blob: b9c97f94e6fd5322dab341cc7c4be0deec3179ae [file] [log] [blame]
/*
* Copyright (C) 2008 Michael Brown <mbrown@fensystems.co.uk>.
* Copyright (C) 2008 Mellanox Technologies Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
FILE_LICENCE ( GPL2_OR_LATER );
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <errno.h>
#include <byteswap.h>
#include <gpxe/io.h>
#include <gpxe/pci.h>
#include <gpxe/pcibackup.h>
#include <gpxe/malloc.h>
#include <gpxe/umalloc.h>
#include <gpxe/iobuf.h>
#include <gpxe/netdevice.h>
#include <gpxe/infiniband.h>
#include <gpxe/ib_smc.h>
#include "hermon.h"
/**
* @file
*
* Mellanox Hermon Infiniband HCA
*
*/
/***************************************************************************
*
* Queue number allocation
*
***************************************************************************
*/
/**
* Allocate offsets within usage bitmask
*
* @v bits Usage bitmask
* @v bits_len Length of usage bitmask
* @v num_bits Number of contiguous bits to allocate within bitmask
* @ret bit First free bit within bitmask, or negative error
*/
static int hermon_bitmask_alloc ( hermon_bitmask_t *bits,
unsigned int bits_len,
unsigned int num_bits ) {
unsigned int bit = 0;
hermon_bitmask_t mask = 1;
unsigned int found = 0;
/* Search bits for num_bits contiguous free bits */
while ( bit < bits_len ) {
if ( ( mask & *bits ) == 0 ) {
if ( ++found == num_bits )
goto found;
} else {
found = 0;
}
bit++;
mask = ( mask << 1 ) | ( mask >> ( 8 * sizeof ( mask ) - 1 ) );
if ( mask == 1 )
bits++;
}
return -ENFILE;
found:
/* Mark bits as in-use */
do {
*bits |= mask;
if ( mask == 1 )
bits--;
mask = ( mask >> 1 ) | ( mask << ( 8 * sizeof ( mask ) - 1 ) );
} while ( --found );
return ( bit - num_bits + 1 );
}
/**
* Free offsets within usage bitmask
*
* @v bits Usage bitmask
* @v bit Starting bit within bitmask
* @v num_bits Number of contiguous bits to free within bitmask
*/
static void hermon_bitmask_free ( hermon_bitmask_t *bits,
int bit, unsigned int num_bits ) {
hermon_bitmask_t mask;
for ( ; num_bits ; bit++, num_bits-- ) {
mask = ( 1 << ( bit % ( 8 * sizeof ( mask ) ) ) );
bits[ ( bit / ( 8 * sizeof ( mask ) ) ) ] &= ~mask;
}
}
/***************************************************************************
*
* HCA commands
*
***************************************************************************
*/
/**
* Wait for Hermon command completion
*
* @v hermon Hermon device
* @v hcr HCA command registers
* @ret rc Return status code
*/
static int hermon_cmd_wait ( struct hermon *hermon,
struct hermonprm_hca_command_register *hcr ) {
unsigned int wait;
for ( wait = HERMON_HCR_MAX_WAIT_MS ; wait ; wait-- ) {
hcr->u.dwords[6] =
readl ( hermon->config + HERMON_HCR_REG ( 6 ) );
if ( ( MLX_GET ( hcr, go ) == 0 ) &&
( MLX_GET ( hcr, t ) == hermon->toggle ) )
return 0;
mdelay ( 1 );
}
return -EBUSY;
}
/**
* Issue HCA command
*
* @v hermon Hermon device
* @v command Command opcode, flags and input/output lengths
* @v op_mod Opcode modifier (0 if no modifier applicable)
* @v in Input parameters
* @v in_mod Input modifier (0 if no modifier applicable)
* @v out Output parameters
* @ret rc Return status code
*/
static int hermon_cmd ( struct hermon *hermon, unsigned long command,
unsigned int op_mod, const void *in,
unsigned int in_mod, void *out ) {
struct hermonprm_hca_command_register hcr;
unsigned int opcode = HERMON_HCR_OPCODE ( command );
size_t in_len = HERMON_HCR_IN_LEN ( command );
size_t out_len = HERMON_HCR_OUT_LEN ( command );
void *in_buffer;
void *out_buffer;
unsigned int status;
unsigned int i;
int rc;
assert ( in_len <= HERMON_MBOX_SIZE );
assert ( out_len <= HERMON_MBOX_SIZE );
DBGC2 ( hermon, "Hermon %p command %02x in %zx%s out %zx%s\n",
hermon, opcode, in_len,
( ( command & HERMON_HCR_IN_MBOX ) ? "(mbox)" : "" ), out_len,
( ( command & HERMON_HCR_OUT_MBOX ) ? "(mbox)" : "" ) );
/* Check that HCR is free */
if ( ( rc = hermon_cmd_wait ( hermon, &hcr ) ) != 0 ) {
DBGC ( hermon, "Hermon %p command interface locked\n",
hermon );
return rc;
}
/* Flip HCR toggle */
hermon->toggle = ( 1 - hermon->toggle );
/* Prepare HCR */
memset ( &hcr, 0, sizeof ( hcr ) );
in_buffer = &hcr.u.dwords[0];
if ( in_len && ( command & HERMON_HCR_IN_MBOX ) ) {
in_buffer = hermon->mailbox_in;
MLX_FILL_1 ( &hcr, 1, in_param_l, virt_to_bus ( in_buffer ) );
}
memcpy ( in_buffer, in, in_len );
MLX_FILL_1 ( &hcr, 2, input_modifier, in_mod );
out_buffer = &hcr.u.dwords[3];
if ( out_len && ( command & HERMON_HCR_OUT_MBOX ) ) {
out_buffer = hermon->mailbox_out;
MLX_FILL_1 ( &hcr, 4, out_param_l,
virt_to_bus ( out_buffer ) );
}
MLX_FILL_4 ( &hcr, 6,
opcode, opcode,
opcode_modifier, op_mod,
go, 1,
t, hermon->toggle );
DBGC ( hermon, "Hermon %p issuing command %04x\n",
hermon, opcode );
DBGC2_HDA ( hermon, virt_to_phys ( hermon->config + HERMON_HCR_BASE ),
&hcr, sizeof ( hcr ) );
if ( in_len && ( command & HERMON_HCR_IN_MBOX ) ) {
DBGC2 ( hermon, "Input mailbox:\n" );
DBGC2_HDA ( hermon, virt_to_phys ( in_buffer ), in_buffer,
( ( in_len < 512 ) ? in_len : 512 ) );
}
/* Issue command */
for ( i = 0 ; i < ( sizeof ( hcr ) / sizeof ( hcr.u.dwords[0] ) ) ;
i++ ) {
writel ( hcr.u.dwords[i],
hermon->config + HERMON_HCR_REG ( i ) );
barrier();
}
/* Wait for command completion */
if ( ( rc = hermon_cmd_wait ( hermon, &hcr ) ) != 0 ) {
DBGC ( hermon, "Hermon %p timed out waiting for command:\n",
hermon );
DBGC_HDA ( hermon,
virt_to_phys ( hermon->config + HERMON_HCR_BASE ),
&hcr, sizeof ( hcr ) );
return rc;
}
/* Check command status */
status = MLX_GET ( &hcr, status );
if ( status != 0 ) {
DBGC ( hermon, "Hermon %p command failed with status %02x:\n",
hermon, status );
DBGC_HDA ( hermon,
virt_to_phys ( hermon->config + HERMON_HCR_BASE ),
&hcr, sizeof ( hcr ) );
return -EIO;
}
/* Read output parameters, if any */
hcr.u.dwords[3] = readl ( hermon->config + HERMON_HCR_REG ( 3 ) );
hcr.u.dwords[4] = readl ( hermon->config + HERMON_HCR_REG ( 4 ) );
memcpy ( out, out_buffer, out_len );
if ( out_len ) {
DBGC2 ( hermon, "Output%s:\n",
( command & HERMON_HCR_OUT_MBOX ) ? " mailbox" : "" );
DBGC2_HDA ( hermon, virt_to_phys ( out_buffer ), out_buffer,
( ( out_len < 512 ) ? out_len : 512 ) );
}
return 0;
}
static inline int
hermon_cmd_query_dev_cap ( struct hermon *hermon,
struct hermonprm_query_dev_cap *dev_cap ) {
return hermon_cmd ( hermon,
HERMON_HCR_OUT_CMD ( HERMON_HCR_QUERY_DEV_CAP,
1, sizeof ( *dev_cap ) ),
0, NULL, 0, dev_cap );
}
static inline int
hermon_cmd_query_fw ( struct hermon *hermon, struct hermonprm_query_fw *fw ) {
return hermon_cmd ( hermon,
HERMON_HCR_OUT_CMD ( HERMON_HCR_QUERY_FW,
1, sizeof ( *fw ) ),
0, NULL, 0, fw );
}
static inline int
hermon_cmd_init_hca ( struct hermon *hermon,
const struct hermonprm_init_hca *init_hca ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_INIT_HCA,
1, sizeof ( *init_hca ) ),
0, init_hca, 0, NULL );
}
static inline int
hermon_cmd_close_hca ( struct hermon *hermon ) {
return hermon_cmd ( hermon,
HERMON_HCR_VOID_CMD ( HERMON_HCR_CLOSE_HCA ),
0, NULL, 0, NULL );
}
static inline int
hermon_cmd_init_port ( struct hermon *hermon, unsigned int port,
const struct hermonprm_init_port *init_port ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_INIT_PORT,
1, sizeof ( *init_port ) ),
0, init_port, port, NULL );
}
static inline int
hermon_cmd_close_port ( struct hermon *hermon, unsigned int port ) {
return hermon_cmd ( hermon,
HERMON_HCR_VOID_CMD ( HERMON_HCR_CLOSE_PORT ),
0, NULL, port, NULL );
}
static inline int
hermon_cmd_sw2hw_mpt ( struct hermon *hermon, unsigned int index,
const struct hermonprm_mpt *mpt ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_SW2HW_MPT,
1, sizeof ( *mpt ) ),
0, mpt, index, NULL );
}
static inline int
hermon_cmd_write_mtt ( struct hermon *hermon,
const struct hermonprm_write_mtt *write_mtt ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_WRITE_MTT,
1, sizeof ( *write_mtt ) ),
0, write_mtt, 1, NULL );
}
static inline int
hermon_cmd_map_eq ( struct hermon *hermon, unsigned long index_map,
const struct hermonprm_event_mask *mask ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_MAP_EQ,
0, sizeof ( *mask ) ),
0, mask, index_map, NULL );
}
static inline int
hermon_cmd_sw2hw_eq ( struct hermon *hermon, unsigned int index,
const struct hermonprm_eqc *eqctx ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_SW2HW_EQ,
1, sizeof ( *eqctx ) ),
0, eqctx, index, NULL );
}
static inline int
hermon_cmd_hw2sw_eq ( struct hermon *hermon, unsigned int index,
struct hermonprm_eqc *eqctx ) {
return hermon_cmd ( hermon,
HERMON_HCR_OUT_CMD ( HERMON_HCR_HW2SW_EQ,
1, sizeof ( *eqctx ) ),
1, NULL, index, eqctx );
}
static inline int
hermon_cmd_query_eq ( struct hermon *hermon, unsigned int index,
struct hermonprm_eqc *eqctx ) {
return hermon_cmd ( hermon,
HERMON_HCR_OUT_CMD ( HERMON_HCR_QUERY_EQ,
1, sizeof ( *eqctx ) ),
0, NULL, index, eqctx );
}
static inline int
hermon_cmd_sw2hw_cq ( struct hermon *hermon, unsigned long cqn,
const struct hermonprm_completion_queue_context *cqctx ){
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_SW2HW_CQ,
1, sizeof ( *cqctx ) ),
0, cqctx, cqn, NULL );
}
static inline int
hermon_cmd_hw2sw_cq ( struct hermon *hermon, unsigned long cqn,
struct hermonprm_completion_queue_context *cqctx) {
return hermon_cmd ( hermon,
HERMON_HCR_OUT_CMD ( HERMON_HCR_HW2SW_CQ,
1, sizeof ( *cqctx ) ),
0, NULL, cqn, cqctx );
}
static inline int
hermon_cmd_rst2init_qp ( struct hermon *hermon, unsigned long qpn,
