blob: e71636b36634b27a5935e74abacacfebfbd1542f [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrMatrix.h"
#include "GrRect.h"
#include <stddef.h>
#if 0
#if GR_SCALAR_IS_FLOAT
const GrScalar GrMatrix::gRESCALE(GR_Scalar1);
#else
GR_STATIC_ASSERT(GR_SCALAR_IS_FIXED);
// fixed point isn't supported right now
GR_STATIC_ASSERT(false);
const GrScalar GrMatrix::gRESCALE(1 << 30);
#endif
const GrMatrix::MapProc GrMatrix::gMapProcs[] = {
// Scales are not both zero
&GrMatrix::mapIdentity,
&GrMatrix::mapScale,
&GrMatrix::mapTranslate,
&GrMatrix::mapScaleAndTranslate,
&GrMatrix::mapSkew,
&GrMatrix::mapScaleAndSkew,
&GrMatrix::mapSkewAndTranslate,
&GrMatrix::mapNonPerspective,
// no optimizations for perspective matrices
&GrMatrix::mapPerspective,
&GrMatrix::mapPerspective,
&GrMatrix::mapPerspective,
&GrMatrix::mapPerspective,
&GrMatrix::mapPerspective,
&GrMatrix::mapPerspective,
&GrMatrix::mapPerspective,
&GrMatrix::mapPerspective,
// Scales are zero (every other is invalid because kScale_TypeBit must be set if
// kZeroScale_TypeBit is set)
&GrMatrix::mapInvalid,
&GrMatrix::mapZero,
&GrMatrix::mapInvalid,
&GrMatrix::mapSetToTranslate,
&GrMatrix::mapInvalid,
&GrMatrix::mapSwappedScale,
&GrMatrix::mapInvalid,
&GrMatrix::mapSwappedScaleAndTranslate,
// no optimizations for perspective matrices
&GrMatrix::mapInvalid,
&GrMatrix::mapZero,
&GrMatrix::mapInvalid,
&GrMatrix::mapPerspective,
&GrMatrix::mapInvalid,
&GrMatrix::mapPerspective,
&GrMatrix::mapInvalid,
&GrMatrix::mapPerspective,
};
void GrMatrix::setIdentity() {
fM[0] = GR_Scalar1; fM[1] = 0; fM[2] = 0;
fM[3] = 0; fM[4] = GR_Scalar1; fM[5] = 0;
fM[6] = 0; fM[7] = 0; fM[8] = gRESCALE;
fTypeMask = 0;
}
void GrMatrix::setTranslate(GrScalar dx, GrScalar dy) {
fM[0] = GR_Scalar1; fM[1] = 0; fM[2] = dx;
fM[3] = 0; fM[4] = GR_Scalar1; fM[5] = dy;
fM[6] = 0; fM[7] = 0; fM[8] = gRESCALE;
fTypeMask = (0 != dx || 0 != dy) ? kTranslate_TypeBit : 0;
}
void GrMatrix::setScale(GrScalar sx, GrScalar sy) {
fM[0] = sx; fM[1] = 0; fM[2] = 0;
fM[3] = 0; fM[4] = sy; fM[5] = 0;
fM[6] = 0; fM[7] = 0; fM[8] = gRESCALE;
fTypeMask = (GR_Scalar1 != sx || GR_Scalar1 != sy) ? kScale_TypeBit : 0;
}
void GrMatrix::setSkew(GrScalar skx, GrScalar sky) {
fM[0] = GR_Scalar1; fM[1] = skx; fM[2] = 0;
fM[3] = sky; fM[4] = GR_Scalar1; fM[5] = 0;
fM[6] = 0; fM[7] = 0; fM[8] = gRESCALE;
fTypeMask = (0 != skx || 0 != sky) ? kSkew_TypeBit : 0;
}
void GrMatrix::setConcat(const GrMatrix& a, const GrMatrix& b) {
if (a.isIdentity()) {
if (this != &b) {
for (int i = 0; i < 9; ++i) {
fM[i] = b.fM[i];
}
fTypeMask = b.fTypeMask;
}
return;
}
if (b.isIdentity()) {
GrAssert(!a.isIdentity());
if (this != &a) {
for (int i = 0; i < 9; ++i) {
fM[i] = a.fM[i];
}
fTypeMask = a.fTypeMask;
}
return;
}
// a and/or b could be this
GrMatrix tmp;
// could do more optimizations based on type bits. Hopefully this call is
// low frequency.
