blob: 74ea9348e17737514926ec5a579d09be8c74840d [file] [log] [blame]
// cache.h
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// \file
// An Fst implementation that caches FST elements of a delayed
// computation.
#ifndef FST_LIB_CACHE_H__
#define FST_LIB_CACHE_H__
#include <list>
#include "fst/lib/vector-fst.h"
DECLARE_bool(fst_default_cache_gc);
DECLARE_int64(fst_default_cache_gc_limit);
namespace fst {
struct CacheOptions {
bool gc; // enable GC
size_t gc_limit; // # of bytes allowed before GC
CacheOptions(bool g, size_t l) : gc(g), gc_limit(l) {}
CacheOptions()
: gc(FLAGS_fst_default_cache_gc),
gc_limit(FLAGS_fst_default_cache_gc_limit) {}
};
// This is a VectorFstBaseImpl container that holds a State similar to
// VectorState but additionally has a flags data member (see
// CacheState below). This class is used to cache FST elements with
// the flags used to indicate what has been cached. Use HasStart()
// HasFinal(), and HasArcs() to determine if cached and SetStart(),
// SetFinal(), AddArc(), and SetArcs() to cache. Note you must set the
// final weight even if the state is non-final to mark it as
// cached. If the 'gc' option is 'false', cached items have the extent
// of the FST - minimizing computation. If the 'gc' option is 'true',
// garbage collection of states (not in use in an arc iterator) is
// performed, in a rough approximation of LRU order, when 'gc_limit'
// bytes is reached - controlling memory use. When 'gc_limit' is 0,
// special optimizations apply - minimizing memory use.
template <class S>
class CacheBaseImpl : public VectorFstBaseImpl<S> {
public:
using FstImpl<typename S::Arc>::Type;
using VectorFstBaseImpl<S>::NumStates;
using VectorFstBaseImpl<S>::AddState;
typedef S State;
typedef typename S::Arc Arc;
typedef typename Arc::Weight Weight;
typedef typename Arc::StateId StateId;
CacheBaseImpl()
: cache_start_(false), nknown_states_(0), min_unexpanded_state_id_(0),
cache_first_state_id_(kNoStateId), cache_first_state_(0),
cache_gc_(FLAGS_fst_default_cache_gc), cache_size_(0),
cache_limit_(FLAGS_fst_default_cache_gc_limit > kMinCacheLimit ||
FLAGS_fst_default_cache_gc_limit == 0 ?
FLAGS_fst_default_cache_gc_limit : kMinCacheLimit) {}
explicit CacheBaseImpl(const CacheOptions &opts)
: cache_start_(false), nknown_states_(0),
min_unexpanded_state_id_(0), cache_first_state_id_(kNoStateId),
cache_first_state_(0), cache_gc_(opts.gc), cache_size_(0),
cache_limit_(opts.gc_limit > kMinCacheLimit || opts.gc_limit == 0 ?
opts.gc_limit : kMinCacheLimit) {}
~CacheBaseImpl() {
delete cache_first_state_;
}
// Gets a state from its ID; state must exist.
const S *GetState(StateId s) const {
if (s == cache_first_state_id_)
return cache_first_state_;
else
return VectorFstBaseImpl<S>::GetState(s);
}
// Gets a state from its ID; state must exist.
S *GetState(StateId s) {
if (s == cache_first_state_id_)
return cache_first_state_;
else
return VectorFstBaseImpl<S>::GetState(s);
}
// Gets a state from its ID; return 0 if it doesn't exist.
const S *CheckState(StateId s) const {
if (s == cache_first_state_id_)
return cache_first_state_;
else if (s < NumStates())
return VectorFstBaseImpl<S>::GetState(s);
else
return 0;
}
// Gets a state from its ID; add it if necessary.
S *ExtendState(StateId s) {
if (s == cache_first_state_id_) {
return cache_first_state_; // Return 1st cached state
} else if (cache_limit_ == 0 && cache_first_state_id_ == kNoStateId) {
cache_first_state_id_ = s; // Remember 1st cached state
cache_first_state_ = new S;
return cache_first_state_;
} else if (cache_first_state_id_ != kNoStateId &&
cache_first_state_->ref_count == 0) {
cache_first_state_id_ = s; // Reuse 1st cached state
cache_first_state_->Reset();
return cache_first_state_; // Return 1st cached state
} else {
while (NumStates() <= s) // Add state to main cache
AddState(0);
if (!VectorFstBaseImpl<S>::GetState(s)) {
this->SetState(s, new S);
if (cache_first_state_id_ != kNoStateId) { // Forget 1st cached state
while (NumStates() <= cache_first_state_id_)
AddState(0);
this->SetState(cache_first_state_id_, cache_first_state_);
if (cache_gc_) {
cache_states_.push_back(cache_first_state_id_);
cache_size_ += sizeof(S) +
cache_first_state_->arcs.capacity() * sizeof(Arc);
cache_limit_ = kMinCacheLimit;
}
cache_first_state_id_ = kNoStateId;
cache_first_state_ = 0;
}
if (cache_gc_) {
cache_states_.push_back(s);
cache_size_ += sizeof(S);
if (cache_size_ > cache_limit_)
GC(s, false);
}
}
return VectorFstBaseImpl<S>::GetState(s);
}
}
void SetStart(StateId s) {
VectorFstBaseImpl<S>::SetStart(s);
cache_start_ = true;
if (s >= nknown_states_)
nknown_states_ = s + 1;
}
void SetFinal(StateId s, Weight w) {
S *state = ExtendState(s);
state->final = w;
state->flags |= kCacheFinal | kCacheRecent;
}
void AddArc(StateId s, const Arc &arc) {
S *state = ExtendState(s);
state->arcs.push_back(arc);
}
// Marks arcs of state s as cached.
