;
pending /= sizeof(struct dma_desc);
return pending & (B44_RING_SIZE - 1);
}
/**
* Ring cells waiting to be processed are between 'rx_cur' and 'pending'
* indexes in the ring.
*/
static u32 pending_rx_index(struct b44_private *bp)
{
u32 pending = br32(bp, B44_DMARX_STAT);
pending &= DMARX_STAT_CDMASK;
pending /= sizeof(struct dma_desc);
return pending & (B44_RING_SIZE - 1);
}
/**
* Wait until the given bit is set/cleared.
*/
static int b44_wait_bit(struct b44_private *bp, unsigned long reg, u32 bit,
unsigned long timeout, const int clear)
{
unsigned long i;
for (i = 0; i < timeout; i++) {
u32 val = br32(bp, reg);
if (clear && !(val & bit))
break;
if (!clear && (val & bit))
break;
udelay(10);
}
if (i == timeout) {
return -ENODEV;
}
return 0;
}
/*
* Sonics Silicon Backplane support. SSB is a mini-bus interconnecting
* so-called IP Cores. One of those cores implements the Fast Ethernet
* functionality and another one the PCI engine.
*
* You need to switch to the core you want to talk to before actually
* sending commands.
*
* See: http://bcm-v4.sipsolutions.net/Backplane for (reverse-engineered)
* specs.
*/
static inline u32 ssb_get_core_rev(struct b44_private *bp)
{
return (br32(bp, B44_SBIDHIGH) & SBIDHIGH_RC_MASK);
}
static inline int ssb_is_core_up(struct b44_private *bp)
{
return ((br32(bp, B44_SBTMSLOW) & (SSB_CORE_DOWN | SBTMSLOW_CLOCK))
== SBTMSLOW_CLOCK);
}
static u32 ssb_pci_setup(struct b44_private *bp, u32 cores)
{
u32 bar_orig, pci_rev, val;
pci_read_config_dword(bp->pci, SSB_BAR0_WIN, &bar_orig);
pci_write_config_dword(bp->pci, SSB_BAR0_WIN,
BCM4400_PCI_CORE_ADDR);
pci_rev = ssb_get_core_rev(bp);
val = br32(bp, B44_SBINTVEC);
val |= cores;
bw32(bp, B44_SBINTVEC, val);
val = br32(bp, SSB_PCI_TRANS_2);
val |= SSB_PCI_PREF | SSB_PCI_BURST;
bw32(bp, SSB_PCI_TRANS_2, val);
pci_write_config_dword(bp->pci, SSB_BAR0_WIN, bar_orig);
return pci_rev;
}
static void ssb_core_disable(struct b44_private *bp)
{
if (br32(bp, B44_SBTMSLOW) & SBTMSLOW_RESET)
return;
bw32(bp, B44_SBTMSLOW, (SBTMSLOW_REJECT | SBTMSLOW_CLOCK));
b44_wait_bit(bp, B44_SBTMSLOW, SBTMSLOW_REJECT, 100000, 0);
b44_wait_bit(bp, B44_SBTMSHIGH, SBTMSHIGH_BUSY, 100000, 1);
bw32(bp, B44_SBTMSLOW, (SBTMSLOW_FGC | SBTMSLOW_CLOCK |
SSB_CORE_DOWN));
bflush(bp, B44_SBTMSLOW, 1);
bw32(bp, B44_SBTMSLOW, SSB_CORE_DOWN);
bflush(bp, B44_SBTMSLOW, 1);
}
static void ssb_core_reset(struct b44_private *bp)
{
u32 val;
const u32 mask = (SBTMSLOW_CLOCK | SBTMSLOW_FGC | SBTMSLOW_RESET);
ssb_core_disable(bp);
bw32(bp, B44_SBTMSLOW, mask);
bflush(bp, B44_SBTMSLOW, 1);
/* Clear SERR if set, this is a hw bug workaround. */
if (br32(bp, B44_SBTMSHIGH) & SBTMSHIGH_SERR)
bw32(bp, B44_SBTMSHIGH, 0);
val = br32(bp, B44_SBIMSTATE);
if (val & (SBIMSTATE_BAD)) {
bw32(bp, B44_SBIMSTATE, val & ~SBIMSTATE_BAD);
}
bw32(bp, B44_SBTMSLOW, (SBTMSLOW_CLOCK | SBTMSLOW_FGC));
bflush(bp, B44_SBTMSLOW, 1);
bw32(bp, B44_SBTMSLOW, (SBTMSLOW_CLOCK));
bflush(bp, B44_SBTMSLOW, 1);
}
/*
* Driver helper functions
*/
/*
* Chip reset provides power to the b44 MAC & PCI cores, which
* is necessary for MAC register access. We only do a partial
* reset in case of transmit/receive errors (ISTAT_ERRORS) to
* avoid the chip being hung for an unnecessary long time in
* this case.