// TODO: make this work for fixed point
if (!((b.fTypeMask | a.fTypeMask) & kPerspective_TypeBit)) {
tmp.fM[0] = a.fM[0] * b.fM[0] + a.fM[1] * b.fM[3];
tmp.fM[1] = a.fM[0] * b.fM[1] + a.fM[1] * b.fM[4];
tmp.fM[2] = a.fM[0] * b.fM[2] + a.fM[1] * b.fM[5] + a.fM[2] * gRESCALE;
tmp.fM[3] = a.fM[3] * b.fM[0] + a.fM[4] * b.fM[3];
tmp.fM[4] = a.fM[3] * b.fM[1] + a.fM[4] * b.fM[4];
tmp.fM[5] = a.fM[3] * b.fM[2] + a.fM[4] * b.fM[5] + a.fM[5] * gRESCALE;
tmp.fM[6] = 0;
tmp.fM[7] = 0;
tmp.fM[8] = gRESCALE * gRESCALE;
} else {
tmp.fM[0] = a.fM[0] * b.fM[0] + a.fM[1] * b.fM[3] + a.fM[2] * b.fM[6];
tmp.fM[1] = a.fM[0] * b.fM[1] + a.fM[1] * b.fM[4] + a.fM[2] * b.fM[7];
tmp.fM[2] = a.fM[0] * b.fM[2] + a.fM[1] * b.fM[5] + a.fM[2] * b.fM[8];
tmp.fM[3] = a.fM[3] * b.fM[0] + a.fM[4] * b.fM[3] + a.fM[5] * b.fM[6];
tmp.fM[4] = a.fM[3] * b.fM[1] + a.fM[4] * b.fM[4] + a.fM[5] * b.fM[7];
tmp.fM[5] = a.fM[3] * b.fM[2] + a.fM[4] * b.fM[5] + a.fM[5] * b.fM[8];
tmp.fM[6] = a.fM[6] * b.fM[0] + a.fM[7] * b.fM[3] + a.fM[8] * b.fM[6];
tmp.fM[7] = a.fM[6] * b.fM[1] + a.fM[7] * b.fM[4] + a.fM[8] * b.fM[7];
tmp.fM[8] = a.fM[6] * b.fM[2] + a.fM[7] * b.fM[5] + a.fM[8] * b.fM[8];
}
*this = tmp;
this->computeTypeMask();
}
void GrMatrix::preConcat(const GrMatrix& m) {
setConcat(*this, m);
}
void GrMatrix::postConcat(const GrMatrix& m) {
setConcat(m, *this);
}
double GrMatrix::determinant() const {
if (fTypeMask & kPerspective_TypeBit) {
return fM[0]*((double)fM[4]*fM[8] - (double)fM[5]*fM[7]) +
fM[1]*((double)fM[5]*fM[6] - (double)fM[3]*fM[8]) +
fM[2]*((double)fM[3]*fM[7] - (double)fM[4]*fM[6]);
} else {
return (double)fM[0]*fM[4]*gRESCALE -
(double)fM[1]*fM[3]*gRESCALE;
}
}
bool GrMatrix::invert(GrMatrix* inverted) const {
if (isIdentity()) {
if (inverted != this) {
inverted->setIdentity();
}
return true;
}
static const double MIN_DETERMINANT_SQUARED = 1.e-16;
// could do more optimizations based on type bits. Hopefully this call is
// low frequency.