const struct hermonprm_qp_ee_state_transitions *ctx ){
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_RST2INIT_QP,
1, sizeof ( *ctx ) ),
0, ctx, qpn, NULL );
}
static inline int
hermon_cmd_init2rtr_qp ( struct hermon *hermon, unsigned long qpn,
const struct hermonprm_qp_ee_state_transitions *ctx ){
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_INIT2RTR_QP,
1, sizeof ( *ctx ) ),
0, ctx, qpn, NULL );
}
static inline int
hermon_cmd_rtr2rts_qp ( struct hermon *hermon, unsigned long qpn,
const struct hermonprm_qp_ee_state_transitions *ctx ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_RTR2RTS_QP,
1, sizeof ( *ctx ) ),
0, ctx, qpn, NULL );
}
static inline int
hermon_cmd_rts2rts_qp ( struct hermon *hermon, unsigned long qpn,
const struct hermonprm_qp_ee_state_transitions *ctx ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_RTS2RTS_QP,
1, sizeof ( *ctx ) ),
0, ctx, qpn, NULL );
}
static inline int
hermon_cmd_2rst_qp ( struct hermon *hermon, unsigned long qpn ) {
return hermon_cmd ( hermon,
HERMON_HCR_VOID_CMD ( HERMON_HCR_2RST_QP ),
0x03, NULL, qpn, NULL );
}
static inline int
hermon_cmd_query_qp ( struct hermon *hermon, unsigned long qpn,
struct hermonprm_qp_ee_state_transitions *ctx ) {
return hermon_cmd ( hermon,
HERMON_HCR_OUT_CMD ( HERMON_HCR_QUERY_QP,
1, sizeof ( *ctx ) ),
0, NULL, qpn, ctx );
}
static inline int
hermon_cmd_conf_special_qp ( struct hermon *hermon, unsigned int internal_qps,
unsigned long base_qpn ) {
return hermon_cmd ( hermon,
HERMON_HCR_VOID_CMD ( HERMON_HCR_CONF_SPECIAL_QP ),
internal_qps, NULL, base_qpn, NULL );
}
static inline int
hermon_cmd_mad_ifc ( struct hermon *hermon, unsigned int port,
union hermonprm_mad *mad ) {
return hermon_cmd ( hermon,
HERMON_HCR_INOUT_CMD ( HERMON_HCR_MAD_IFC,
1, sizeof ( *mad ),
1, sizeof ( *mad ) ),
0x03, mad, port, mad );
}
static inline int
hermon_cmd_read_mcg ( struct hermon *hermon, unsigned int index,
struct hermonprm_mcg_entry *mcg ) {
return hermon_cmd ( hermon,
HERMON_HCR_OUT_CMD ( HERMON_HCR_READ_MCG,
1, sizeof ( *mcg ) ),
0, NULL, index, mcg );
}
static inline int
hermon_cmd_write_mcg ( struct hermon *hermon, unsigned int index,
const struct hermonprm_mcg_entry *mcg ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_WRITE_MCG,
1, sizeof ( *mcg ) ),
0, mcg, index, NULL );
}
static inline int
hermon_cmd_mgid_hash ( struct hermon *hermon, const struct ib_gid *gid,
struct hermonprm_mgm_hash *hash ) {
return hermon_cmd ( hermon,
HERMON_HCR_INOUT_CMD ( HERMON_HCR_MGID_HASH,
1, sizeof ( *gid ),
0, sizeof ( *hash ) ),
0, gid, 0, hash );
}
static inline int
hermon_cmd_run_fw ( struct hermon *hermon ) {
return hermon_cmd ( hermon,
HERMON_HCR_VOID_CMD ( HERMON_HCR_RUN_FW ),
0, NULL, 0, NULL );
}
static inline int
hermon_cmd_unmap_icm ( struct hermon *hermon, unsigned int page_count,
const struct hermonprm_scalar_parameter *offset ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_UNMAP_ICM,
0, sizeof ( *offset ) ),
0, offset, page_count, NULL );
}
static inline int
hermon_cmd_map_icm ( struct hermon *hermon,
const struct hermonprm_virtual_physical_mapping *map ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_MAP_ICM,
1, sizeof ( *map ) ),
0, map, 1, NULL );
}
static inline int
hermon_cmd_unmap_icm_aux ( struct hermon *hermon ) {
return hermon_cmd ( hermon,
HERMON_HCR_VOID_CMD ( HERMON_HCR_UNMAP_ICM_AUX ),
0, NULL, 0, NULL );
}
static inline int
hermon_cmd_map_icm_aux ( struct hermon *hermon,
const struct hermonprm_virtual_physical_mapping *map ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_MAP_ICM_AUX,
1, sizeof ( *map ) ),
0, map, 1, NULL );
}
static inline int
hermon_cmd_set_icm_size ( struct hermon *hermon,
const struct hermonprm_scalar_parameter *icm_size,
struct hermonprm_scalar_parameter *icm_aux_size ) {
return hermon_cmd ( hermon,
HERMON_HCR_INOUT_CMD ( HERMON_HCR_SET_ICM_SIZE,
0, sizeof ( *icm_size ),
0, sizeof (*icm_aux_size) ),
0, icm_size, 0, icm_aux_size );
}
static inline int
hermon_cmd_unmap_fa ( struct hermon *hermon ) {
return hermon_cmd ( hermon,
HERMON_HCR_VOID_CMD ( HERMON_HCR_UNMAP_FA ),
0, NULL, 0, NULL );
}
static inline int
hermon_cmd_map_fa ( struct hermon *hermon,
const struct hermonprm_virtual_physical_mapping *map ) {
return hermon_cmd ( hermon,
HERMON_HCR_IN_CMD ( HERMON_HCR_MAP_FA,
1, sizeof ( *map ) ),
0, map, 1, NULL );
}
static inline int
hermon_cmd_sense_port ( struct hermon *hermon, unsigned int port,
struct hermonprm_sense_port *port_type ) {
return hermon_cmd ( hermon,
HERMON_HCR_OUT_CMD ( HERMON_HCR_SENSE_PORT,
1, sizeof ( *port_type ) ),
0, NULL, port, port_type );
}
/***************************************************************************
*
* Memory translation table operations
*
***************************************************************************
*/
/**
* Allocate MTT entries
*
* @v hermon Hermon device
* @v memory Memory to map into MTT
* @v len Length of memory to map
* @v mtt MTT descriptor to fill in
* @ret rc Return status code
*/
static int hermon_alloc_mtt ( struct hermon *hermon,
const void *memory, size_t len,
struct hermon_mtt *mtt ) {
struct hermonprm_write_mtt write_mtt;
physaddr_t start;
unsigned int page_offset;
unsigned int num_pages;
int mtt_offset;
unsigned int mtt_base_addr;
unsigned int i;
int rc;
/* Find available MTT entries */
start = virt_to_phys ( memory );
page_offset = ( start & ( HERMON_PAGE_SIZE - 1 ) );
start -= page_offset;
len += page_offset;
num_pages = ( ( len + HERMON_PAGE_SIZE - 1 ) / HERMON_PAGE_SIZE );
mtt_offset = hermon_bitmask_alloc ( hermon->mtt_inuse, HERMON_MAX_MTTS,
num_pages );
if ( mtt_offset < 0 ) {
DBGC ( hermon, "Hermon %p could not allocate %d MTT entries\n",
hermon, num_pages );
rc = mtt_offset;
goto err_mtt_offset;
}
mtt_base_addr = ( ( hermon->cap.reserved_mtts + mtt_offset ) *
hermon->cap.mtt_entry_size );
/* Fill in MTT structure */
mtt->mtt_offset = mtt_offset;
mtt->num_pages = num_pages;
mtt->mtt_base_addr = mtt_base_addr;
mtt->page_offset = page_offset;
/* Construct and issue WRITE_MTT commands */
for ( i = 0 ; i < num_pages ; i++ ) {
memset ( &write_mtt, 0, sizeof ( write_mtt ) );
MLX_FILL_1 ( &write_mtt.mtt_base_addr, 1,
value, mtt_base_addr );
MLX_FILL_2 ( &write_mtt.mtt, 1,
p, 1,
ptag_l, ( start >> 3 ) );
if ( ( rc = hermon_cmd_write_mtt ( hermon,
&write_mtt ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not write MTT at %x\n",
hermon, mtt_base_addr );
goto err_write_mtt;
}
start += HERMON_PAGE_SIZE;
mtt_base_addr += hermon->cap.mtt_entry_size;
}
return 0;
err_write_mtt:
hermon_bitmask_free ( hermon->mtt_inuse, mtt_offset, num_pages );
err_mtt_offset:
return rc;
}
/**
* Free MTT entries
*
* @v hermon Hermon device
* @v mtt MTT descriptor
*/
static void hermon_free_mtt ( struct hermon *hermon,
struct hermon_mtt *mtt ) {
hermon_bitmask_free ( hermon->mtt_inuse, mtt->mtt_offset,
mtt->num_pages );
}
/***************************************************************************
*
* MAD operations
*
***************************************************************************
*/
/**
* Issue management datagram
*
* @v ibdev Infiniband device
* @v mad Management datagram
* @ret rc Return status code
*/
static int hermon_mad ( struct ib_device *ibdev, union ib_mad *mad ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
union hermonprm_mad mad_ifc;
int rc;
linker_assert ( sizeof ( *mad ) == sizeof ( mad_ifc.mad ),
mad_size_mismatch );
/* Copy in request packet */
memcpy ( &mad_ifc.mad, mad, sizeof ( mad_ifc.mad ) );
/* Issue MAD */
if ( ( rc = hermon_cmd_mad_ifc ( hermon, ibdev->port,
&mad_ifc ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not issue MAD IFC: %s\n",
hermon, strerror ( rc ) );
return rc;
}
/* Copy out reply packet */
memcpy ( mad, &mad_ifc.mad, sizeof ( *mad ) );
if ( mad->hdr.status != 0 ) {
DBGC ( hermon, "Hermon %p MAD IFC status %04x\n",
hermon, ntohs ( mad->hdr.status ) );
return -EIO;
}
return 0;
}
/***************************************************************************
*
* Completion queue operations
*
***************************************************************************
*/
/**
* Create completion queue
*
* @v ibdev Infiniband device
* @v cq Completion queue
* @ret rc Return status code
*/
static int hermon_create_cq ( struct ib_device *ibdev,
struct ib_completion_queue *cq ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_completion_queue *hermon_cq;
struct hermonprm_completion_queue_context cqctx;
int cqn_offset;
unsigned int i;
int rc;
/* Find a free completion queue number */
cqn_offset = hermon_bitmask_alloc ( hermon->cq_inuse,
HERMON_MAX_CQS, 1 );
if ( cqn_offset < 0 ) {
DBGC ( hermon, "Hermon %p out of completion queues\n",
hermon );
rc = cqn_offset;
goto err_cqn_offset;
}
cq->cqn = ( hermon->cap.reserved_cqs + cqn_offset );
/* Allocate control structures */
hermon_cq = zalloc ( sizeof ( *hermon_cq ) );
if ( ! hermon_cq ) {
rc = -ENOMEM;
goto err_hermon_cq;
}
/* Allocate completion queue itself */
hermon_cq->cqe_size = ( cq->num_cqes * sizeof ( hermon_cq->cqe[0] ) );
hermon_cq->cqe = malloc_dma ( hermon_cq->cqe_size,
sizeof ( hermon_cq->cqe[0] ) );
if ( ! hermon_cq->cqe ) {
rc = -ENOMEM;
goto err_cqe;
}
memset ( hermon_cq->cqe, 0, hermon_cq->cqe_size );
for ( i = 0 ; i < cq->num_cqes ; i++ ) {
MLX_FILL_1 ( &hermon_cq->cqe[i].normal, 7, owner, 1 );
}
barrier();
/* Allocate MTT entries */
if ( ( rc = hermon_alloc_mtt ( hermon, hermon_cq->cqe,
hermon_cq->cqe_size,
&hermon_cq->mtt ) ) != 0 )