*
* Called-by: b44_close, b44_halt, b44_inithw(b44_open), b44_probe
*/
static void b44_chip_reset(struct b44_private *bp, int reset_kind)
{
if (ssb_is_core_up(bp)) {
bw32(bp, B44_RCV_LAZY, 0);
bw32(bp, B44_ENET_CTRL, ENET_CTRL_DISABLE);
b44_wait_bit(bp, B44_ENET_CTRL, ENET_CTRL_DISABLE, 200, 1);
bw32(bp, B44_DMATX_CTRL, 0);
bp->tx_dirty = bp->tx_cur = 0;
if (br32(bp, B44_DMARX_STAT) & DMARX_STAT_EMASK)
b44_wait_bit(bp, B44_DMARX_STAT, DMARX_STAT_SIDLE,
100, 0);
bw32(bp, B44_DMARX_CTRL, 0);
bp->rx_cur = 0;
} else {
ssb_pci_setup(bp, SBINTVEC_ENET0);
}
ssb_core_reset(bp);
/* Don't enable PHY if we are only doing a partial reset. */
if (reset_kind == B44_CHIP_RESET_PARTIAL)
return;
/* Make PHY accessible. */
bw32(bp, B44_MDIO_CTRL,
(MDIO_CTRL_PREAMBLE | (0x0d & MDIO_CTRL_MAXF_MASK)));
bflush(bp, B44_MDIO_CTRL, 1);
/* Enable internal or external PHY */
if (!(br32(bp, B44_DEVCTRL) & DEVCTRL_IPP)) {
bw32(bp, B44_ENET_CTRL, ENET_CTRL_EPSEL);
bflush(bp, B44_ENET_CTRL, 1);
} else {
u32 val = br32(bp, B44_DEVCTRL);
if (val & DEVCTRL_EPR) {
bw32(bp, B44_DEVCTRL, (val & ~DEVCTRL_EPR));
bflush(bp, B44_DEVCTRL, 100);
}
}
}
/**
* called by b44_poll in the error path
*/
static void b44_halt(struct b44_private *bp)
{
/* disable ints */
bw32(bp, B44_IMASK, 0);
bflush(bp, B44_IMASK, 1);
DBG("b44: powering down PHY\n");
bw32(bp, B44_MAC_CTRL, MAC_CTRL_PHY_PDOWN);
/*
* Now reset the chip, but without enabling
* the MAC&PHY part of it.
* This has to be done _after_ we shut down the PHY
*/
b44_chip_reset(bp, B44_CHIP_RESET_PARTIAL);
}
/*
* Called at device open time to get the chip ready for
* packet processing.
*
* Called-by: b44_open
*/
static void b44_init_hw(struct b44_private *bp, int reset_kind)
{
u32 val;
#define CTRL_MASK (DMARX_CTRL_ENABLE | (RX_PKT_OFFSET << DMARX_CTRL_ROSHIFT))
b44_chip_reset(bp, B44_CHIP_RESET_FULL);
if (reset_kind == B44_FULL_RESET) {
b44_phy_reset(bp);
}
/* Enable CRC32, set proper LED modes and power on PHY */
bw32(bp, B44_MAC_CTRL, MAC_CTRL_CRC32_ENAB | MAC_CTRL_PHY_LEDCTRL);
bw32(bp, B44_RCV_LAZY, (1 << RCV_LAZY_FC_SHIFT));
/* This sets the MAC address too. */
b44_set_rx_mode(bp->netdev);
/* MTU + eth header + possible VLAN tag + struct rx_header */
bw32(bp, B44_RXMAXLEN, B44_MAX_MTU + ETH_HLEN + 8 + RX_HEADER_LEN);
bw32(bp, B44_TXMAXLEN, B44_MAX_MTU + ETH_HLEN + 8 + RX_HEADER_LEN);
bw32(bp, B44_TX_HIWMARK, TX_HIWMARK_DEFLT);
if (reset_kind == B44_PARTIAL_RESET) {
bw32(bp, B44_DMARX_CTRL, CTRL_MASK);
} else {
bw32(bp, B44_DMATX_CTRL, DMATX_CTRL_ENABLE);
bw32(bp, B44_DMATX_ADDR, VIRT_TO_B44(bp->tx));
bw32(bp, B44_DMARX_CTRL, CTRL_MASK);
bw32(bp, B44_DMARX_ADDR, VIRT_TO_B44(bp->rx));
bw32(bp, B44_DMARX_PTR, B44_RX_RING_LEN_BYTES);
bw32(bp, B44_MIB_CTRL, MIB_CTRL_CLR_ON_READ);
}
val = br32(bp, B44_ENET_CTRL);
bw32(bp, B44_ENET_CTRL, (val | ENET_CTRL_ENABLE));
