blob: dbc874c5f7ccdafea86dedcaa9140d9ccd7cebac [file] [log] [blame]
/* ----------------------------------------------------------------------- *
*
* Copyright 2007-2009 H. Peter Anvin - All Rights Reserved
* Copyright 2009 Intel Corporation; author: H. Peter Anvin
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall
* be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* ----------------------------------------------------------------------- */
/*
* zonelist.c
*
* Deal with syslinux_memmap's, which are data structures designed to
* hold memory maps. A zonelist is a sorted linked list of memory
* ranges, with the guarantee that no two adjacent blocks have the
* same range type. Additionally, all unspecified memory have a range
* type of zero.
*/
#include <stdlib.h>
#include <syslinux/align.h>
#include <syslinux/movebits.h>
#include <dprintf.h>
/*
* Create an empty syslinux_memmap list.
*/
struct syslinux_memmap *syslinux_init_memmap(void)
{
struct syslinux_memmap *sp, *ep;
sp = malloc(sizeof(*sp));
if (!sp)
return NULL;
ep = malloc(sizeof(*ep));
if (!ep) {
free(sp);
return NULL;
}
sp->start = 0;
sp->type = SMT_UNDEFINED;
sp->next = ep;
ep->start = 0; /* Wrap around... */
ep->type = SMT_END; /* End of chain */
ep->next = NULL;
return sp;
}
/*
* Add an item to a syslinux_memmap list, potentially overwriting
* what is already there.
*/
int syslinux_add_memmap(struct syslinux_memmap **list,
addr_t start, addr_t len,
enum syslinux_memmap_types type)
{
addr_t last;
struct syslinux_memmap *mp, **mpp;
struct syslinux_memmap *range;
enum syslinux_memmap_types oldtype;
dprintf("Input memmap:\n");
syslinux_dump_memmap(*list);
/* Remove this to make len == 0 mean all of memory */
if (len == 0)
return 0;
/* Last byte -- to avoid rollover */
last = start + len - 1;
mpp = list;
oldtype = SMT_END; /* Impossible value */
while (mp = *mpp, start > mp->start && mp->type != SMT_END) {
oldtype = mp->type;
mpp = &mp->next;
}
if (start < mp->start || mp->type == SMT_END) {
if (type != oldtype) {
/* Splice in a new start token */
range = malloc(sizeof(*range));
if (!range)
return -1;
range->start = start;
range->type = type;
*mpp = range;
range->next = mp;
mpp = &range->next;
}
} else {
/* mp is exactly aligned with the start of our region */
if (type != oldtype) {
/* Reclaim this entry as our own boundary marker */
oldtype = mp->type;
mp->type = type;
mpp = &mp->next;
}
}
while (mp = *mpp, last > mp->start - 1) {
oldtype = mp->type;
*mpp = mp->next;
free(mp);
}
if (last < mp->start - 1) {
if (oldtype != type) {
/* Need a new end token */
range = malloc(sizeof(*range));
if (!range)
return -1;
range->start = last + 1;
range->type = oldtype;
*mpp = range;
range->next = mp;
}
} else {
if (mp->type == type) {
/* Merge this region with the following one */
*mpp = mp->next;
free(mp);
}
}
dprintf("After adding (%#x,%#x,%d):\n", start, len, type);
syslinux_dump_memmap(*list);
return 0;
}
/*
* Verify what type a certain memory region is. This function returns
* SMT_ERROR if the memory region has multiple types, except that
* SMT_FREE can be demoted to SMT_TERMINAL.
*/
enum syslinux_memmap_types syslinux_memmap_type(struct syslinux_memmap *list,
addr_t start, addr_t len)
{
addr_t last, llast;
last = start + len - 1;
while (list->type != SMT_END) {
llast = list->next->start - 1;
if (list->start <= start) {
if (llast >= last) {
return list->type; /* Region has a well-defined type */
} else if (llast >= start) {
/* Crosses region boundary */
while (valid_terminal_type(list->type)) {
list = list->next;
llast = list->next->start - 1;
if (llast >= last)
return SMT_TERMINAL;
}
return SMT_ERROR;
}
}
list = list->next;
}
return SMT_ERROR; /* Internal error? */
}
/*
* Find the largest zone of a specific type. Returns -1 on failure.