goto err_alloc_mtt;
/* Hand queue over to hardware */
memset ( &cqctx, 0, sizeof ( cqctx ) );
MLX_FILL_1 ( &cqctx, 0, st, 0xa /* "Event fired" */ );
MLX_FILL_1 ( &cqctx, 2,
page_offset, ( hermon_cq->mtt.page_offset >> 5 ) );
MLX_FILL_2 ( &cqctx, 3,
usr_page, HERMON_UAR_NON_EQ_PAGE,
log_cq_size, fls ( cq->num_cqes - 1 ) );
MLX_FILL_1 ( &cqctx, 7, mtt_base_addr_l,
( hermon_cq->mtt.mtt_base_addr >> 3 ) );
MLX_FILL_1 ( &cqctx, 15, db_record_addr_l,
( virt_to_phys ( &hermon_cq->doorbell ) >> 3 ) );
if ( ( rc = hermon_cmd_sw2hw_cq ( hermon, cq->cqn, &cqctx ) ) != 0 ) {
DBGC ( hermon, "Hermon %p SW2HW_CQ failed: %s\n",
hermon, strerror ( rc ) );
goto err_sw2hw_cq;
}
DBGC ( hermon, "Hermon %p CQN %#lx ring at [%p,%p)\n",
hermon, cq->cqn, hermon_cq->cqe,
( ( ( void * ) hermon_cq->cqe ) + hermon_cq->cqe_size ) );
ib_cq_set_drvdata ( cq, hermon_cq );
return 0;
err_sw2hw_cq:
hermon_free_mtt ( hermon, &hermon_cq->mtt );
err_alloc_mtt:
free_dma ( hermon_cq->cqe, hermon_cq->cqe_size );
err_cqe:
free ( hermon_cq );
err_hermon_cq:
hermon_bitmask_free ( hermon->cq_inuse, cqn_offset, 1 );
err_cqn_offset:
return rc;
}
/**
* Destroy completion queue
*
* @v ibdev Infiniband device
* @v cq Completion queue
*/
static void hermon_destroy_cq ( struct ib_device *ibdev,
struct ib_completion_queue *cq ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_completion_queue *hermon_cq = ib_cq_get_drvdata ( cq );
struct hermonprm_completion_queue_context cqctx;
int cqn_offset;
int rc;
/* Take ownership back from hardware */
if ( ( rc = hermon_cmd_hw2sw_cq ( hermon, cq->cqn, &cqctx ) ) != 0 ) {
DBGC ( hermon, "Hermon %p FATAL HW2SW_CQ failed on CQN %#lx: "
"%s\n", hermon, cq->cqn, strerror ( rc ) );
/* Leak memory and return; at least we avoid corruption */
return;
}
/* Free MTT entries */
hermon_free_mtt ( hermon, &hermon_cq->mtt );
/* Free memory */
free_dma ( hermon_cq->cqe, hermon_cq->cqe_size );
free ( hermon_cq );
/* Mark queue number as free */
cqn_offset = ( cq->cqn - hermon->cap.reserved_cqs );
hermon_bitmask_free ( hermon->cq_inuse, cqn_offset, 1 );
ib_cq_set_drvdata ( cq, NULL );
}
/***************************************************************************
*
* Queue pair operations
*
***************************************************************************
*/
/**
* Assign queue pair number
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @ret rc Return status code
*/
static int hermon_alloc_qpn ( struct ib_device *ibdev,
struct ib_queue_pair *qp ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
unsigned int port_offset;
int qpn_offset;
/* Calculate queue pair number */
port_offset = ( ibdev->port - HERMON_PORT_BASE );
switch ( qp->type ) {
case IB_QPT_SMI:
qp->qpn = ( hermon->special_qpn_base + port_offset );
return 0;
case IB_QPT_GSI:
qp->qpn = ( hermon->special_qpn_base + 2 + port_offset );
return 0;
case IB_QPT_UD:
case IB_QPT_RC:
/* Find a free queue pair number */
qpn_offset = hermon_bitmask_alloc ( hermon->qp_inuse,
HERMON_MAX_QPS, 1 );
if ( qpn_offset < 0 ) {
DBGC ( hermon, "Hermon %p out of queue pairs\n",
hermon );
return qpn_offset;
}
qp->qpn = ( ( random() & HERMON_QPN_RANDOM_MASK ) |
( hermon->qpn_base + qpn_offset ) );
return 0;
default:
DBGC ( hermon, "Hermon %p unsupported QP type %d\n",
hermon, qp->type );
return -ENOTSUP;
}
}
/**
* Free queue pair number
*
* @v ibdev Infiniband device
* @v qp Queue pair
*/
static void hermon_free_qpn ( struct ib_device *ibdev,
struct ib_queue_pair *qp ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
int qpn_offset;
qpn_offset = ( ( qp->qpn & ~HERMON_QPN_RANDOM_MASK )
- hermon->qpn_base );
if ( qpn_offset >= 0 )
hermon_bitmask_free ( hermon->qp_inuse, qpn_offset, 1 );
}
/**
* Calculate transmission rate
*
* @v av Address vector
* @ret hermon_rate Hermon rate
*/
static unsigned int hermon_rate ( struct ib_address_vector *av ) {
return ( ( ( av->rate >= IB_RATE_2_5 ) && ( av->rate <= IB_RATE_120 ) )
? ( av->rate + 5 ) : 0 );
}
/**
* Calculate schedule queue
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @ret sched_queue Schedule queue
*/
static unsigned int hermon_sched_queue ( struct ib_device *ibdev,
struct ib_queue_pair *qp ) {
return ( ( ( qp->type == IB_QPT_SMI ) ?
HERMON_SCHED_QP0 : HERMON_SCHED_DEFAULT ) |
( ( ibdev->port - 1 ) << 6 ) );
}
/** Queue pair transport service type map */
static uint8_t hermon_qp_st[] = {
[IB_QPT_SMI] = HERMON_ST_MLX,
[IB_QPT_GSI] = HERMON_ST_MLX,
[IB_QPT_UD] = HERMON_ST_UD,
[IB_QPT_RC] = HERMON_ST_RC,
};
/**
* Dump queue pair context (for debugging only)
*
* @v hermon Hermon device
* @v qp Queue pair
* @ret rc Return status code
*/
static inline int hermon_dump_qpctx ( struct hermon *hermon,
struct ib_queue_pair *qp ) {
struct hermonprm_qp_ee_state_transitions qpctx;
int rc;
memset ( &qpctx, 0, sizeof ( qpctx ) );
if ( ( rc = hermon_cmd_query_qp ( hermon, qp->qpn, &qpctx ) ) != 0 ) {
DBGC ( hermon, "Hermon %p QUERY_QP failed: %s\n",
hermon, strerror ( rc ) );
return rc;
}
DBGC ( hermon, "Hermon %p QPN %lx context:\n", hermon, qp->qpn );
DBGC_HDA ( hermon, 0, &qpctx.u.dwords[2],
( sizeof ( qpctx ) - 8 ) );
return 0;
}
/**
* Create queue pair
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @ret rc Return status code
*/
static int hermon_create_qp ( struct ib_device *ibdev,
struct ib_queue_pair *qp ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_queue_pair *hermon_qp;
struct hermonprm_qp_ee_state_transitions qpctx;
int rc;
/* Calculate queue pair number */
if ( ( rc = hermon_alloc_qpn ( ibdev, qp ) ) != 0 )
goto err_alloc_qpn;
/* Allocate control structures */
hermon_qp = zalloc ( sizeof ( *hermon_qp ) );
if ( ! hermon_qp ) {
rc = -ENOMEM;
goto err_hermon_qp;
}
/* Calculate doorbell address */
hermon_qp->send.doorbell =
( hermon->uar + HERMON_UAR_NON_EQ_PAGE * HERMON_PAGE_SIZE +
HERMON_DB_POST_SND_OFFSET );
/* Allocate work queue buffer */
hermon_qp->send.num_wqes = ( qp->send.num_wqes /* headroom */ + 1 +
( 2048 / sizeof ( hermon_qp->send.wqe[0] ) ) );
hermon_qp->send.num_wqes =
( 1 << fls ( hermon_qp->send.num_wqes - 1 ) ); /* round up */
hermon_qp->send.wqe_size = ( hermon_qp->send.num_wqes *
sizeof ( hermon_qp->send.wqe[0] ) );
hermon_qp->recv.wqe_size = ( qp->recv.num_wqes *
sizeof ( hermon_qp->recv.wqe[0] ) );
hermon_qp->wqe_size = ( hermon_qp->send.wqe_size +
hermon_qp->recv.wqe_size );
hermon_qp->wqe = malloc_dma ( hermon_qp->wqe_size,
sizeof ( hermon_qp->send.wqe[0] ) );
if ( ! hermon_qp->wqe ) {
rc = -ENOMEM;
goto err_alloc_wqe;
}
hermon_qp->send.wqe = hermon_qp->wqe;
memset ( hermon_qp->send.wqe, 0xff, hermon_qp->send.wqe_size );
hermon_qp->recv.wqe = ( hermon_qp->wqe + hermon_qp->send.wqe_size );
memset ( hermon_qp->recv.wqe, 0, hermon_qp->recv.wqe_size );
/* Allocate MTT entries */
if ( ( rc = hermon_alloc_mtt ( hermon, hermon_qp->wqe,
hermon_qp->wqe_size,
&hermon_qp->mtt ) ) != 0 ) {
goto err_alloc_mtt;
}
/* Transition queue to INIT state */
memset ( &qpctx, 0, sizeof ( qpctx ) );
MLX_FILL_2 ( &qpctx, 2,
qpc_eec_data.pm_state, HERMON_PM_STATE_MIGRATED,
qpc_eec_data.st, hermon_qp_st[qp->type] );
MLX_FILL_1 ( &qpctx, 3, qpc_eec_data.pd, HERMON_GLOBAL_PD );
MLX_FILL_4 ( &qpctx, 4,
qpc_eec_data.log_rq_size, fls ( qp->recv.num_wqes - 1 ),
qpc_eec_data.log_rq_stride,
( fls ( sizeof ( hermon_qp->recv.wqe[0] ) - 1 ) - 4 ),
qpc_eec_data.log_sq_size,
fls ( hermon_qp->send.num_wqes - 1 ),
qpc_eec_data.log_sq_stride,
( fls ( sizeof ( hermon_qp->send.wqe[0] ) - 1 ) - 4 ) );
MLX_FILL_1 ( &qpctx, 5,
qpc_eec_data.usr_page, HERMON_UAR_NON_EQ_PAGE );
MLX_FILL_1 ( &qpctx, 33, qpc_eec_data.cqn_snd, qp->send.cq->cqn );
MLX_FILL_4 ( &qpctx, 38,
qpc_eec_data.rre, 1,
qpc_eec_data.rwe, 1,
qpc_eec_data.rae, 1,
qpc_eec_data.page_offset,
( hermon_qp->mtt.page_offset >> 6 ) );
MLX_FILL_1 ( &qpctx, 41, qpc_eec_data.cqn_rcv, qp->recv.cq->cqn );
MLX_FILL_1 ( &qpctx, 43, qpc_eec_data.db_record_addr_l,
( virt_to_phys ( &hermon_qp->recv.doorbell ) >> 2 ) );
MLX_FILL_1 ( &qpctx, 53, qpc_eec_data.mtt_base_addr_l,
( hermon_qp->mtt.mtt_base_addr >> 3 ) );
if ( ( rc = hermon_cmd_rst2init_qp ( hermon, qp->qpn,
&qpctx ) ) != 0 ) {
DBGC ( hermon, "Hermon %p RST2INIT_QP failed: %s\n",
hermon, strerror ( rc ) );
goto err_rst2init_qp;
}
hermon_qp->state = HERMON_QP_ST_INIT;
DBGC ( hermon, "Hermon %p QPN %#lx send ring at [%p,%p)\n",
hermon, qp->qpn, hermon_qp->send.wqe,
( ((void *)hermon_qp->send.wqe ) + hermon_qp->send.wqe_size ) );
DBGC ( hermon, "Hermon %p QPN %#lx receive ring at [%p,%p)\n",
hermon, qp->qpn, hermon_qp->recv.wqe,
( ((void *)hermon_qp->recv.wqe ) + hermon_qp->recv.wqe_size ) );
ib_qp_set_drvdata ( qp, hermon_qp );
return 0;
hermon_cmd_2rst_qp ( hermon, qp->qpn );
err_rst2init_qp:
hermon_free_mtt ( hermon, &hermon_qp->mtt );
err_alloc_mtt:
free_dma ( hermon_qp->wqe, hermon_qp->wqe_size );
err_alloc_wqe:
free ( hermon_qp );
err_hermon_qp:
hermon_free_qpn ( ibdev, qp );
err_alloc_qpn:
return rc;
}
/**
* Modify queue pair
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @ret rc Return status code
*/
static int hermon_modify_qp ( struct ib_device *ibdev,
struct ib_queue_pair *qp ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_queue_pair *hermon_qp = ib_qp_get_drvdata ( qp );
struct hermonprm_qp_ee_state_transitions qpctx;
int rc;
/* Transition queue to RTR state, if applicable */
if ( hermon_qp->state < HERMON_QP_ST_RTR ) {
memset ( &qpctx, 0, sizeof ( qpctx ) );
MLX_FILL_2 ( &qpctx, 4,
qpc_eec_data.mtu, HERMON_MTU_2048,
qpc_eec_data.msg_max, 31 );
MLX_FILL_1 ( &qpctx, 7,
