blob: 389eda577818aa8d2c596663ed88c6562a4e3b44 [file] [log] [blame]
/*
* Copyright(C) 2006 Cameron Rich
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* Implements the RSA public encryption algorithm. Uses the bigint library to
* perform its calculations.
*/
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include "crypto.h"
#ifdef CONFIG_BIGINT_CRT
static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi);
#endif
void RSA_priv_key_new(RSA_CTX **ctx,
const uint8_t *modulus, int mod_len,
const uint8_t *pub_exp, int pub_len,
const uint8_t *priv_exp, int priv_len
#if CONFIG_BIGINT_CRT
, const uint8_t *p, int p_len,
const uint8_t *q, int q_len,
const uint8_t *dP, int dP_len,
const uint8_t *dQ, int dQ_len,
const uint8_t *qInv, int qInv_len
#endif
)
{
RSA_CTX *rsa_ctx;
BI_CTX *bi_ctx;
RSA_pub_key_new(ctx, modulus, mod_len, pub_exp, pub_len);
rsa_ctx = *ctx;
bi_ctx = rsa_ctx->bi_ctx;
rsa_ctx->d = bi_import(bi_ctx, priv_exp, priv_len);
bi_permanent(rsa_ctx->d);
#ifdef CONFIG_BIGINT_CRT
rsa_ctx->p = bi_import(bi_ctx, p, p_len);
rsa_ctx->q = bi_import(bi_ctx, q, q_len);
rsa_ctx->dP = bi_import(bi_ctx, dP, dP_len);
rsa_ctx->dQ = bi_import(bi_ctx, dQ, dQ_len);
rsa_ctx->qInv = bi_import(bi_ctx, qInv, qInv_len);
bi_permanent(rsa_ctx->dP);
bi_permanent(rsa_ctx->dQ);
bi_permanent(rsa_ctx->qInv);
bi_set_mod(bi_ctx, rsa_ctx->p, BIGINT_P_OFFSET);
bi_set_mod(bi_ctx, rsa_ctx->q, BIGINT_Q_OFFSET);
#endif
}
void RSA_pub_key_new(RSA_CTX **ctx,
const uint8_t *modulus, int mod_len,
const uint8_t *pub_exp, int pub_len)
{
RSA_CTX *rsa_ctx;
BI_CTX *bi_ctx = bi_initialize();
*ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX));
rsa_ctx = *ctx;
rsa_ctx->bi_ctx = bi_ctx;
rsa_ctx->num_octets = (mod_len & 0xFFF0);
rsa_ctx->m = bi_import(bi_ctx, modulus, mod_len);
bi_set_mod(bi_ctx, rsa_ctx->m, BIGINT_M_OFFSET);
rsa_ctx->e = bi_import(bi_ctx, pub_exp, pub_len);
bi_permanent(rsa_ctx->e);
}
/**
* Free up any RSA context resources.
*/
void RSA_free(RSA_CTX *rsa_ctx)
{
BI_CTX *bi_ctx;
if (rsa_ctx == NULL) /* deal with ptrs that are null */
return;
bi_ctx = rsa_ctx->bi_ctx;
bi_depermanent(rsa_ctx->e);
bi_free(bi_ctx, rsa_ctx->e);
bi_free_mod(rsa_ctx->bi_ctx, BIGINT_M_OFFSET);
if (rsa_ctx->d)
{
bi_depermanent(rsa_ctx->d);
bi_free(bi_ctx, rsa_ctx->d);
#ifdef CONFIG_BIGINT_CRT
bi_depermanent(rsa_ctx->dP);
bi_depermanent(rsa_ctx->dQ);
bi_depermanent(rsa_ctx->qInv);
bi_free(bi_ctx, rsa_ctx->dP);
bi_free(bi_ctx, rsa_ctx->dQ);
bi_free(bi_ctx, rsa_ctx->qInv);
bi_free_mod(rsa_ctx->bi_ctx, BIGINT_P_OFFSET);
bi_free_mod(rsa_ctx->bi_ctx, BIGINT_Q_OFFSET);
#endif
}
bi_terminate(bi_ctx);
free(rsa_ctx);
}
/**
* @brief Use PKCS1.5 for decryption/verification.
* @param ctx [in] The context
* @param in_data [in] The data to encrypt (must be < modulus size-11)
* @param out_data [out] The encrypted data.
* @param is_decryption [in] Decryption or verify operation.
* @return The number of bytes that were originally encrypted. -1 on error.