#undef CTRL_MASK
}
/*** Management of ring descriptors ***/
static void b44_populate_rx_descriptor(struct b44_private *bp, u32 idx)
{
struct rx_header *rh;
u32 ctrl, addr;
rh = bp->rx_iobuf[idx]->data;
rh->len = 0;
rh->flags = 0;
ctrl = DESC_CTRL_LEN & (RX_PKT_BUF_SZ - RX_PKT_OFFSET);
if (idx == B44_RING_LAST) {
ctrl |= DESC_CTRL_EOT;
}
addr = VIRT_TO_B44(bp->rx_iobuf[idx]->data);
bp->rx[idx].ctrl = cpu_to_le32(ctrl);
bp->rx[idx].addr = cpu_to_le32(addr);
bw32(bp, B44_DMARX_PTR, idx * sizeof(struct dma_desc));
}
/*
* Refill RX ring descriptors with buffers. This is needed
* because during rx we are passing ownership of descriptor
* buffers to the network stack.
*/
static void b44_rx_refill(struct b44_private *bp, u32 pending)
{
u32 i;
// skip pending
for (i = pending + 1; i != bp->rx_cur; i = ring_next(i)) {
if (bp->rx_iobuf[i] != NULL)
continue;
bp->rx_iobuf[i] = alloc_iob(RX_PKT_BUF_SZ);
if (!bp->rx_iobuf[i]) {
DBG("Refill rx ring failed!!\n");
break;
}
b44_populate_rx_descriptor(bp, i);
}
}
static void b44_free_rx_ring(struct b44_private *bp)
{
u32 i;
if (bp->rx) {
for (i = 0; i < B44_RING_SIZE; i++) {
free_iob(bp->rx_iobuf[i]);
bp->rx_iobuf[i] = NULL;
}
free_dma(bp->rx, B44_RX_RING_LEN_BYTES);
bp->rx = NULL;
}
}
static int b44_init_rx_ring(struct b44_private *bp)
{
b44_free_rx_ring(bp);
bp->rx = malloc_dma(B44_RX_RING_LEN_BYTES, B44_DMA_ALIGNMENT);
if (!bp->rx)
return -ENOMEM;
memset(bp->rx_iobuf, 0, sizeof(bp->rx_iobuf));
bp->rx_iobuf[0] = alloc_iob(RX_PKT_BUF_SZ);
b44_populate_rx_descriptor(bp, 0);
b44_rx_refill(bp, 0);
DBG("Init RX rings: rx=0x%08lx\n", VIRT_TO_B44(bp->rx));
return 0;
}
static void b44_free_tx_ring(struct b44_private *bp)
{
if (bp->tx) {
free_dma(bp->tx, B44_TX_RING_LEN_BYTES);
bp->tx = NULL;
}
}
static int b44_init_tx_ring(struct b44_private *bp)
{
b44_free_tx_ring(bp);
bp->tx = malloc_dma(B44_TX_RING_LEN_BYTES, B44_DMA_ALIGNMENT);
if (!bp->tx)
return -ENOMEM;
memset(bp->tx, 0, B44_TX_RING_LEN_BYTES);
memset(bp->tx_iobuf, 0, sizeof(bp->tx_iobuf));
DBG("Init TX rings: tx=0x%08lx\n", VIRT_TO_B44(bp->tx));
return 0;
}
/*** Interaction with the PHY ***/
static int b44_phy_read(struct b44_private *bp, int reg, u32 * val)
{
int err;
u32 arg1 = (MDIO_OP_READ << MDIO_DATA_OP_SHIFT);
u32 arg2 = (bp->phy_addr << MDIO_DATA_PMD_SHIFT);
u32 arg3 = (reg << MDIO_DATA_RA_SHIFT);
u32 arg4 = (MDIO_TA_VALID << MDIO_DATA_TA_SHIFT);
u32 argv = arg1 | arg2 | arg3 | arg4;
bw32(bp, B44_EMAC_ISTAT, EMAC_INT_MII);
bw32(bp, B44_MDIO_DATA, (MDIO_DATA_SB_START | argv));
err = b44_wait_bit(bp, B44_EMAC_ISTAT, EMAC_INT_MII, 100, 0);
*val = br32(bp, B44_MDIO_DATA) & MDIO_DATA_DATA;
return err;
}
static int b44_phy_write(struct b44_private *bp, int reg, u32 val)
{
u32 arg1 = (MDIO_OP_WRITE << MDIO_DATA_OP_SHIFT);
u32 arg2 = (bp->phy_addr << MDIO_DATA_PMD_SHIFT);