qpc_eec_data.remote_qpn_een, qp->av.qpn );
MLX_FILL_1 ( &qpctx, 9,
qpc_eec_data.primary_address_path.rlid,
qp->av.lid );
MLX_FILL_1 ( &qpctx, 10,
qpc_eec_data.primary_address_path.max_stat_rate,
hermon_rate ( &qp->av ) );
memcpy ( &qpctx.u.dwords[12], &qp->av.gid,
sizeof ( qp->av.gid ) );
MLX_FILL_1 ( &qpctx, 16,
qpc_eec_data.primary_address_path.sched_queue,
hermon_sched_queue ( ibdev, qp ) );
MLX_FILL_1 ( &qpctx, 39,
qpc_eec_data.next_rcv_psn, qp->recv.psn );
if ( ( rc = hermon_cmd_init2rtr_qp ( hermon, qp->qpn,
&qpctx ) ) != 0 ) {
DBGC ( hermon, "Hermon %p INIT2RTR_QP failed: %s\n",
hermon, strerror ( rc ) );
return rc;
}
hermon_qp->state = HERMON_QP_ST_RTR;
}
/* Transition queue to RTS state */
if ( hermon_qp->state < HERMON_QP_ST_RTS ) {
memset ( &qpctx, 0, sizeof ( qpctx ) );
MLX_FILL_1 ( &qpctx, 10,
qpc_eec_data.primary_address_path.ack_timeout,
14 /* 4.096us * 2^(14) = 67ms */ );
MLX_FILL_2 ( &qpctx, 30,
qpc_eec_data.retry_count, HERMON_RETRY_MAX,
qpc_eec_data.rnr_retry, HERMON_RETRY_MAX );
MLX_FILL_1 ( &qpctx, 32,
qpc_eec_data.next_send_psn, qp->send.psn );
if ( ( rc = hermon_cmd_rtr2rts_qp ( hermon, qp->qpn,
&qpctx ) ) != 0 ) {
DBGC ( hermon, "Hermon %p RTR2RTS_QP failed: %s\n",
hermon, strerror ( rc ) );
return rc;
}
hermon_qp->state = HERMON_QP_ST_RTS;
}
/* Update parameters in RTS state */
memset ( &qpctx, 0, sizeof ( qpctx ) );
MLX_FILL_1 ( &qpctx, 0, opt_param_mask, HERMON_QP_OPT_PARAM_QKEY );
MLX_FILL_1 ( &qpctx, 44, qpc_eec_data.q_key, qp->qkey );
if ( ( rc = hermon_cmd_rts2rts_qp ( hermon, qp->qpn, &qpctx ) ) != 0 ){
DBGC ( hermon, "Hermon %p RTS2RTS_QP failed: %s\n",
hermon, strerror ( rc ) );
return rc;
}
return 0;
}
/**
* Destroy queue pair
*
* @v ibdev Infiniband device
* @v qp Queue pair
*/
static void hermon_destroy_qp ( struct ib_device *ibdev,
struct ib_queue_pair *qp ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_queue_pair *hermon_qp = ib_qp_get_drvdata ( qp );
int rc;
/* Take ownership back from hardware */
if ( ( rc = hermon_cmd_2rst_qp ( hermon, qp->qpn ) ) != 0 ) {
DBGC ( hermon, "Hermon %p FATAL 2RST_QP failed on QPN %#lx: "
"%s\n", hermon, qp->qpn, strerror ( rc ) );
/* Leak memory and return; at least we avoid corruption */
return;
}
/* Free MTT entries */
hermon_free_mtt ( hermon, &hermon_qp->mtt );
/* Free memory */
free_dma ( hermon_qp->wqe, hermon_qp->wqe_size );
free ( hermon_qp );
/* Mark queue number as free */
hermon_free_qpn ( ibdev, qp );
ib_qp_set_drvdata ( qp, NULL );
}
/***************************************************************************
*
* Work request operations
*
***************************************************************************
*/
/**
* Construct UD send work queue entry
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @v av Address vector
* @v iobuf I/O buffer
* @v wqe Send work queue entry
* @ret opcode Control opcode
*/
static unsigned int
hermon_fill_ud_send_wqe ( struct ib_device *ibdev,
struct ib_queue_pair *qp __unused,
struct ib_address_vector *av,
struct io_buffer *iobuf,
union hermon_send_wqe *wqe ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
MLX_FILL_1 ( &wqe->ud.ctrl, 1, ds,
( ( offsetof ( typeof ( wqe->ud ), data[1] ) / 16 ) ) );
MLX_FILL_1 ( &wqe->ud.ctrl, 2, c, 0x03 /* generate completion */ );
MLX_FILL_2 ( &wqe->ud.ud, 0,
ud_address_vector.pd, HERMON_GLOBAL_PD,
ud_address_vector.port_number, ibdev->port );
MLX_FILL_2 ( &wqe->ud.ud, 1,
ud_address_vector.rlid, av->lid,
ud_address_vector.g, av->gid_present );
MLX_FILL_1 ( &wqe->ud.ud, 2,
ud_address_vector.max_stat_rate, hermon_rate ( av ) );
MLX_FILL_1 ( &wqe->ud.ud, 3, ud_address_vector.sl, av->sl );
memcpy ( &wqe->ud.ud.u.dwords[4], &av->gid, sizeof ( av->gid ) );
MLX_FILL_1 ( &wqe->ud.ud, 8, destination_qp, av->qpn );
MLX_FILL_1 ( &wqe->ud.ud, 9, q_key, av->qkey );
MLX_FILL_1 ( &wqe->ud.data[0], 0, byte_count, iob_len ( iobuf ) );
MLX_FILL_1 ( &wqe->ud.data[0], 1, l_key, hermon->lkey );
MLX_FILL_1 ( &wqe->ud.data[0], 3,
local_address_l, virt_to_bus ( iobuf->data ) );
return HERMON_OPCODE_SEND;
}
/**
* Construct MLX send work queue entry
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @v av Address vector
* @v iobuf I/O buffer
* @v wqe Send work queue entry
* @ret opcode Control opcode
*/
static unsigned int
hermon_fill_mlx_send_wqe ( struct ib_device *ibdev,
struct ib_queue_pair *qp,
struct ib_address_vector *av,
struct io_buffer *iobuf,
union hermon_send_wqe *wqe ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct io_buffer headers;
/* Construct IB headers */
iob_populate ( &headers, &wqe->mlx.headers, 0,
sizeof ( wqe->mlx.headers ) );
iob_reserve ( &headers, sizeof ( wqe->mlx.headers ) );
ib_push ( ibdev, &headers, qp, iob_len ( iobuf ), av );
/* Fill work queue entry */
MLX_FILL_1 ( &wqe->mlx.ctrl, 1, ds,
( ( offsetof ( typeof ( wqe->mlx ), data[2] ) / 16 ) ) );
MLX_FILL_5 ( &wqe->mlx.ctrl, 2,
c, 0x03 /* generate completion */,
icrc, 0 /* generate ICRC */,
max_statrate, hermon_rate ( av ),
slr, 0,
v15, ( ( qp->ext_qpn == IB_QPN_SMI ) ? 1 : 0 ) );
MLX_FILL_1 ( &wqe->mlx.ctrl, 3, rlid, av->lid );
MLX_FILL_1 ( &wqe->mlx.data[0], 0,
byte_count, iob_len ( &headers ) );
MLX_FILL_1 ( &wqe->mlx.data[0], 1, l_key, hermon->lkey );
MLX_FILL_1 ( &wqe->mlx.data[0], 3,
local_address_l, virt_to_bus ( headers.data ) );
MLX_FILL_1 ( &wqe->mlx.data[1], 0,
byte_count, ( iob_len ( iobuf ) + 4 /* ICRC */ ) );
MLX_FILL_1 ( &wqe->mlx.data[1], 1, l_key, hermon->lkey );
MLX_FILL_1 ( &wqe->mlx.data[1], 3,
local_address_l, virt_to_bus ( iobuf->data ) );
return HERMON_OPCODE_SEND;
}
/**
* Construct RC send work queue entry
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @v av Address vector
* @v iobuf I/O buffer
* @v wqe Send work queue entry
* @ret opcode Control opcode
*/
static unsigned int
hermon_fill_rc_send_wqe ( struct ib_device *ibdev,
struct ib_queue_pair *qp __unused,
struct ib_address_vector *av __unused,
struct io_buffer *iobuf,
union hermon_send_wqe *wqe ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
MLX_FILL_1 ( &wqe->rc.ctrl, 1, ds,
( ( offsetof ( typeof ( wqe->rc ), data[1] ) / 16 ) ) );
MLX_FILL_1 ( &wqe->rc.ctrl, 2, c, 0x03 /* generate completion */ );
MLX_FILL_1 ( &wqe->rc.data[0], 0, byte_count, iob_len ( iobuf ) );
MLX_FILL_1 ( &wqe->rc.data[0], 1, l_key, hermon->lkey );
MLX_FILL_1 ( &wqe->rc.data[0], 3,
local_address_l, virt_to_bus ( iobuf->data ) );
return HERMON_OPCODE_SEND;
}
/** Work queue entry constructors */
static unsigned int
( * hermon_fill_send_wqe[] ) ( struct ib_device *ibdev,
struct ib_queue_pair *qp,
struct ib_address_vector *av,
struct io_buffer *iobuf,
union hermon_send_wqe *wqe ) = {
[IB_QPT_SMI] = hermon_fill_mlx_send_wqe,
[IB_QPT_GSI] = hermon_fill_mlx_send_wqe,
[IB_QPT_UD] = hermon_fill_ud_send_wqe,
[IB_QPT_RC] = hermon_fill_rc_send_wqe,
};
/**
* Post send work queue entry
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @v av Address vector
* @v iobuf I/O buffer
* @ret rc Return status code
*/
static int hermon_post_send ( struct ib_device *ibdev,
struct ib_queue_pair *qp,
struct ib_address_vector *av,
struct io_buffer *iobuf ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_queue_pair *hermon_qp = ib_qp_get_drvdata ( qp );
struct ib_work_queue *wq = &qp->send;
struct hermon_send_work_queue *hermon_send_wq = &hermon_qp->send;
union hermon_send_wqe *wqe;
union hermonprm_doorbell_register db_reg;
unsigned int wqe_idx_mask;
unsigned int opcode;
/* Allocate work queue entry */
wqe_idx_mask = ( wq->num_wqes - 1 );
if ( wq->iobufs[wq->next_idx & wqe_idx_mask] ) {
DBGC ( hermon, "Hermon %p send queue full", hermon );
return -ENOBUFS;
}
wq->iobufs[wq->next_idx & wqe_idx_mask] = iobuf;
wqe = &hermon_send_wq->wqe[ wq->next_idx &
( hermon_send_wq->num_wqes - 1 ) ];
/* Construct work queue entry */
memset ( ( ( ( void * ) wqe ) + 4 /* avoid ctrl.owner */ ), 0,
( sizeof ( *wqe ) - 4 ) );
assert ( qp->type < ( sizeof ( hermon_fill_send_wqe ) /
sizeof ( hermon_fill_send_wqe[0] ) ) );
assert ( hermon_fill_send_wqe[qp->type] != NULL );
opcode = hermon_fill_send_wqe[qp->type] ( ibdev, qp, av, iobuf, wqe );
barrier();
MLX_FILL_2 ( &wqe->ctrl, 0,
opcode, opcode,
owner,
( ( wq->next_idx & hermon_send_wq->num_wqes ) ? 1 : 0 ) );
DBGCP ( hermon, "Hermon %p posting send WQE:\n", hermon );
DBGCP_HD ( hermon, wqe, sizeof ( *wqe ) );
barrier();
/* Ring doorbell register */
MLX_FILL_1 ( &db_reg.send, 0, qn, qp->qpn );
DBGCP ( hermon, "Ringing doorbell %08lx with %08x\n",
virt_to_phys ( hermon_send_wq->doorbell ), db_reg.dword[0] );
writel ( db_reg.dword[0], ( hermon_send_wq->doorbell ) );
/* Update work queue's index */
wq->next_idx++;
return 0;
}
/**
* Post receive work queue entry
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @v iobuf I/O buffer
* @ret rc Return status code
*/
static int hermon_post_recv ( struct ib_device *ibdev,
struct ib_queue_pair *qp,
struct io_buffer *iobuf ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_queue_pair *hermon_qp = ib_qp_get_drvdata ( qp );
struct ib_work_queue *wq = &qp->recv;
struct hermon_recv_work_queue *hermon_recv_wq = &hermon_qp->recv;
struct hermonprm_recv_wqe *wqe;
unsigned int wqe_idx_mask;
/* Allocate work queue entry */
wqe_idx_mask = ( wq->num_wqes - 1 );
if ( wq->iobufs[wq->next_idx & wqe_idx_mask] ) {
DBGC ( hermon, "Hermon %p receive queue full", hermon );
return -ENOBUFS;
}
wq->iobufs[wq->next_idx & wqe_idx_mask] = iobuf;
wqe = &hermon_recv_wq->wqe[wq->next_idx & wqe_idx_mask].recv;