void SetArcs(StateId s) {
S *state = ExtendState(s);
vector<Arc> &arcs = state->arcs;
state->niepsilons = state->noepsilons = 0;
for (unsigned int a = 0; a < arcs.size(); ++a) {
const Arc &arc = arcs[a];
if (arc.nextstate >= nknown_states_)
nknown_states_ = arc.nextstate + 1;
if (arc.ilabel == 0)
++state->niepsilons;
if (arc.olabel == 0)
++state->noepsilons;
}
ExpandedState(s);
state->flags |= kCacheArcs | kCacheRecent;
if (cache_gc_ && s != cache_first_state_id_) {
cache_size_ += arcs.capacity() * sizeof(Arc);
if (cache_size_ > cache_limit_)
GC(s, false);
}
};
void ReserveArcs(StateId s, size_t n) {
S *state = ExtendState(s);
state->arcs.reserve(n);
}
// Is the start state cached?
bool HasStart() const { return cache_start_; }
// Is the final weight of state s cached?
bool HasFinal(StateId s) const {
const S *state = CheckState(s);
if (state && state->flags & kCacheFinal) {
state->flags |= kCacheRecent;
return true;
} else {
return false;
}
}
// Are arcs of state s cached?
bool HasArcs(StateId s) const {
const S *state = CheckState(s);
if (state && state->flags & kCacheArcs) {
state->flags |= kCacheRecent;
return true;
} else {
return false;
}
}
Weight Final(StateId s) const {
const S *state = GetState(s);
return state->final;
}
size_t NumArcs(StateId s) const {
const S *state = GetState(s);
return state->arcs.size();
}
size_t NumInputEpsilons(StateId s) const {
const S *state = GetState(s);
return state->niepsilons;
}
size_t NumOutputEpsilons(StateId s) const {
const S *state = GetState(s);
return state->noepsilons;
}
// Provides information needed for generic arc iterator.
void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const {
const S *state = GetState(s);
data->base = 0;
data->narcs = state->arcs.size();
data->arcs = data->narcs > 0 ? &(state->arcs[0]) : 0;
data->ref_count = &(state->ref_count);
++(*data->ref_count);
}
// Number of known states.
StateId NumKnownStates() const { return nknown_states_; }
// Find the mininum never-expanded state Id
StateId MinUnexpandedState() const {
while (min_unexpanded_state_id_ < (StateId)expanded_states_.size() &&
expanded_states_[min_unexpanded_state_id_])
++min_unexpanded_state_id_;
return min_unexpanded_state_id_;
}
// Removes from cache_states_ and uncaches (not referenced-counted)
// states that have not been accessed since the last GC until
// cache_limit_/3 bytes are uncached. If that fails to free enough,
// recurs uncaching recently visited states as well. If still
// unable to free enough memory, then widens cache_limit_.
void GC(StateId current, bool free_recent) {
if (!cache_gc_)
return;
VLOG(2) << "CacheImpl: Enter GC: object = " << Type() << "(" << this
<< "), free recently cached = " << free_recent
<< ", cache size = " << cache_size_
<< ", cache limit = " << cache_limit_ << "\n";
typename list<StateId>::iterator siter = cache_states_.begin();
size_t cache_target = (2 * cache_limit_)/3 + 1;
while (siter != cache_states_.end()) {
StateId s = *siter;
S* state = VectorFstBaseImpl<S>::GetState(s);
if (cache_size_ > cache_target && state->ref_count == 0 &&
(free_recent || !(state->flags & kCacheRecent)) && s != current) {
cache_size_ -= sizeof(S) + state->arcs.capacity() * sizeof(Arc);
delete state;
this->SetState(s, 0);
cache_states_.erase(siter++);
} else {
state->flags &= ~kCacheRecent;
++siter;
}
}
if (!free_recent && cache_size_ > cache_target) {
GC(current, true);
} else {
while (cache_size_ > cache_target) {
cache_limit_ *= 2;
cache_target *= 2;
}
}
VLOG(2) << "CacheImpl: Exit GC: object = " << Type() << "(" << this
<< "), free recently cached = " << free_recent
<< ", cache size = " << cache_size_
<< ", cache limit = " << cache_limit_ << "\n";
}
private:
static const uint32 kCacheFinal = 0x0001; // Final weight has been cached
static const uint32 kCacheArcs = 0x0002; // Arcs have been cached
static const uint32 kCacheRecent = 0x0004; // Mark as visited since GC
static const size_t kMinCacheLimit; // Minimum (non-zero) cache limit
void ExpandedState(StateId s) {
if (s < min_unexpanded_state_id_)
return;
while ((StateId)expanded_states_.size() <= s)
expanded_states_.push_back(false);
expanded_states_[s] = true;
}
bool cache_start_; // Is the start state cached?