*/
int syslinux_memmap_largest(struct syslinux_memmap *list,
enum syslinux_memmap_types type,
addr_t * start, addr_t * len)
{
addr_t size, best_size = 0;
struct syslinux_memmap *best = NULL;
while (list->type != SMT_END) {
size = list->next->start - list->start;
if (list->type == type && size > best_size) {
best = list;
best_size = size;
}
list = list->next;
}
if (!best)
return -1;
*start = best->start;
*len = best_size;
return 0;
}
/*
* Find the highest zone of a specific type that satisfies the
* constraints.
*
* 'start' is updated with the highest address on success. 'start' can
* be used to set a minimum address to begin searching from.
*
* Returns -1 on failure.
*/
int syslinux_memmap_highest(const struct syslinux_memmap *list,
enum syslinux_memmap_types type,
addr_t *start, addr_t len,
addr_t ceiling, addr_t align)
{
addr_t size, best;
for (best = 0; list->type != SMT_END; list = list->next) {
size = list->next->start - list->start;
if (list->type != type)
continue;
if (list->start + size <= *start)
continue;
if (list->start + len >= ceiling)
continue;
if (list->start + size < ceiling)
best = ALIGN_DOWN(list->start + size - len, align);
else
best = ALIGN_DOWN(ceiling - len, align);
if (best < *start)
best = 0;
}
if (!best)
return -1;
*start = best;
return 0;
}
/*
* Find the first (lowest address) zone of a specific type and of
* a certain minimum size, with an optional starting address.
* The input values of start and len are used as minima.
*/
int syslinux_memmap_find_type(struct syslinux_memmap *list,
enum syslinux_memmap_types type,
addr_t * start, addr_t * len, addr_t align)
{
addr_t min_start = *start;
addr_t min_len = *len;
while (list->type != SMT_END) {
if (list->type == type) {
addr_t xstart, xlen;
xstart = min_start > list->start ? min_start : list->start;
xstart = ALIGN_UP(xstart, align);
if (xstart < list->next->start) {
xlen = list->next->start - xstart;
if (xlen >= min_len) {
*start = xstart;
*len = xlen;
return 0;
}
}
}
list = list->next;
}
return -1; /* Not found */
}
/*
* Free a zonelist.
*/
void syslinux_free_memmap(struct syslinux_memmap *list)
{
struct syslinux_memmap *ml;
while (list) {
ml = list;
list = list->next;
free(ml);
}
}
/*
* Duplicate a zonelist. Returns NULL on failure.
*/
struct syslinux_memmap *syslinux_dup_memmap(struct syslinux_memmap *list)
{
struct syslinux_memmap *newlist = NULL, **nlp = &newlist;
struct syslinux_memmap *ml;
while (list) {
ml = malloc(sizeof(*ml));
if (!ml) {
syslinux_free_memmap(newlist);
return NULL;
}
ml->start = list->start;
ml->type = list->type;
ml->next = NULL;
*nlp = ml;
nlp = &ml->next;
list = list->next;
}
return newlist;
}
/*
* Find a memory region, given a set of heuristics and update 'base' if
* successful.
*/
int syslinux_memmap_find(struct syslinux_memmap *mmap,
addr_t *base, size_t size,
bool relocate, size_t align,
addr_t start_min, addr_t start_max,
addr_t end_min, addr_t end_max)
{
const struct syslinux_memmap *mp;
enum syslinux_memmap_types type;
bool ok;
if (!size)
return 0;
type = syslinux_memmap_type(mmap, *base, size);
/* This assumes SMT_TERMINAL is OK if we can get the exact address */
if (valid_terminal_type(type))
return 0;
if (!relocate) {
dprintf("Cannot relocate\n");
return -1;
}
ok = false;
for (mp = mmap; mp && mp->type != SMT_END; mp = mp->next) {
addr_t start, end;
start = mp->start;
end = mp->next->start;
if (mp->type != SMT_FREE)
continue;
/* min */
if (end <= end_min)
continue; /* Only relocate upwards */
if (start < start_min)
start = start_min;
/* max */
if (end > end_max)
end = end_max;
start = ALIGN_UP(start, align);
if (start > start_max || start >= end)
continue;
if (end - start >= size) {
*base = start;
ok = true;
break;
}
}
if (!ok)
return -1;
return 0;
}