/* Construct work queue entry */
MLX_FILL_1 ( &wqe->data[0], 0, byte_count, iob_tailroom ( iobuf ) );
MLX_FILL_1 ( &wqe->data[0], 1, l_key, hermon->lkey );
MLX_FILL_1 ( &wqe->data[0], 3,
local_address_l, virt_to_bus ( iobuf->data ) );
/* Update work queue's index */
wq->next_idx++;
/* Update doorbell record */
barrier();
MLX_FILL_1 ( &hermon_recv_wq->doorbell, 0, receive_wqe_counter,
( wq->next_idx & 0xffff ) );
return 0;
}
/**
* Handle completion
*
* @v ibdev Infiniband device
* @v cq Completion queue
* @v cqe Hardware completion queue entry
* @ret rc Return status code
*/
static int hermon_complete ( struct ib_device *ibdev,
struct ib_completion_queue *cq,
union hermonprm_completion_entry *cqe ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct ib_work_queue *wq;
struct ib_queue_pair *qp;
struct hermon_queue_pair *hermon_qp;
struct io_buffer *iobuf;
struct ib_address_vector recv_av;
struct ib_global_route_header *grh;
struct ib_address_vector *av;
unsigned int opcode;
unsigned long qpn;
int is_send;
unsigned int wqe_idx;
size_t len;
int rc = 0;
/* Parse completion */
qpn = MLX_GET ( &cqe->normal, qpn );
is_send = MLX_GET ( &cqe->normal, s_r );
opcode = MLX_GET ( &cqe->normal, opcode );
if ( opcode >= HERMON_OPCODE_RECV_ERROR ) {
/* "s" field is not valid for error opcodes */
is_send = ( opcode == HERMON_OPCODE_SEND_ERROR );
DBGC ( hermon, "Hermon %p CQN %lx syndrome %x vendor %x\n",
hermon, cq->cqn, MLX_GET ( &cqe->error, syndrome ),
MLX_GET ( &cqe->error, vendor_error_syndrome ) );
rc = -EIO;
/* Don't return immediately; propagate error to completer */
}
/* Identify work queue */
wq = ib_find_wq ( cq, qpn, is_send );
if ( ! wq ) {
DBGC ( hermon, "Hermon %p CQN %lx unknown %s QPN %lx\n",
hermon, cq->cqn, ( is_send ? "send" : "recv" ), qpn );
return -EIO;
}
qp = wq->qp;
hermon_qp = ib_qp_get_drvdata ( qp );
/* Identify I/O buffer */
wqe_idx = ( MLX_GET ( &cqe->normal, wqe_counter ) &
( wq->num_wqes - 1 ) );
iobuf = wq->iobufs[wqe_idx];
if ( ! iobuf ) {
DBGC ( hermon, "Hermon %p CQN %lx QPN %lx empty WQE %x\n",
hermon, cq->cqn, qp->qpn, wqe_idx );
return -EIO;
}
wq->iobufs[wqe_idx] = NULL;
if ( is_send ) {
/* Hand off to completion handler */
ib_complete_send ( ibdev, qp, iobuf, rc );
} else {
/* Set received length */
len = MLX_GET ( &cqe->normal, byte_cnt );
assert ( len <= iob_tailroom ( iobuf ) );
iob_put ( iobuf, len );
switch ( qp->type ) {
case IB_QPT_SMI:
case IB_QPT_GSI:
case IB_QPT_UD:
assert ( iob_len ( iobuf ) >= sizeof ( *grh ) );
grh = iobuf->data;
iob_pull ( iobuf, sizeof ( *grh ) );
/* Construct address vector */
av = &recv_av;
memset ( av, 0, sizeof ( *av ) );
av->qpn = MLX_GET ( &cqe->normal, srq_rqpn );
av->lid = MLX_GET ( &cqe->normal, slid_smac47_32 );
av->sl = MLX_GET ( &cqe->normal, sl );
av->gid_present = MLX_GET ( &cqe->normal, g );
memcpy ( &av->gid, &grh->sgid, sizeof ( av->gid ) );
break;
case IB_QPT_RC:
av = &qp->av;
break;
default:
assert ( 0 );
return -EINVAL;
}
/* Hand off to completion handler */
ib_complete_recv ( ibdev, qp, av, iobuf, rc );
}
return rc;
}
/**
* Poll completion queue
*
* @v ibdev Infiniband device
* @v cq Completion queue
*/
static void hermon_poll_cq ( struct ib_device *ibdev,
struct ib_completion_queue *cq ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_completion_queue *hermon_cq = ib_cq_get_drvdata ( cq );
union hermonprm_completion_entry *cqe;
unsigned int cqe_idx_mask;
int rc;
while ( 1 ) {
/* Look for completion entry */
cqe_idx_mask = ( cq->num_cqes - 1 );
cqe = &hermon_cq->cqe[cq->next_idx & cqe_idx_mask];
if ( MLX_GET ( &cqe->normal, owner ) ^
( ( cq->next_idx & cq->num_cqes ) ? 1 : 0 ) ) {
/* Entry still owned by hardware; end of poll */
break;
}
DBGCP ( hermon, "Hermon %p completion:\n", hermon );
DBGCP_HD ( hermon, cqe, sizeof ( *cqe ) );
/* Handle completion */
if ( ( rc = hermon_complete ( ibdev, cq, cqe ) ) != 0 ) {
DBGC ( hermon, "Hermon %p failed to complete: %s\n",
hermon, strerror ( rc ) );
DBGC_HD ( hermon, cqe, sizeof ( *cqe ) );
}
/* Update completion queue's index */
cq->next_idx++;
/* Update doorbell record */
MLX_FILL_1 ( &hermon_cq->doorbell, 0, update_ci,
( cq->next_idx & 0x00ffffffUL ) );
}
}
/***************************************************************************
*
* Event queues
*
***************************************************************************
*/
/**
* Create event queue
*
* @v hermon Hermon device
* @ret rc Return status code
*/
static int hermon_create_eq ( struct hermon *hermon ) {
struct hermon_event_queue *hermon_eq = &hermon->eq;
struct hermonprm_eqc eqctx;
struct hermonprm_event_mask mask;
unsigned int i;
int rc;
/* Select event queue number */
hermon_eq->eqn = ( 4 * hermon->cap.reserved_uars );
if ( hermon_eq->eqn < hermon->cap.reserved_eqs )
hermon_eq->eqn = hermon->cap.reserved_eqs;
/* Calculate doorbell address */
hermon_eq->doorbell =
( hermon->uar + HERMON_DB_EQ_OFFSET ( hermon_eq->eqn ) );
/* Allocate event queue itself */
hermon_eq->eqe_size =
( HERMON_NUM_EQES * sizeof ( hermon_eq->eqe[0] ) );
hermon_eq->eqe = malloc_dma ( hermon_eq->eqe_size,
sizeof ( hermon_eq->eqe[0] ) );
if ( ! hermon_eq->eqe ) {
rc = -ENOMEM;
goto err_eqe;
}
memset ( hermon_eq->eqe, 0, hermon_eq->eqe_size );
for ( i = 0 ; i < HERMON_NUM_EQES ; i++ ) {
MLX_FILL_1 ( &hermon_eq->eqe[i].generic, 7, owner, 1 );
}
barrier();
/* Allocate MTT entries */
if ( ( rc = hermon_alloc_mtt ( hermon, hermon_eq->eqe,
hermon_eq->eqe_size,
&hermon_eq->mtt ) ) != 0 )
goto err_alloc_mtt;
/* Hand queue over to hardware */
memset ( &eqctx, 0, sizeof ( eqctx ) );
MLX_FILL_1 ( &eqctx, 0, st, 0xa /* "Fired" */ );
MLX_FILL_1 ( &eqctx, 2,
page_offset, ( hermon_eq->mtt.page_offset >> 5 ) );
MLX_FILL_1 ( &eqctx, 3, log_eq_size, fls ( HERMON_NUM_EQES - 1 ) );
MLX_FILL_1 ( &eqctx, 7, mtt_base_addr_l,
( hermon_eq->mtt.mtt_base_addr >> 3 ) );
if ( ( rc = hermon_cmd_sw2hw_eq ( hermon, hermon_eq->eqn,
&eqctx ) ) != 0 ) {
DBGC ( hermon, "Hermon %p SW2HW_EQ failed: %s\n",
hermon, strerror ( rc ) );
goto err_sw2hw_eq;
}
/* Map events to this event queue */
memset ( &mask, 0, sizeof ( mask ) );
MLX_FILL_1 ( &mask, 1, port_state_change, 1 );
if ( ( rc = hermon_cmd_map_eq ( hermon,
( HERMON_MAP_EQ | hermon_eq->eqn ),
&mask ) ) != 0 ) {
DBGC ( hermon, "Hermon %p MAP_EQ failed: %s\n",
hermon, strerror ( rc ) );
goto err_map_eq;
}
DBGC ( hermon, "Hermon %p EQN %#lx ring at [%p,%p])\n",
hermon, hermon_eq->eqn, hermon_eq->eqe,
( ( ( void * ) hermon_eq->eqe ) + hermon_eq->eqe_size ) );
return 0;
err_map_eq:
hermon_cmd_hw2sw_eq ( hermon, hermon_eq->eqn, &eqctx );
err_sw2hw_eq:
hermon_free_mtt ( hermon, &hermon_eq->mtt );
err_alloc_mtt:
free_dma ( hermon_eq->eqe, hermon_eq->eqe_size );
err_eqe:
memset ( hermon_eq, 0, sizeof ( *hermon_eq ) );
return rc;
}
/**
* Destroy event queue
*
* @v hermon Hermon device
*/
static void hermon_destroy_eq ( struct hermon *hermon ) {
struct hermon_event_queue *hermon_eq = &hermon->eq;
struct hermonprm_eqc eqctx;
struct hermonprm_event_mask mask;
int rc;
/* Unmap events from event queue */
memset ( &mask, 0, sizeof ( mask ) );
MLX_FILL_1 ( &mask, 1, port_state_change, 1 );
if ( ( rc = hermon_cmd_map_eq ( hermon,
( HERMON_UNMAP_EQ | hermon_eq->eqn ),
&mask ) ) != 0 ) {
DBGC ( hermon, "Hermon %p FATAL MAP_EQ failed to unmap: %s\n",
hermon, strerror ( rc ) );
/* Continue; HCA may die but system should survive */
}
/* Take ownership back from hardware */
if ( ( rc = hermon_cmd_hw2sw_eq ( hermon, hermon_eq->eqn,
&eqctx ) ) != 0 ) {
DBGC ( hermon, "Hermon %p FATAL HW2SW_EQ failed: %s\n",
hermon, strerror ( rc ) );
/* Leak memory and return; at least we avoid corruption */
return;
}
/* Free MTT entries */
hermon_free_mtt ( hermon, &hermon_eq->mtt );
/* Free memory */
free_dma ( hermon_eq->eqe, hermon_eq->eqe_size );
memset ( hermon_eq, 0, sizeof ( *hermon_eq ) );
}
/**
* Handle port state event
*
* @v hermon Hermon device
* @v eqe Port state change event queue entry
*/
static void hermon_event_port_state_change ( struct hermon *hermon,
union hermonprm_event_entry *eqe){
unsigned int port;
int link_up;
/* Get port and link status */
port = ( MLX_GET ( &eqe->port_state_change, data.p ) - 1 );
link_up = ( MLX_GET ( &eqe->generic, event_sub_type ) & 0x04 );
DBGC ( hermon, "Hermon %p port %d link %s\n", hermon, ( port + 1 ),
( link_up ? "up" : "down" ) );
/* Sanity check */
if ( port >= hermon->cap.num_ports ) {
DBGC ( hermon, "Hermon %p port %d does not exist!\n",
hermon, ( port + 1 ) );
return;
}
/* Update MAD parameters */
ib_smc_update ( hermon->ibdev[port], hermon_mad );
/* Notify Infiniband core of link state change */
ib_link_state_changed ( hermon->ibdev[port] );
}
/**
* Poll event queue
*
* @v ibdev Infiniband device
*/
static void hermon_poll_eq ( struct ib_device *ibdev ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermon_event_queue *hermon_eq = &hermon->eq;
union hermonprm_event_entry *eqe;
union hermonprm_doorbell_register db_reg;
unsigned int eqe_idx_mask;
unsigned int event_type;
while ( 1 ) {
/* Look for event entry */
eqe_idx_mask = ( HERMON_NUM_EQES - 1 );
eqe = &hermon_eq->eqe[hermon_eq->next_idx & eqe_idx_mask];
if ( MLX_GET ( &eqe->generic, owner ) ^
( ( hermon_eq->next_idx & HERMON_NUM_EQES ) ? 1 : 0 ) ) {
/* Entry still owned by hardware; end of poll */
break;
}
DBGCP ( hermon, "Hermon %p event:\n", hermon );
DBGCP_HD ( hermon, eqe, sizeof ( *eqe ) );
/* Handle event */
event_type = MLX_GET ( &eqe->generic, event_type );
switch ( event_type ) {