double det = determinant();
// check if we can't be inverted
if (det*det <= MIN_DETERMINANT_SQUARED) {
return false;
} else if (NULL == inverted) {
return true;
}
double t[9];
if (fTypeMask & kPerspective_TypeBit) {
t[0] = ((double)fM[4]*fM[8] - (double)fM[5]*fM[7]);
t[1] = ((double)fM[2]*fM[7] - (double)fM[1]*fM[8]);
t[2] = ((double)fM[1]*fM[5] - (double)fM[2]*fM[4]);
t[3] = ((double)fM[5]*fM[6] - (double)fM[3]*fM[8]);
t[4] = ((double)fM[0]*fM[8] - (double)fM[2]*fM[6]);
t[5] = ((double)fM[2]*fM[3] - (double)fM[0]*fM[5]);
t[6] = ((double)fM[3]*fM[7] - (double)fM[4]*fM[6]);
t[7] = ((double)fM[1]*fM[6] - (double)fM[0]*fM[7]);
t[8] = ((double)fM[0]*fM[4] - (double)fM[1]*fM[3]);
det = 1.0 / det;
for (int i = 0; i < 9; ++i) {
inverted->fM[i] = (GrScalar)(t[i] * det);
}
} else {
t[0] = (double)fM[4]*gRESCALE;
t[1] = -(double)fM[1]*gRESCALE;
t[2] = (double)fM[1]*fM[5] - (double)fM[2]*fM[4];
t[3] = -(double)fM[3]*gRESCALE;
t[4] = (double)fM[0]*gRESCALE;
t[5] = (double)fM[2]*fM[3] - (double)fM[0]*fM[5];
//t[6] = 0.0;
//t[7] = 0.0;
t[8] = (double)fM[0]*fM[4] - (double)fM[1]*fM[3];
det = 1.0 / det;
for (int i = 0; i < 6; ++i) {
inverted->fM[i] = (GrScalar)(t[i] * det);
}
inverted->fM[6] = 0;
inverted->fM[7] = 0;
inverted->fM[8] = (GrScalar)(t[8] * det);
}
inverted->computeTypeMask();
return true;
}
void GrMatrix::mapRect(GrRect* dst, const GrRect& src) const {
GrPoint srcPts[4], dstPts[4];
srcPts[0].set(src.fLeft, src.fTop);
srcPts[1].set(src.fRight, src.fTop);
srcPts[2].set(src.fRight, src.fBottom);
srcPts[3].set(src.fLeft, src.fBottom);
this->mapPoints(dstPts, srcPts, 4);
dst->setBounds(dstPts, 4);
}
bool GrMatrix::hasPerspective() const {
GrAssert(!!(kPerspective_TypeBit & fTypeMask) ==
(fM[kPersp0] != 0 || fM[kPersp1] != 0 || fM[kPersp2] != gRESCALE));
return 0 != (kPerspective_TypeBit & fTypeMask);
}
bool GrMatrix::isIdentity() const {
GrAssert((0 == fTypeMask) ==
(GR_Scalar1 == fM[kScaleX] && 0 == fM[kSkewX] && 0 == fM[kTransX] &&
0 == fM[kSkewY] && GR_Scalar1 == fM[kScaleY] && 0 == fM[kTransY] &&
0 == fM[kPersp0] && 0 == fM[kPersp1] && gRESCALE == fM[kPersp2]));
return (0 == fTypeMask);
}
bool GrMatrix::preservesAxisAlignment() const {
// check if matrix is trans and scale only
static const int gAllowedMask1 = kScale_TypeBit | kTranslate_TypeBit;
if (!(~gAllowedMask1 & fTypeMask)) {
return true;
}
// check matrix is trans and skew only (0 scale)
static const int gAllowedMask2 = kScale_TypeBit | kSkew_TypeBit |
kTranslate_TypeBit | kZeroScale_TypeBit;
if (!(~gAllowedMask2 & fTypeMask) && (kZeroScale_TypeBit & fTypeMask)) {
return true;
}
return false;
}
GrScalar GrMatrix::getMaxStretch() const {
if (fTypeMask & kPerspective_TypeBit) {
return -GR_Scalar1;
}
GrScalar stretch;
if (isIdentity()) {
stretch = GR_Scalar1;
} else if (!(fTypeMask & kSkew_TypeBit)) {
stretch = GrMax(GrScalarAbs(fM[kScaleX]), GrScalarAbs(fM[kScaleY]));
} else if (fTypeMask & kZeroScale_TypeBit) {
stretch = GrMax(GrScalarAbs(fM[kSkewX]), GrScalarAbs(fM[kSkewY]));
} else {
// ignore the translation part of the matrix, just look at 2x2 portion.
// compute singular values, take largest abs value.
// [a b; b c] = A^T*A
GrScalar a = GrMul(fM[kScaleX], fM[kScaleX]) + GrMul(fM[kSkewY], fM[kSkewY]);
GrScalar b = GrMul(fM[kScaleX], fM[kSkewX]) + GrMul(fM[kScaleY], fM[kSkewY]);
GrScalar c = GrMul(fM[kSkewX], fM[kSkewX]) + GrMul(fM[kScaleY], fM[kScaleY]);
// eigenvalues of A^T*A are the squared singular values of A.
// characteristic equation is det((A^T*A) - l*I) = 0
// l^2 - (a + c)l + (ac-b^2)
// solve using quadratic equation (divisor is non-zero since l^2 has 1 coeff
// and roots are guaraunteed to be pos and real).