u32 arg3 = (reg << MDIO_DATA_RA_SHIFT);
u32 arg4 = (MDIO_TA_VALID << MDIO_DATA_TA_SHIFT);
u32 arg5 = (val & MDIO_DATA_DATA);
u32 argv = arg1 | arg2 | arg3 | arg4 | arg5;
bw32(bp, B44_EMAC_ISTAT, EMAC_INT_MII);
bw32(bp, B44_MDIO_DATA, (MDIO_DATA_SB_START | argv));
return b44_wait_bit(bp, B44_EMAC_ISTAT, EMAC_INT_MII, 100, 0);
}
static int b44_phy_reset(struct b44_private *bp)
{
u32 val;
int err;
err = b44_phy_write(bp, MII_BMCR, BMCR_RESET);
if (err)
return err;
udelay(100);
err = b44_phy_read(bp, MII_BMCR, &val);
if (!err) {
if (val & BMCR_RESET) {
return -ENODEV;
}
}
return 0;
}
/*
* The BCM44xx CAM (Content Addressable Memory) stores the MAC
* and PHY address.
*/
static void b44_cam_write(struct b44_private *bp, unsigned char *data,
int index)
{
u32 val;
val = ((u32) data[2]) << 24;
val |= ((u32) data[3]) << 16;
val |= ((u32) data[4]) << 8;
val |= ((u32) data[5]) << 0;
bw32(bp, B44_CAM_DATA_LO, val);
val = (CAM_DATA_HI_VALID |
(((u32) data[0]) << 8) | (((u32) data[1]) << 0));
bw32(bp, B44_CAM_DATA_HI, val);
val = CAM_CTRL_WRITE | (index << CAM_CTRL_INDEX_SHIFT);
bw32(bp, B44_CAM_CTRL, val);
b44_wait_bit(bp, B44_CAM_CTRL, CAM_CTRL_BUSY, 100, 1);
}
static void b44_set_mac_addr(struct b44_private *bp)
{
u32 val;
bw32(bp, B44_CAM_CTRL, 0);
b44_cam_write(bp, bp->netdev->ll_addr, 0);
val = br32(bp, B44_CAM_CTRL);
bw32(bp, B44_CAM_CTRL, val | CAM_CTRL_ENABLE);
}
/* Read 128-bytes of EEPROM. */
static void b44_read_eeprom(struct b44_private *bp, u8 * data)
{
long i;
u16 *ptr = (u16 *) data;
for (i = 0; i < 128; i += 2)
ptr[i / 2] = cpu_to_le16(readw(bp->regs + 4096 + i));
}
static void b44_load_mac_and_phy_addr(struct b44_private *bp)
{
u8 eeprom[128];
/* Load MAC address, note byteswapping */
b44_read_eeprom(bp, &eeprom[0]);
bp->netdev->hw_addr[0] = eeprom[79];
bp->netdev->hw_addr[1] = eeprom[78];
bp->netdev->hw_addr[2] = eeprom[81];
bp->netdev->hw_addr[3] = eeprom[80];
bp->netdev->hw_addr[4] = eeprom[83];
bp->netdev->hw_addr[5] = eeprom[82];
/* Load PHY address */
bp->phy_addr = eeprom[90] & 0x1f;
}
static void b44_set_rx_mode(struct net_device *netdev)
{
struct b44_private *bp = netdev_priv(netdev);
unsigned char zero[6] = { 0, 0, 0, 0, 0, 0 };
u32 val;
int i;
val = br32(bp, B44_RXCONFIG);
val &= ~RXCONFIG_PROMISC;
val |= RXCONFIG_ALLMULTI;
b44_set_mac_addr(bp);
for (i = 1; i < 64; i++)
b44_cam_write(bp, zero, i);
bw32(bp, B44_RXCONFIG, val);
val = br32(bp, B44_CAM_CTRL);
bw32(bp, B44_CAM_CTRL, val | CAM_CTRL_ENABLE);
}
/*** Implementation of gPXE driver callbacks ***/
/**
* Probe device
*
* @v pci PCI device
* @v id Matching entry in ID table
* @ret rc Return status code
*/
static int b44_probe(struct pci_device *pci, const struct pci_device_id *id)
{
struct net_device *netdev;
struct b44_private *bp;
int rc;
/*
* Bail out if more than 1GB of physical RAM is installed.