case HERMON_EV_PORT_STATE_CHANGE:
hermon_event_port_state_change ( hermon, eqe );
break;
default:
DBGC ( hermon, "Hermon %p unrecognised event type "
"%#x:\n", hermon, event_type );
DBGC_HD ( hermon, eqe, sizeof ( *eqe ) );
break;
}
/* Update event queue's index */
hermon_eq->next_idx++;
/* Ring doorbell */
MLX_FILL_1 ( &db_reg.event, 0,
ci, ( hermon_eq->next_idx & 0x00ffffffUL ) );
DBGCP ( hermon, "Ringing doorbell %08lx with %08x\n",
virt_to_phys ( hermon_eq->doorbell ),
db_reg.dword[0] );
writel ( db_reg.dword[0], hermon_eq->doorbell );
}
}
/***************************************************************************
*
* Infiniband link-layer operations
*
***************************************************************************
*/
/**
* Sense port type
*
* @v ibdev Infiniband device
* @ret port_type Port type, or negative error
*/
static int hermon_sense_port_type ( struct ib_device *ibdev ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermonprm_sense_port sense_port;
int port_type;
int rc;
/* If DPDP is not supported, always assume Infiniband */
if ( ! hermon->cap.dpdp )
return HERMON_PORT_TYPE_IB;
/* Sense the port type */
if ( ( rc = hermon_cmd_sense_port ( hermon, ibdev->port,
&sense_port ) ) != 0 ) {
DBGC ( hermon, "Hermon %p port %d sense failed: %s\n",
hermon, ibdev->port, strerror ( rc ) );
return rc;
}
port_type = MLX_GET ( &sense_port, port_type );
DBGC ( hermon, "Hermon %p port %d type %d\n",
hermon, ibdev->port, port_type );
return port_type;
}
/**
* Initialise Infiniband link
*
* @v ibdev Infiniband device
* @ret rc Return status code
*/
static int hermon_open ( struct ib_device *ibdev ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermonprm_init_port init_port;
int port_type;
int rc;
/* Check we are connected to an Infiniband network */
if ( ( rc = port_type = hermon_sense_port_type ( ibdev ) ) < 0 )
return rc;
if ( port_type != HERMON_PORT_TYPE_IB ) {
DBGC ( hermon, "Hermon %p port %d not connected to an "
"Infiniband network", hermon, ibdev->port );
return -ENOTCONN;
}
/* Init Port */
memset ( &init_port, 0, sizeof ( init_port ) );
MLX_FILL_2 ( &init_port, 0,
port_width_cap, 3,
vl_cap, 1 );
MLX_FILL_2 ( &init_port, 1,
mtu, HERMON_MTU_2048,
max_gid, 1 );
MLX_FILL_1 ( &init_port, 2, max_pkey, 64 );
if ( ( rc = hermon_cmd_init_port ( hermon, ibdev->port,
&init_port ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not intialise port: %s\n",
hermon, strerror ( rc ) );
return rc;
}
/* Update MAD parameters */
ib_smc_update ( ibdev, hermon_mad );
return 0;
}
/**
* Close Infiniband link
*
* @v ibdev Infiniband device
*/
static void hermon_close ( struct ib_device *ibdev ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
int rc;
if ( ( rc = hermon_cmd_close_port ( hermon, ibdev->port ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not close port: %s\n",
hermon, strerror ( rc ) );
/* Nothing we can do about this */
}
}
/**
* Inform embedded subnet management agent of a received MAD
*
* @v ibdev Infiniband device
* @v mad MAD
* @ret rc Return status code
*/
static int hermon_inform_sma ( struct ib_device *ibdev,
union ib_mad *mad ) {
int rc;
/* Send the MAD to the embedded SMA */
if ( ( rc = hermon_mad ( ibdev, mad ) ) != 0 )
return rc;
/* Update parameters held in software */
ib_smc_update ( ibdev, hermon_mad );
return 0;
}
/***************************************************************************
*
* Multicast group operations
*
***************************************************************************
*/
/**
* Attach to multicast group
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @v gid Multicast GID
* @ret rc Return status code
*/
static int hermon_mcast_attach ( struct ib_device *ibdev,
struct ib_queue_pair *qp,
struct ib_gid *gid ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermonprm_mgm_hash hash;
struct hermonprm_mcg_entry mcg;
unsigned int index;
int rc;
/* Generate hash table index */
if ( ( rc = hermon_cmd_mgid_hash ( hermon, gid, &hash ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not hash GID: %s\n",
hermon, strerror ( rc ) );
return rc;
}
index = MLX_GET ( &hash, hash );
/* Check for existing hash table entry */
if ( ( rc = hermon_cmd_read_mcg ( hermon, index, &mcg ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not read MCG %#x: %s\n",
hermon, index, strerror ( rc ) );
return rc;
}
if ( MLX_GET ( &mcg, hdr.members_count ) != 0 ) {
/* FIXME: this implementation allows only a single QP
* per multicast group, and doesn't handle hash
* collisions. Sufficient for IPoIB but may need to
* be extended in future.
*/
DBGC ( hermon, "Hermon %p MGID index %#x already in use\n",
hermon, index );
return -EBUSY;
}
/* Update hash table entry */
MLX_FILL_1 ( &mcg, 1, hdr.members_count, 1 );
MLX_FILL_1 ( &mcg, 8, qp[0].qpn, qp->qpn );
memcpy ( &mcg.u.dwords[4], gid, sizeof ( *gid ) );
if ( ( rc = hermon_cmd_write_mcg ( hermon, index, &mcg ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not write MCG %#x: %s\n",
hermon, index, strerror ( rc ) );
return rc;
}
return 0;
}
/**
* Detach from multicast group
*
* @v ibdev Infiniband device
* @v qp Queue pair
* @v gid Multicast GID
*/
static void hermon_mcast_detach ( struct ib_device *ibdev,
struct ib_queue_pair *qp __unused,
struct ib_gid *gid ) {
struct hermon *hermon = ib_get_drvdata ( ibdev );
struct hermonprm_mgm_hash hash;
struct hermonprm_mcg_entry mcg;
unsigned int index;
int rc;
/* Generate hash table index */
if ( ( rc = hermon_cmd_mgid_hash ( hermon, gid, &hash ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not hash GID: %s\n",
hermon, strerror ( rc ) );
return;
}
index = MLX_GET ( &hash, hash );
/* Clear hash table entry */
memset ( &mcg, 0, sizeof ( mcg ) );
if ( ( rc = hermon_cmd_write_mcg ( hermon, index, &mcg ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not write MCG %#x: %s\n",
hermon, index, strerror ( rc ) );
return;
}
}
/** Hermon Infiniband operations */
static struct ib_device_operations hermon_ib_operations = {
.create_cq = hermon_create_cq,
.destroy_cq = hermon_destroy_cq,
.create_qp = hermon_create_qp,
.modify_qp = hermon_modify_qp,
.destroy_qp = hermon_destroy_qp,
.post_send = hermon_post_send,
.post_recv = hermon_post_recv,
.poll_cq = hermon_poll_cq,
.poll_eq = hermon_poll_eq,
.open = hermon_open,
.close = hermon_close,
.mcast_attach = hermon_mcast_attach,
.mcast_detach = hermon_mcast_detach,
.set_port_info = hermon_inform_sma,
.set_pkey_table = hermon_inform_sma,
};
/***************************************************************************
*
* Firmware control
*
***************************************************************************
*/
/**
* Map virtual to physical address for firmware usage
*
* @v hermon Hermon device
* @v map Mapping function
* @v va Virtual address
* @v pa Physical address
* @v len Length of region
* @ret rc Return status code
*/
static int hermon_map_vpm ( struct hermon *hermon,
int ( *map ) ( struct hermon *hermon,
const struct hermonprm_virtual_physical_mapping* ),
uint64_t va, physaddr_t pa, size_t len ) {
struct hermonprm_virtual_physical_mapping mapping;
int rc;
assert ( ( va & ( HERMON_PAGE_SIZE - 1 ) ) == 0 );
assert ( ( pa & ( HERMON_PAGE_SIZE - 1 ) ) == 0 );
assert ( ( len & ( HERMON_PAGE_SIZE - 1 ) ) == 0 );
/* These mappings tend to generate huge volumes of
* uninteresting debug data, which basically makes it
* impossible to use debugging otherwise.
*/
DBG_DISABLE ( DBGLVL_LOG | DBGLVL_EXTRA );
while ( len ) {
memset ( &mapping, 0, sizeof ( mapping ) );
MLX_FILL_1 ( &mapping, 0, va_h, ( va >> 32 ) );
MLX_FILL_1 ( &mapping, 1, va_l, ( va >> 12 ) );
MLX_FILL_2 ( &mapping, 3,
log2size, 0,
pa_l, ( pa >> 12 ) );
if ( ( rc = map ( hermon, &mapping ) ) != 0 ) {
DBG_ENABLE ( DBGLVL_LOG | DBGLVL_EXTRA );
DBGC ( hermon, "Hermon %p could not map %llx => %lx: "
"%s\n", hermon, va, pa, strerror ( rc ) );
return rc;
}
pa += HERMON_PAGE_SIZE;
va += HERMON_PAGE_SIZE;
len -= HERMON_PAGE_SIZE;
}
DBG_ENABLE ( DBGLVL_LOG | DBGLVL_EXTRA );
return 0;
}
/**
* Start firmware running
*
* @v hermon Hermon device
* @ret rc Return status code
*/
static int hermon_start_firmware ( struct hermon *hermon ) {
struct hermonprm_query_fw fw;
unsigned int fw_pages;
size_t fw_size;
physaddr_t fw_base;
int rc;
/* Get firmware parameters */
if ( ( rc = hermon_cmd_query_fw ( hermon, &fw ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not query firmware: %s\n",
hermon, strerror ( rc ) );
goto err_query_fw;
}
DBGC ( hermon, "Hermon %p firmware version %d.%d.%d\n", hermon,
MLX_GET ( &fw, fw_rev_major ), MLX_GET ( &fw, fw_rev_minor ),
MLX_GET ( &fw, fw_rev_subminor ) );
fw_pages = MLX_GET ( &fw, fw_pages );
DBGC ( hermon, "Hermon %p requires %d pages (%d kB) for firmware\n",
hermon, fw_pages, ( fw_pages * ( HERMON_PAGE_SIZE / 1024 ) ) );
/* Allocate firmware pages and map firmware area */
fw_size = ( fw_pages * HERMON_PAGE_SIZE );
hermon->firmware_area = umalloc ( fw_size );
if ( ! hermon->firmware_area ) {
rc = -ENOMEM;
goto err_alloc_fa;
}
fw_base = user_to_phys ( hermon->firmware_area, 0 );
DBGC ( hermon, "Hermon %p firmware area at physical [%lx,%lx)\n",
hermon, fw_base, ( fw_base + fw_size ) );
if ( ( rc = hermon_map_vpm ( hermon, hermon_cmd_map_fa,
0, fw_base, fw_size ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not map firmware: %s\n",
hermon, strerror ( rc ) );
goto err_map_fa;
}
/* Start firmware */
if ( ( rc = hermon_cmd_run_fw ( hermon ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not run firmware: %s\n",