GrScalar largerRoot;
GrScalar bSqd = GrMul(b,b);
// TODO: fixed point tolerance value.
if (bSqd < 1e-10) { // will be true if upper left 2x2 is orthogonal, which is common, so save some math
largerRoot = GrMax(a, c);
} else {
GrScalar aminusc = a - c;
GrScalar apluscdiv2 = (a + c) / 2;
GrScalar x = sqrtf(GrMul(aminusc,aminusc) + GrMul(4,(bSqd))) / 2;
largerRoot = apluscdiv2 + x;
}
stretch = sqrtf(largerRoot);
}
#if GR_DEBUG && 0
// test a bunch of vectors. None should be scaled by more than stretch
// (modulo some error) and we should find a vector that is scaled by almost
// stretch.
GrPoint pt;
GrScalar max = 0;
for (int i = 0; i < 1000; ++i) {
GrScalar x = (float)rand() / RAND_MAX;
GrScalar y = sqrtf(1 - (x*x));
pt.fX = fM[kScaleX]*x + fM[kSkewX]*y;
pt.fY = fM[kSkewY]*x + fM[kScaleY]*y;
GrScalar d = pt.distanceToOrigin();
GrAssert(d <= (1.0001 * stretch));
max = GrMax(max, pt.distanceToOrigin());
}
GrAssert((stretch - max) < .05*stretch);
#endif
return stretch;
}
bool GrMatrix::operator == (const GrMatrix& m) const {
if (fTypeMask != m.fTypeMask) {
return false;
}
if (!fTypeMask) {
return true;
}
for (int i = 0; i < 9; ++i) {
if (m.fM[i] != fM[i]) {
return false;
}
}
return true;
}
bool GrMatrix::operator != (const GrMatrix& m) const {
return !(*this == m);
}
////////////////////////////////////////////////////////////////////////////////
// Matrix transformation procs
//////
void GrMatrix::mapIdentity(GrPoint* dst, const GrPoint* src, uint32_t count) const {
if (src != dst) {
for (uint32_t i = 0; i < count; ++i) {
dst[i] = src[i];
}
}
}
void GrMatrix::mapScale(GrPoint* dst, const GrPoint* src, uint32_t count) const {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = GrMul(src[i].fX, fM[kScaleX]);
dst[i].fY = GrMul(src[i].fY, fM[kScaleY]);
}
}
void GrMatrix::mapTranslate(GrPoint* dst, const GrPoint* src, uint32_t count) const {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = src[i].fX + fM[kTransX];
dst[i].fY = src[i].fY + fM[kTransY];
}
}
void GrMatrix::mapScaleAndTranslate(GrPoint* dst, const GrPoint* src, uint32_t count) const {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = GrMul(src[i].fX, fM[kScaleX]) + fM[kTransX];
dst[i].fY = GrMul(src[i].fY, fM[kScaleY]) + fM[kTransY];
}
}
void GrMatrix::mapSkew(GrPoint* dst, const GrPoint* src, uint32_t count) const {
if (src != dst) {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = src[i].fX + GrMul(src[i].fY, fM[kSkewX]);
dst[i].fY = src[i].fY + GrMul(src[i].fX, fM[kSkewY]);
}
} else {
for (uint32_t i = 0; i < count; ++i) {
GrScalar newX = src[i].fX + GrMul(src[i].fY, fM[kSkewX]);
dst[i].fY = src[i].fY + GrMul(src[i].fX, fM[kSkewY]);
dst[i].fX = newX;
}
}
}
void GrMatrix::mapScaleAndSkew(GrPoint* dst, const GrPoint* src, uint32_t count) const {
if (src != dst) {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = GrMul(src[i].fX, fM[kScaleX]) + GrMul(src[i].fY, fM[kSkewX]);
dst[i].fY = GrMul(src[i].fY, fM[kScaleY]) + GrMul(src[i].fX, fM[kSkewY]);
}
} else {
for (uint32_t i = 0; i < count; ++i) {
GrScalar newX = GrMul(src[i].fX, fM[kScaleX]) + GrMul(src[i].fY, fM[kSkewX]);
dst[i].fY = GrMul(src[i].fY, fM[kScaleY]) + GrMul(src[i].fX, fM[kSkewY]);
dst[i].fX = newX;
}
}
}
void GrMatrix::mapSkewAndTranslate(GrPoint* dst, const GrPoint* src, uint32_t count) const {