StateId nknown_states_; // # of known states
vector<bool> expanded_states_; // states that have been expanded
mutable StateId min_unexpanded_state_id_; // minimum never-expanded state Id
StateId cache_first_state_id_; // First cached state id
S *cache_first_state_; // First cached state
list<StateId> cache_states_; // list of currently cached states
bool cache_gc_; // enable GC
size_t cache_size_; // # of bytes cached
size_t cache_limit_; // # of bytes allowed before GC
void InitStateIterator(StateIteratorData<Arc> *); // disallow
DISALLOW_EVIL_CONSTRUCTORS(CacheBaseImpl);
};
template <class S>
const size_t CacheBaseImpl<S>::kMinCacheLimit = 8096;
// Arcs implemented by an STL vector per state. Similar to VectorState
// but adds flags and ref count to keep track of what has been cached.
template <class A>
struct CacheState {
typedef A Arc;
typedef typename A::Weight Weight;
typedef typename A::StateId StateId;
CacheState() : final(Weight::Zero()), flags(0), ref_count(0) {}
void Reset() {
flags = 0;
ref_count = 0;
arcs.resize(0);
}
Weight final; // Final weight
vector<A> arcs; // Arcs represenation
size_t niepsilons; // # of input epsilons
size_t noepsilons; // # of output epsilons
mutable uint32 flags;
mutable int ref_count;
};
// A CacheBaseImpl with a commonly used CacheState.
template <class A>
class CacheImpl : public CacheBaseImpl< CacheState<A> > {
public:
typedef CacheState<A> State;
CacheImpl() {}
explicit CacheImpl(const CacheOptions &opts)
: CacheBaseImpl< CacheState<A> >(opts) {}
private:
DISALLOW_EVIL_CONSTRUCTORS(CacheImpl);
};
// Use this to make a state iterator for a CacheBaseImpl-derived Fst.
// You'll need to make this class a friend of your derived Fst.
// Note this iterator only returns those states reachable from
// the initial state, so consider implementing a class-specific one.
template <class F>
class CacheStateIterator : public StateIteratorBase<typename F::Arc> {
public:
typedef typename F::Arc Arc;
typedef typename Arc::StateId StateId;
explicit CacheStateIterator(const F &fst) : fst_(fst), s_(0) {}
virtual bool Done() const {
if (s_ < fst_.impl_->NumKnownStates())
return false;
fst_.Start(); // force start state
if (s_ < fst_.impl_->NumKnownStates())
return false;
for (int u = fst_.impl_->MinUnexpandedState();
u < fst_.impl_->NumKnownStates();
u = fst_.impl_->MinUnexpandedState()) {
ArcIterator<F>(fst_, u); // force state expansion
if (s_ < fst_.impl_->NumKnownStates())
return false;
}
return true;
}
virtual StateId Value() const { return s_; }
virtual void Next() { ++s_; }
virtual void Reset() { s_ = 0; }
private:
const F &fst_;
StateId s_;
};
// Use this to make an arc iterator for a CacheBaseImpl-derived Fst.
// You'll need to make this class a friend of your derived Fst and
// define types Arc and State.
template <class F>
class CacheArcIterator {
public:
typedef typename F::Arc Arc;
typedef typename F::State State;
typedef typename Arc::StateId StateId;
CacheArcIterator(const F &fst, StateId s) : i_(0) {
state_ = fst.impl_->ExtendState(s);
++state_->ref_count;
}
~CacheArcIterator() { --state_->ref_count; }
bool Done() const { return i_ >= state_->arcs.size(); }
const Arc& Value() const { return state_->arcs[i_]; }
void Next() { ++i_; }
void Reset() { i_ = 0; }
void Seek(size_t a) { i_ = a; }
private:
const State *state_;
size_t i_;
DISALLOW_EVIL_CONSTRUCTORS(CacheArcIterator);
};
} // namespace fst
#endif // FST_LIB_CACHE_H__