hermon, strerror ( rc ) );
goto err_run_fw;
}
DBGC ( hermon, "Hermon %p firmware started\n", hermon );
return 0;
err_run_fw:
err_map_fa:
hermon_cmd_unmap_fa ( hermon );
ufree ( hermon->firmware_area );
hermon->firmware_area = UNULL;
err_alloc_fa:
err_query_fw:
return rc;
}
/**
* Stop firmware running
*
* @v hermon Hermon device
*/
static void hermon_stop_firmware ( struct hermon *hermon ) {
int rc;
if ( ( rc = hermon_cmd_unmap_fa ( hermon ) ) != 0 ) {
DBGC ( hermon, "Hermon %p FATAL could not stop firmware: %s\n",
hermon, strerror ( rc ) );
/* Leak memory and return; at least we avoid corruption */
return;
}
ufree ( hermon->firmware_area );
hermon->firmware_area = UNULL;
}
/***************************************************************************
*
* Infinihost Context Memory management
*
***************************************************************************
*/
/**
* Get device limits
*
* @v hermon Hermon device
* @ret rc Return status code
*/
static int hermon_get_cap ( struct hermon *hermon ) {
struct hermonprm_query_dev_cap dev_cap;
int rc;
if ( ( rc = hermon_cmd_query_dev_cap ( hermon, &dev_cap ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not get device limits: %s\n",
hermon, strerror ( rc ) );
return rc;
}
hermon->cap.cmpt_entry_size = MLX_GET ( &dev_cap, c_mpt_entry_sz );
hermon->cap.reserved_qps =
( 1 << MLX_GET ( &dev_cap, log2_rsvd_qps ) );
hermon->cap.qpc_entry_size = MLX_GET ( &dev_cap, qpc_entry_sz );
hermon->cap.altc_entry_size = MLX_GET ( &dev_cap, altc_entry_sz );
hermon->cap.auxc_entry_size = MLX_GET ( &dev_cap, aux_entry_sz );
hermon->cap.reserved_srqs =
( 1 << MLX_GET ( &dev_cap, log2_rsvd_srqs ) );
hermon->cap.srqc_entry_size = MLX_GET ( &dev_cap, srq_entry_sz );
hermon->cap.reserved_cqs =
( 1 << MLX_GET ( &dev_cap, log2_rsvd_cqs ) );
hermon->cap.cqc_entry_size = MLX_GET ( &dev_cap, cqc_entry_sz );
hermon->cap.reserved_eqs = MLX_GET ( &dev_cap, num_rsvd_eqs );
hermon->cap.eqc_entry_size = MLX_GET ( &dev_cap, eqc_entry_sz );
hermon->cap.reserved_mtts =
( 1 << MLX_GET ( &dev_cap, log2_rsvd_mtts ) );
hermon->cap.mtt_entry_size = MLX_GET ( &dev_cap, mtt_entry_sz );
hermon->cap.reserved_mrws =
( 1 << MLX_GET ( &dev_cap, log2_rsvd_mrws ) );
hermon->cap.dmpt_entry_size = MLX_GET ( &dev_cap, d_mpt_entry_sz );
hermon->cap.reserved_uars = MLX_GET ( &dev_cap, num_rsvd_uars );
hermon->cap.num_ports = MLX_GET ( &dev_cap, num_ports );
hermon->cap.dpdp = MLX_GET ( &dev_cap, dpdp );
/* Sanity check */
if ( hermon->cap.num_ports > HERMON_MAX_PORTS ) {
DBGC ( hermon, "Hermon %p has %d ports (only %d supported)\n",
hermon, hermon->cap.num_ports, HERMON_MAX_PORTS );
hermon->cap.num_ports = HERMON_MAX_PORTS;
}
return 0;
}
/**
* Get ICM usage
*
* @v log_num_entries Log2 of the number of entries
* @v entry_size Entry size
* @ret usage Usage size in ICM
*/
static size_t icm_usage ( unsigned int log_num_entries, size_t entry_size ) {
size_t usage;
usage = ( ( 1 << log_num_entries ) * entry_size );
usage = ( ( usage + HERMON_PAGE_SIZE - 1 ) &
~( HERMON_PAGE_SIZE - 1 ) );
return usage;
}
/**
* Allocate ICM
*
* @v hermon Hermon device
* @v init_hca INIT_HCA structure to fill in
* @ret rc Return status code
*/
static int hermon_alloc_icm ( struct hermon *hermon,
struct hermonprm_init_hca *init_hca ) {
struct hermonprm_scalar_parameter icm_size;
struct hermonprm_scalar_parameter icm_aux_size;
uint64_t icm_offset = 0;
unsigned int log_num_qps, log_num_srqs, log_num_cqs, log_num_eqs;
unsigned int log_num_mtts, log_num_mpts;
size_t cmpt_max_len;
size_t qp_cmpt_len, srq_cmpt_len, cq_cmpt_len, eq_cmpt_len;
size_t icm_len, icm_aux_len;
physaddr_t icm_phys;
int i;
int rc;
/*
* Start by carving up the ICM virtual address space
*
*/
/* Calculate number of each object type within ICM */
log_num_qps = fls ( hermon->cap.reserved_qps +
HERMON_RSVD_SPECIAL_QPS + HERMON_MAX_QPS - 1 );
log_num_srqs = fls ( hermon->cap.reserved_srqs - 1 );
log_num_cqs = fls ( hermon->cap.reserved_cqs + HERMON_MAX_CQS - 1 );
log_num_eqs = fls ( hermon->cap.reserved_eqs + HERMON_MAX_EQS - 1 );
log_num_mtts = fls ( hermon->cap.reserved_mtts + HERMON_MAX_MTTS - 1 );
/* ICM starts with the cMPT tables, which are sparse */
cmpt_max_len = ( HERMON_CMPT_MAX_ENTRIES *
( ( uint64_t ) hermon->cap.cmpt_entry_size ) );
qp_cmpt_len = icm_usage ( log_num_qps, hermon->cap.cmpt_entry_size );
hermon->icm_map[HERMON_ICM_QP_CMPT].offset = icm_offset;
hermon->icm_map[HERMON_ICM_QP_CMPT].len = qp_cmpt_len;
icm_offset += cmpt_max_len;
srq_cmpt_len = icm_usage ( log_num_srqs, hermon->cap.cmpt_entry_size );
hermon->icm_map[HERMON_ICM_SRQ_CMPT].offset = icm_offset;
hermon->icm_map[HERMON_ICM_SRQ_CMPT].len = srq_cmpt_len;
icm_offset += cmpt_max_len;
cq_cmpt_len = icm_usage ( log_num_cqs, hermon->cap.cmpt_entry_size );
hermon->icm_map[HERMON_ICM_CQ_CMPT].offset = icm_offset;
hermon->icm_map[HERMON_ICM_CQ_CMPT].len = cq_cmpt_len;
icm_offset += cmpt_max_len;
eq_cmpt_len = icm_usage ( log_num_eqs, hermon->cap.cmpt_entry_size );
hermon->icm_map[HERMON_ICM_EQ_CMPT].offset = icm_offset;
hermon->icm_map[HERMON_ICM_EQ_CMPT].len = eq_cmpt_len;
icm_offset += cmpt_max_len;
hermon->icm_map[HERMON_ICM_OTHER].offset = icm_offset;
/* Queue pair contexts */
MLX_FILL_1 ( init_hca, 12,
qpc_eec_cqc_eqc_rdb_parameters.qpc_base_addr_h,
( icm_offset >> 32 ) );
MLX_FILL_2 ( init_hca, 13,
qpc_eec_cqc_eqc_rdb_parameters.qpc_base_addr_l,
( icm_offset >> 5 ),
qpc_eec_cqc_eqc_rdb_parameters.log_num_of_qp,
log_num_qps );
DBGC ( hermon, "Hermon %p ICM QPC base = %llx\n", hermon, icm_offset );
icm_offset += icm_usage ( log_num_qps, hermon->cap.qpc_entry_size );
/* Extended alternate path contexts */
MLX_FILL_1 ( init_hca, 24,
qpc_eec_cqc_eqc_rdb_parameters.altc_base_addr_h,
( icm_offset >> 32 ) );
MLX_FILL_1 ( init_hca, 25,
qpc_eec_cqc_eqc_rdb_parameters.altc_base_addr_l,
icm_offset );
DBGC ( hermon, "Hermon %p ICM ALTC base = %llx\n", hermon, icm_offset);
icm_offset += icm_usage ( log_num_qps,
hermon->cap.altc_entry_size );
/* Extended auxiliary contexts */
MLX_FILL_1 ( init_hca, 28,
qpc_eec_cqc_eqc_rdb_parameters.auxc_base_addr_h,
( icm_offset >> 32 ) );
MLX_FILL_1 ( init_hca, 29,
qpc_eec_cqc_eqc_rdb_parameters.auxc_base_addr_l,
icm_offset );
DBGC ( hermon, "Hermon %p ICM AUXC base = %llx\n", hermon, icm_offset);
icm_offset += icm_usage ( log_num_qps,
hermon->cap.auxc_entry_size );
/* Shared receive queue contexts */
MLX_FILL_1 ( init_hca, 18,
qpc_eec_cqc_eqc_rdb_parameters.srqc_base_addr_h,
( icm_offset >> 32 ) );
MLX_FILL_2 ( init_hca, 19,
qpc_eec_cqc_eqc_rdb_parameters.srqc_base_addr_l,
( icm_offset >> 5 ),
qpc_eec_cqc_eqc_rdb_parameters.log_num_of_srq,
log_num_srqs );
DBGC ( hermon, "Hermon %p ICM SRQC base = %llx\n", hermon, icm_offset);
icm_offset += icm_usage ( log_num_srqs,
hermon->cap.srqc_entry_size );
/* Completion queue contexts */
MLX_FILL_1 ( init_hca, 20,
qpc_eec_cqc_eqc_rdb_parameters.cqc_base_addr_h,
( icm_offset >> 32 ) );
MLX_FILL_2 ( init_hca, 21,
qpc_eec_cqc_eqc_rdb_parameters.cqc_base_addr_l,
( icm_offset >> 5 ),
qpc_eec_cqc_eqc_rdb_parameters.log_num_of_cq,
log_num_cqs );
DBGC ( hermon, "Hermon %p ICM CQC base = %llx\n", hermon, icm_offset );
icm_offset += icm_usage ( log_num_cqs, hermon->cap.cqc_entry_size );
/* Event queue contexts */
MLX_FILL_1 ( init_hca, 32,
qpc_eec_cqc_eqc_rdb_parameters.eqc_base_addr_h,
( icm_offset >> 32 ) );
MLX_FILL_2 ( init_hca, 33,
qpc_eec_cqc_eqc_rdb_parameters.eqc_base_addr_l,
( icm_offset >> 5 ),
qpc_eec_cqc_eqc_rdb_parameters.log_num_of_eq,
log_num_eqs );
DBGC ( hermon, "Hermon %p ICM EQC base = %llx\n", hermon, icm_offset );
icm_offset += icm_usage ( log_num_eqs, hermon->cap.eqc_entry_size );
/* Memory translation table */
MLX_FILL_1 ( init_hca, 64,
tpt_parameters.mtt_base_addr_h, ( icm_offset >> 32 ) );
MLX_FILL_1 ( init_hca, 65,
tpt_parameters.mtt_base_addr_l, icm_offset );
DBGC ( hermon, "Hermon %p ICM MTT base = %llx\n", hermon, icm_offset );
icm_offset += icm_usage ( log_num_mtts,
hermon->cap.mtt_entry_size );
/* Memory protection table */
log_num_mpts = fls ( hermon->cap.reserved_mrws + 1 - 1 );
MLX_FILL_1 ( init_hca, 60,
tpt_parameters.dmpt_base_adr_h, ( icm_offset >> 32 ) );
MLX_FILL_1 ( init_hca, 61,
tpt_parameters.dmpt_base_adr_l, icm_offset );
MLX_FILL_1 ( init_hca, 62,
tpt_parameters.log_dmpt_sz, log_num_mpts );
DBGC ( hermon, "Hermon %p ICM DMPT base = %llx\n", hermon, icm_offset);
icm_offset += icm_usage ( log_num_mpts,
hermon->cap.dmpt_entry_size );
/* Multicast table */
MLX_FILL_1 ( init_hca, 48,
multicast_parameters.mc_base_addr_h,
( icm_offset >> 32 ) );
MLX_FILL_1 ( init_hca, 49,
multicast_parameters.mc_base_addr_l, icm_offset );
MLX_FILL_1 ( init_hca, 52,
multicast_parameters.log_mc_table_entry_sz,
fls ( sizeof ( struct hermonprm_mcg_entry ) - 1 ) );
MLX_FILL_1 ( init_hca, 53,
multicast_parameters.log_mc_table_hash_sz, 3 );
MLX_FILL_1 ( init_hca, 54,
multicast_parameters.log_mc_table_sz, 3 );
DBGC ( hermon, "Hermon %p ICM MC base = %llx\n", hermon, icm_offset );
icm_offset += ( ( 8 * sizeof ( struct hermonprm_mcg_entry ) +
HERMON_PAGE_SIZE - 1 ) & ~( HERMON_PAGE_SIZE - 1 ) );
hermon->icm_map[HERMON_ICM_OTHER].len =
( icm_offset - hermon->icm_map[HERMON_ICM_OTHER].offset );
/*
* Allocate and map physical memory for (portions of) ICM
*
* Map is:
* ICM AUX area (aligned to its own size)
* cMPT areas
* Other areas
*/
/* Calculate physical memory required for ICM */
icm_len = 0;
for ( i = 0 ; i < HERMON_ICM_NUM_REGIONS ; i++ ) {