* @see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
*/
int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data,
uint8_t *out_data, int is_decryption)
{
int byte_size = ctx->num_octets;
uint8_t *block;
int i, size;
bigint *decrypted_bi, *dat_bi;
memset(out_data, 0, byte_size); /* initialise */
/* decrypt */
dat_bi = bi_import(ctx->bi_ctx, in_data, byte_size);
#ifdef CONFIG_SSL_CERT_VERIFICATION
decrypted_bi = is_decryption ? /* decrypt or verify? */
RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi);
#else /* always a decryption */
decrypted_bi = RSA_private(ctx, dat_bi);
#endif
/* convert to a normal block */
block = (uint8_t *)malloc(byte_size);
bi_export(ctx->bi_ctx, decrypted_bi, block, byte_size);
i = 10; /* start at the first possible non-padded byte */
#ifdef CONFIG_SSL_CERT_VERIFICATION
if (is_decryption == 0) /* PKCS1.5 signing pads with "0xff"s */
{
while (block[i++] == 0xff && i < byte_size);
if (block[i-2] != 0xff)
i = byte_size; /*ensure size is 0 */
}
else /* PKCS1.5 encryption padding is random */
#endif
{
while (block[i++] && i < byte_size);
}
size = byte_size - i;
/* get only the bit we want */
if (size > 0)
memcpy(out_data, &block[i], size);
free(block);
return size ? size : -1;
}
/**
* Performs m = c^d mod n
*/
bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg)
{
#ifdef CONFIG_BIGINT_CRT
return bi_crt(c, bi_msg);
#else
BI_CTX *ctx = c->bi_ctx;
ctx->mod_offset = BIGINT_M_OFFSET;
return bi_mod_power(ctx, bi_msg, c->d);
#endif
}
#ifdef CONFIG_BIGINT_CRT
/**
* Use the Chinese Remainder Theorem to quickly perform RSA decrypts.
* This should really be in bigint.c (and was at one stage), but needs
* access to the RSA_CTX context...
*/
static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi)
{
BI_CTX *ctx = rsa->bi_ctx;
bigint *m1, *m2, *h;
/* Montgomery has a condition the 0 < x, y < m and these products violate
* that condition. So disable Montgomery when using CRT */
#if defined(CONFIG_BIGINT_MONTGOMERY)
ctx->use_classical = 1;
#endif
ctx->mod_offset = BIGINT_P_OFFSET;
m1 = bi_mod_power(ctx, bi_copy(bi), rsa->dP);
ctx->mod_offset = BIGINT_Q_OFFSET;
m2 = bi_mod_power(ctx, bi, rsa->dQ);
h = bi_subtract(ctx, bi_add(ctx, m1, rsa->p), bi_copy(m2), NULL);
h = bi_multiply(ctx, h, rsa->qInv);
ctx->mod_offset = BIGINT_P_OFFSET;
h = bi_residue(ctx, h);
#if defined(CONFIG_BIGINT_MONTGOMERY)
ctx->use_classical = 0; /* reset for any further operation */
#endif
return bi_add(ctx, m2, bi_multiply(ctx, rsa->q, h));
}
#endif
#ifdef CONFIG_SSL_FULL_MODE
/**
* Used for diagnostics.
*/
void RSA_print(const RSA_CTX *rsa_ctx)
{
if (rsa_ctx == NULL)
return;
printf("----------------- RSA DEBUG ----------------\n");
printf("Size:\t%d\n", rsa_ctx->num_octets);
bi_print("Modulus", rsa_ctx->m);
bi_print("Public Key", rsa_ctx->e);
bi_print("Private Key", rsa_ctx->d);
}
#endif
#ifdef CONFIG_SSL_CERT_VERIFICATION
/**
* Performs c = m^e mod n
*/
bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg)
{
c->bi_ctx->mod_offset = BIGINT_M_OFFSET;
return bi_mod_power(c->bi_ctx, bi_msg, c->e);
}
/**
* Use PKCS1.5 for encryption/signing.
* see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
*/
int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
uint8_t *out_data, int is_signing)
{
int byte_size = ctx->num_octets;
int num_pads_needed = byte_size-in_len-3;
bigint *dat_bi, *encrypt_bi;
/* note: in_len+11 must be > byte_size */
out_data[0] = 0; /* ensure encryption block is < modulus */
if (is_signing)
{
out_data[1] = 1; /* PKCS1.5 signing pads with "0xff"'s */
memset(&out_data[2], 0xff, num_pads_needed);
}
else /* randomize the encryption padding with non-zero bytes */
{
out_data[1] = 2;
get_random_NZ(num_pads_needed, &out_data[2]);
}
out_data[2+num_pads_needed] = 0;
memcpy(&out_data[3+num_pads_needed], in_data, in_len);
/* now encrypt it */
dat_bi = bi_import(ctx->bi_ctx, out_data, byte_size);
encrypt_bi = is_signing ? RSA_private(ctx, dat_bi) :
RSA_public(ctx, dat_bi);
bi_export(ctx->bi_ctx, encrypt_bi, out_data, byte_size);
return byte_size;
}
#if 0
/**
* Take a signature and decrypt it.
*/
bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
bigint *modulus, bigint *pub_exp)
{
uint8_t *block;
int i, size;
bigint *decrypted_bi, *dat_bi;
bigint *bir = NULL;
block = (uint8_t *)malloc(sig_len);
/* decrypt */
dat_bi = bi_import(ctx, sig, sig_len);
ctx->mod_offset = BIGINT_M_OFFSET;
/* convert to a normal block */
decrypted_bi = bi_mod_power2(ctx, dat_bi, modulus, pub_exp);
bi_export(ctx, decrypted_bi, block, sig_len);
ctx->mod_offset = BIGINT_M_OFFSET;
i = 10; /* start at the first possible non-padded byte */
while (block[i++] && i < sig_len);
size = sig_len - i;
/* get only the bit we want */
if (size > 0)
{
int len;
const uint8_t *sig_ptr = x509_get_signature(&block[i], &len);
if (sig_ptr)
{
bir = bi_import(ctx, sig_ptr, len);
}
}
free(block);
return bir;
}
#endif
#endif /* CONFIG_SSL_CERT_VERIFICATION */