* This limitation will be removed later when dma mapping
* is merged into mainline.
*/
if (!phys_ram_within_limit(B44_30BIT_DMA_MASK)) {
DBG("Sorry, this version of the driver does not\n"
"support systems with more than 1GB of RAM.\n");
return -ENOMEM;
}
/* Set up netdev */
netdev = alloc_etherdev(sizeof(*bp));
if (!netdev)
return -ENOMEM;
netdev_init(netdev, &b44_operations);
pci_set_drvdata(pci, netdev);
netdev->dev = &pci->dev;
/* Set up private data */
bp = netdev_priv(netdev);
memset(bp, 0, sizeof(*bp));
bp->netdev = netdev;
bp->pci = pci;
/* Map device registers */
bp->regs = ioremap(pci->membase, B44_REGS_SIZE);
if (!bp->regs) {
netdev_put(netdev);
return -ENOMEM;
}
/* Enable PCI bus mastering */
adjust_pci_device(pci);
b44_load_mac_and_phy_addr(bp);
/* Link management currently not implemented */
netdev_link_up(netdev);
rc = register_netdev(netdev);
if (rc != 0) {
iounmap(bp->regs);
netdev_put(netdev);
return rc;
}
b44_chip_reset(bp, B44_CHIP_RESET_FULL);
DBG("b44 %s (%04x:%04x) regs=%p MAC=%s\n", id->name, id->vendor,
id->device, bp->regs, eth_ntoa(netdev->ll_addr));
return 0;
}
/**
* Remove device
*
* @v pci PCI device
*/
static void b44_remove(struct pci_device *pci)
{
struct net_device *netdev = pci_get_drvdata(pci);
struct b44_private *bp = netdev_priv(netdev);
ssb_core_disable(bp);
unregister_netdev(netdev);
iounmap(bp->regs);
netdev_nullify(netdev);
netdev_put(netdev);
}
/** Enable or disable interrupts
*
* @v netdev Network device
* @v enable Interrupts should be enabled
*/
static void b44_irq(struct net_device *netdev, int enable)
{
struct b44_private *bp = netdev_priv(netdev);
/* Interrupt mask specifies which events generate interrupts */
bw32(bp, B44_IMASK, enable ? IMASK_DEF : IMASK_DISABLE);
}
/** Open network device
*
* @v netdev Network device
* @ret rc Return status code
*/
static int b44_open(struct net_device *netdev)
{
struct b44_private *bp = netdev_priv(netdev);
int rc;
rc = b44_init_tx_ring(bp);
if (rc != 0)
return rc;
rc = b44_init_rx_ring(bp);
if (rc != 0)
return rc;
b44_init_hw(bp, B44_FULL_RESET);
/* Disable interrupts */
b44_irq(netdev, 0);
return 0;
}
/** Close network device
*
* @v netdev Network device
*/
static void b44_close(struct net_device *netdev)
{
struct b44_private *bp = netdev_priv(netdev);
b44_chip_reset(bp, B44_FULL_RESET);
b44_free_tx_ring(bp);
b44_free_rx_ring(bp);
}
/** Transmit packet
*
* @v netdev Network device
* @v iobuf I/O buffer
* @ret rc Return status code
*/
static int b44_transmit(struct net_device *netdev, struct io_buffer *iobuf)
{
struct b44_private *bp = netdev_priv(netdev);
u32 cur = bp->tx_cur;
u32 ctrl;
/* Check for TX ring overflow */
if (bp->tx[cur].ctrl) {
DBG("tx overflow\n");
return -ENOBUFS;
}
/* Will call netdev_tx_complete() on the iobuf later */
bp->tx_iobuf[cur] = iobuf;
/* Set up TX descriptor */
ctrl = (iob_len(iobuf) & DESC_CTRL_LEN) |
DESC_CTRL_IOC | DESC_CTRL_SOF | DESC_CTRL_EOF;
if (cur == B44_RING_LAST)
ctrl |= DESC_CTRL_EOT;
bp->tx[cur].ctrl = cpu_to_le32(ctrl);