icm_len += hermon->icm_map[i].len;
}
/* Get ICM auxiliary area size */
memset ( &icm_size, 0, sizeof ( icm_size ) );
MLX_FILL_1 ( &icm_size, 0, value_hi, ( icm_offset >> 32 ) );
MLX_FILL_1 ( &icm_size, 1, value, icm_offset );
if ( ( rc = hermon_cmd_set_icm_size ( hermon, &icm_size,
&icm_aux_size ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not set ICM size: %s\n",
hermon, strerror ( rc ) );
goto err_set_icm_size;
}
icm_aux_len = ( MLX_GET ( &icm_aux_size, value ) * HERMON_PAGE_SIZE );
/* Allocate ICM data and auxiliary area */
DBGC ( hermon, "Hermon %p requires %zd kB ICM and %zd kB AUX ICM\n",
hermon, ( icm_len / 1024 ), ( icm_aux_len / 1024 ) );
hermon->icm = umalloc ( icm_aux_len + icm_len );
if ( ! hermon->icm ) {
rc = -ENOMEM;
goto err_alloc;
}
icm_phys = user_to_phys ( hermon->icm, 0 );
/* Map ICM auxiliary area */
DBGC ( hermon, "Hermon %p mapping ICM AUX => %08lx\n",
hermon, icm_phys );
if ( ( rc = hermon_map_vpm ( hermon, hermon_cmd_map_icm_aux,
0, icm_phys, icm_aux_len ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not map AUX ICM: %s\n",
hermon, strerror ( rc ) );
goto err_map_icm_aux;
}
icm_phys += icm_aux_len;
/* MAP ICM area */
for ( i = 0 ; i < HERMON_ICM_NUM_REGIONS ; i++ ) {
DBGC ( hermon, "Hermon %p mapping ICM %llx+%zx => %08lx\n",
hermon, hermon->icm_map[i].offset,
hermon->icm_map[i].len, icm_phys );
if ( ( rc = hermon_map_vpm ( hermon, hermon_cmd_map_icm,
hermon->icm_map[i].offset,
icm_phys,
hermon->icm_map[i].len ) ) != 0 ){
DBGC ( hermon, "Hermon %p could not map ICM: %s\n",
hermon, strerror ( rc ) );
goto err_map_icm;
}
icm_phys += hermon->icm_map[i].len;
}
return 0;
err_map_icm:
assert ( i == 0 ); /* We don't handle partial failure at present */
err_map_icm_aux:
hermon_cmd_unmap_icm_aux ( hermon );
ufree ( hermon->icm );
hermon->icm = UNULL;
err_alloc:
err_set_icm_size:
return rc;
}
/**
* Free ICM
*
* @v hermon Hermon device
*/
static void hermon_free_icm ( struct hermon *hermon ) {
struct hermonprm_scalar_parameter unmap_icm;
int i;
for ( i = ( HERMON_ICM_NUM_REGIONS - 1 ) ; i >= 0 ; i-- ) {
memset ( &unmap_icm, 0, sizeof ( unmap_icm ) );
MLX_FILL_1 ( &unmap_icm, 0, value_hi,
( hermon->icm_map[i].offset >> 32 ) );
MLX_FILL_1 ( &unmap_icm, 1, value,
hermon->icm_map[i].offset );
hermon_cmd_unmap_icm ( hermon,
( 1 << fls ( ( hermon->icm_map[i].len /
HERMON_PAGE_SIZE ) - 1)),
&unmap_icm );
}
hermon_cmd_unmap_icm_aux ( hermon );
ufree ( hermon->icm );
hermon->icm = UNULL;
}
/***************************************************************************
*
* PCI interface
*
***************************************************************************
*/
/**
* Set up memory protection table
*
* @v hermon Hermon device
* @ret rc Return status code
*/
static int hermon_setup_mpt ( struct hermon *hermon ) {
struct hermonprm_mpt mpt;
uint32_t key;
int rc;
/* Derive key */
key = ( hermon->cap.reserved_mrws | HERMON_MKEY_PREFIX );
hermon->lkey = ( ( key << 8 ) | ( key >> 24 ) );
/* Initialise memory protection table */
memset ( &mpt, 0, sizeof ( mpt ) );
MLX_FILL_7 ( &mpt, 0,
atomic, 1,
rw, 1,
rr, 1,
lw, 1,
lr, 1,
pa, 1,
r_w, 1 );
MLX_FILL_1 ( &mpt, 2, mem_key, key );
MLX_FILL_1 ( &mpt, 3,
pd, HERMON_GLOBAL_PD );
MLX_FILL_1 ( &mpt, 10, len64, 1 );
if ( ( rc = hermon_cmd_sw2hw_mpt ( hermon,
hermon->cap.reserved_mrws,
&mpt ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not set up MPT: %s\n",
hermon, strerror ( rc ) );
return rc;
}
return 0;
}
/**
* Configure special queue pairs
*
* @v hermon Hermon device
* @ret rc Return status code
*/
static int hermon_configure_special_qps ( struct hermon *hermon ) {
int rc;
/* Special QP block must be aligned on its own size */
hermon->special_qpn_base = ( ( hermon->cap.reserved_qps +
HERMON_NUM_SPECIAL_QPS - 1 )
& ~( HERMON_NUM_SPECIAL_QPS - 1 ) );
hermon->qpn_base = ( hermon->special_qpn_base +
HERMON_NUM_SPECIAL_QPS );
DBGC ( hermon, "Hermon %p special QPs at [%lx,%lx]\n", hermon,
hermon->special_qpn_base, ( hermon->qpn_base - 1 ) );
/* Issue command to configure special QPs */
if ( ( rc = hermon_cmd_conf_special_qp ( hermon, 0x00,
hermon->special_qpn_base ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not configure special QPs: "
"%s\n", hermon, strerror ( rc ) );
return rc;
}
return 0;
}
/**
* Reset device
*
* @v hermon Hermon device
* @v pci PCI device
*/
static void hermon_reset ( struct hermon *hermon,
struct pci_device *pci ) {
struct pci_config_backup backup;
static const uint8_t backup_exclude[] =
PCI_CONFIG_BACKUP_EXCLUDE ( 0x58, 0x5c );
pci_backup ( pci, &backup, backup_exclude );
writel ( HERMON_RESET_MAGIC,
( hermon->config + HERMON_RESET_OFFSET ) );
mdelay ( HERMON_RESET_WAIT_TIME_MS );
pci_restore ( pci, &backup, backup_exclude );
}
/**
* Probe PCI device
*
* @v pci PCI device
* @v id PCI ID
* @ret rc Return status code
*/
static int hermon_probe ( struct pci_device *pci,
const struct pci_device_id *id __unused ) {
struct hermon *hermon;
struct ib_device *ibdev;
struct hermonprm_init_hca init_hca;
unsigned int i;
int rc;
/* Allocate Hermon device */
hermon = zalloc ( sizeof ( *hermon ) );
if ( ! hermon ) {
rc = -ENOMEM;
goto err_alloc_hermon;
}
pci_set_drvdata ( pci, hermon );
/* Fix up PCI device */
adjust_pci_device ( pci );
/* Get PCI BARs */
hermon->config = ioremap ( pci_bar_start ( pci, HERMON_PCI_CONFIG_BAR),
HERMON_PCI_CONFIG_BAR_SIZE );
hermon->uar = ioremap ( pci_bar_start ( pci, HERMON_PCI_UAR_BAR ),
HERMON_UAR_NON_EQ_PAGE * HERMON_PAGE_SIZE );
/* Reset device */
hermon_reset ( hermon, pci );
/* Allocate space for mailboxes */
hermon->mailbox_in = malloc_dma ( HERMON_MBOX_SIZE,
HERMON_MBOX_ALIGN );
if ( ! hermon->mailbox_in ) {
rc = -ENOMEM;
goto err_mailbox_in;
}
hermon->mailbox_out = malloc_dma ( HERMON_MBOX_SIZE,
HERMON_MBOX_ALIGN );
if ( ! hermon->mailbox_out ) {
rc = -ENOMEM;
goto err_mailbox_out;
}
/* Start firmware */
if ( ( rc = hermon_start_firmware ( hermon ) ) != 0 )
goto err_start_firmware;
/* Get device limits */
if ( ( rc = hermon_get_cap ( hermon ) ) != 0 )
goto err_get_cap;
/* Allocate Infiniband devices */
for ( i = 0 ; i < hermon->cap.num_ports ; i++ ) {
ibdev = alloc_ibdev ( 0 );
if ( ! ibdev ) {
rc = -ENOMEM;
goto err_alloc_ibdev;
}
hermon->ibdev[i] = ibdev;
ibdev->op = &hermon_ib_operations;
ibdev->dev = &pci->dev;
ibdev->port = ( HERMON_PORT_BASE + i );
ib_set_drvdata ( ibdev, hermon );
}
/* Allocate ICM */
memset ( &init_hca, 0, sizeof ( init_hca ) );
if ( ( rc = hermon_alloc_icm ( hermon, &init_hca ) ) != 0 )
goto err_alloc_icm;
/* Initialise HCA */
MLX_FILL_1 ( &init_hca, 0, version, 0x02 /* "Must be 0x02" */ );
MLX_FILL_1 ( &init_hca, 5, udp, 1 );
MLX_FILL_1 ( &init_hca, 74, uar_parameters.log_max_uars, 8 );
if ( ( rc = hermon_cmd_init_hca ( hermon, &init_hca ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not initialise HCA: %s\n",
hermon, strerror ( rc ) );
goto err_init_hca;
}
/* Set up memory protection */
if ( ( rc = hermon_setup_mpt ( hermon ) ) != 0 )
goto err_setup_mpt;
for ( i = 0 ; i < hermon->cap.num_ports ; i++ )
hermon->ibdev[i]->rdma_key = hermon->lkey;
/* Set up event queue */
if ( ( rc = hermon_create_eq ( hermon ) ) != 0 )
goto err_create_eq;
/* Configure special QPs */
if ( ( rc = hermon_configure_special_qps ( hermon ) ) != 0 )
goto err_conf_special_qps;
/* Update IPoIB MAC address */
for ( i = 0 ; i < hermon->cap.num_ports ; i++ ) {
ib_smc_update ( hermon->ibdev[i], hermon_mad );
}
/* Register Infiniband devices */
for ( i = 0 ; i < hermon->cap.num_ports ; i++ ) {
if ( ( rc = register_ibdev ( hermon->ibdev[i] ) ) != 0 ) {
DBGC ( hermon, "Hermon %p could not register IB "
"device: %s\n", hermon, strerror ( rc ) );
goto err_register_ibdev;
}
}
return 0;
i = hermon->cap.num_ports;
err_register_ibdev:
for ( i-- ; ( signed int ) i >= 0 ; i-- )
unregister_ibdev ( hermon->ibdev[i] );
err_conf_special_qps:
hermon_destroy_eq ( hermon );
err_create_eq:
err_setup_mpt:
hermon_cmd_close_hca ( hermon );
err_init_hca:
hermon_free_icm ( hermon );
err_alloc_icm:
i = hermon->cap.num_ports;
err_alloc_ibdev:
for ( i-- ; ( signed int ) i >= 0 ; i-- )
ibdev_put ( hermon->ibdev[i] );
err_get_cap:
hermon_stop_firmware ( hermon );
err_start_firmware:
free_dma ( hermon->mailbox_out, HERMON_MBOX_SIZE );
err_mailbox_out:
free_dma ( hermon->mailbox_in, HERMON_MBOX_SIZE );
err_mailbox_in:
free ( hermon );
err_alloc_hermon:
return rc;
}
/**
* Remove PCI device
*
* @v pci PCI device
*/
static void hermon_remove ( struct pci_device *pci ) {
struct hermon *hermon = pci_get_drvdata ( pci );
int i;
for ( i = ( hermon->cap.num_ports - 1 ) ; i >= 0 ; i-- )
unregister_ibdev ( hermon->ibdev[i] );
hermon_destroy_eq ( hermon );
hermon_cmd_close_hca ( hermon );
hermon_free_icm ( hermon );
hermon_stop_firmware ( hermon );
hermon_stop_firmware ( hermon );
free_dma ( hermon->mailbox_out, HERMON_MBOX_SIZE );
free_dma ( hermon->mailbox_in, HERMON_MBOX_SIZE );
for ( i = ( hermon->cap.num_ports - 1 ) ; i >= 0 ; i-- )
ibdev_put ( hermon->ibdev[i] );
free ( hermon );
}
static struct pci_device_id hermon_nics[] = {
PCI_ROM ( 0x15b3, 0x6340, "mt25408", "MT25408 HCA driver", 0 ),
PCI_ROM ( 0x15b3, 0x634a, "mt25418", "MT25418 HCA driver", 0 ),
PCI_ROM ( 0x15b3, 0x6732, "mt26418", "MT26418 HCA driver", 0 ),
PCI_ROM ( 0x15b3, 0x673c, "mt26428", "MT26428 HCA driver", 0 ),
};
struct pci_driver hermon_driver __pci_driver = {
.ids = hermon_nics,
.id_count = ( sizeof ( hermon_nics ) / sizeof ( hermon_nics[0] ) ),
.probe = hermon_probe,
.remove = hermon_remove,
};