bp->tx[cur].addr = cpu_to_le32(VIRT_TO_B44(iobuf->data));
/* Update next available descriptor index */
cur = ring_next(cur);
bp->tx_cur = cur;
wmb();
/* Tell card that a new TX descriptor is ready */
bw32(bp, B44_DMATX_PTR, cur * sizeof(struct dma_desc));
return 0;
}
/** Recycles sent TX descriptors and notifies network stack
*
* @v bp Driver state
*/
static void b44_tx_complete(struct b44_private *bp)
{
u32 cur, i;
cur = pending_tx_index(bp);
for (i = bp->tx_dirty; i != cur; i = ring_next(i)) {
/* Free finished frame */
netdev_tx_complete(bp->netdev, bp->tx_iobuf[i]);
bp->tx_iobuf[i] = NULL;
/* Clear TX descriptor */
bp->tx[i].ctrl = 0;
bp->tx[i].addr = 0;
}
bp->tx_dirty = cur;
}
static void b44_process_rx_packets(struct b44_private *bp)
{
struct io_buffer *iob; /* received data */
struct rx_header *rh;
u32 pending, i;
u16 len;
pending = pending_rx_index(bp);
for (i = bp->rx_cur; i != pending; i = ring_next(i)) {
iob = bp->rx_iobuf[i];
if (iob == NULL)
break;
rh = iob->data;
len = le16_to_cpu(rh->len);
/*
* Guard against incompletely written RX descriptors.
* Without this, things can get really slow!
*/
if (len == 0)
break;
/* Discard CRC that is generated by the card */
len -= 4;
/* Check for invalid packets and errors */
if (len > RX_PKT_BUF_SZ - RX_PKT_OFFSET ||
(rh->flags & cpu_to_le16(RX_FLAG_ERRORS))) {
DBG("rx error len=%d flags=%04x\n", len,
cpu_to_le16(rh->flags));
rh->len = 0;
rh->flags = 0;
netdev_rx_err(bp->netdev, iob, -EINVAL);
continue;
}
/* Clear RX descriptor */
rh->len = 0;
rh->flags = 0;
bp->rx_iobuf[i] = NULL;
/* Hand off the IO buffer to the network stack */
iob_reserve(iob, RX_PKT_OFFSET);
iob_put(iob, len);
netdev_rx(bp->netdev, iob);
}
bp->rx_cur = i;
b44_rx_refill(bp, pending_rx_index(bp));
}
/** Poll for completed and received packets
*
* @v netdev Network device
*/
static void b44_poll(struct net_device *netdev)
{
struct b44_private *bp = netdev_priv(netdev);
u32 istat;
/* Interrupt status */
istat = br32(bp, B44_ISTAT);
istat &= IMASK_DEF; /* only the events we care about */
if (!istat)
return;
if (istat & ISTAT_TX)
b44_tx_complete(bp);
if (istat & ISTAT_RX)
b44_process_rx_packets(bp);
if (istat & ISTAT_ERRORS) {
DBG("b44 error istat=0x%08x\n", istat);
/* Reset B44 core partially to avoid long waits */
b44_irq(bp->netdev, 0);
b44_halt(bp);
b44_init_tx_ring(bp);
b44_init_rx_ring(bp);
b44_init_hw(bp, B44_FULL_RESET_SKIP_PHY);
}
/* Acknowledge interrupt */
bw32(bp, B44_ISTAT, 0);
bflush(bp, B44_ISTAT, 1);
}
static struct net_device_operations b44_operations = {
.open = b44_open,
.close = b44_close,
.transmit = b44_transmit,
.poll = b44_poll,
.irq = b44_irq,
};
static struct pci_device_id b44_nics[] = {
PCI_ROM(0x14e4, 0x4401, "BCM4401", "BCM4401", 0),
PCI_ROM(0x14e4, 0x170c, "BCM4401-B0", "BCM4401-B0", 0),
PCI_ROM(0x14e4, 0x4402, "BCM4401-B1", "BCM4401-B1", 0),
};
struct pci_driver b44_driver __pci_driver = {
.ids = b44_nics,
.id_count = sizeof b44_nics / sizeof b44_nics[0],
.probe = b44_probe,
.remove = b44_remove,
};