if (src != dst) {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = src[i].fX + GrMul(src[i].fY, fM[kSkewX]) + fM[kTransX];
dst[i].fY = src[i].fY + GrMul(src[i].fX, fM[kSkewY]) + fM[kTransY];
}
} else {
for (uint32_t i = 0; i < count; ++i) {
GrScalar newX = src[i].fX + GrMul(src[i].fY, fM[kSkewX]) + fM[kTransX];
dst[i].fY = src[i].fY + GrMul(src[i].fX, fM[kSkewY]) + fM[kTransY];
dst[i].fX = newX;
}
}
}
void GrMatrix::mapNonPerspective(GrPoint* dst, const GrPoint* src, uint32_t count) const {
if (src != dst) {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = GrMul(fM[kScaleX], src[i].fX) + GrMul(fM[kSkewX], src[i].fY) + fM[kTransX];
dst[i].fY = GrMul(fM[kSkewY], src[i].fX) + GrMul(fM[kScaleY], src[i].fY) + fM[kTransY];
}
} else {
for (uint32_t i = 0; i < count; ++i) {
GrScalar newX = GrMul(fM[kScaleX], src[i].fX) + GrMul(fM[kSkewX], src[i].fY) + fM[kTransX];
dst[i].fY = GrMul(fM[kSkewY], src[i].fX) + GrMul(fM[kScaleY], src[i].fY) + fM[kTransY];
dst[i].fX = newX;
}
}
}
void GrMatrix::mapPerspective(GrPoint* dst, const GrPoint* src, uint32_t count) const {
for (uint32_t i = 0; i < count; ++i) {
GrScalar x, y, w;
x = GrMul(fM[kScaleX], src[i].fX) + GrMul(fM[kSkewX], src[i].fY) + fM[kTransX];
y = GrMul(fM[kSkewY], src[i].fX) + GrMul(fM[kScaleY], src[i].fY) + fM[kTransY];
w = GrMul(fM[kPersp0], src[i].fX) + GrMul(fM[kPersp1], src[i].fY) + fM[kPersp2];
// TODO need fixed point invert
if (w) {
w = 1 / w;
}
dst[i].fX = GrMul(x, w);
dst[i].fY = GrMul(y, w);
}
}
void GrMatrix::mapInvalid(GrPoint* dst, const GrPoint* src, uint32_t count) const {
GrAssert(0);
}
void GrMatrix::mapZero(GrPoint* dst, const GrPoint* src, uint32_t count) const {
memset(dst, 0, sizeof(GrPoint)*count);
}
void GrMatrix::mapSetToTranslate(GrPoint* dst, const GrPoint* src, uint32_t count) const {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = fM[kTransX];
dst[i].fY = fM[kTransY];
}
}
void GrMatrix::mapSwappedScale(GrPoint* dst, const GrPoint* src, uint32_t count) const {
if (src != dst) {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = GrMul(src[i].fY, fM[kSkewX]);
dst[i].fY = GrMul(src[i].fX, fM[kSkewY]);
}
} else {
for (uint32_t i = 0; i < count; ++i) {
GrScalar newX = GrMul(src[i].fY, fM[kSkewX]);
dst[i].fY = GrMul(src[i].fX, fM[kSkewY]);
dst[i].fX = newX;
}
}
}
void GrMatrix::mapSwappedScaleAndTranslate(GrPoint* dst, const GrPoint* src, uint32_t count) const {
if (src != dst) {
for (uint32_t i = 0; i < count; ++i) {
dst[i].fX = GrMul(src[i].fY, fM[kSkewX]) + fM[kTransX];
dst[i].fY = GrMul(src[i].fX, fM[kSkewY]) + fM[kTransY];
}
} else {
for (uint32_t i = 0; i < count; ++i) {
GrScalar newX = GrMul(src[i].fY, fM[kSkewX]) + fM[kTransX];
dst[i].fY = GrMul(src[i].fX, fM[kSkewY]) + fM[kTransY];
dst[i].fX = newX;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Unit test
//////
#include "GrRandom.h"
#if GR_DEBUG
enum MatrixType {
kRotate_MatrixType,
kScaleX_MatrixType,
kScaleY_MatrixType,
kSkewX_MatrixType,
kSkewY_MatrixType,
kTranslateX_MatrixType,
kTranslateY_MatrixType,
kSwapScaleXY_MatrixType,
kPersp_MatrixType,
kMatrixTypeCount
};
static void create_matrix(GrMatrix* matrix, GrRandom& rand) {
MatrixType type = (MatrixType)(rand.nextU() % kMatrixTypeCount);
switch (type) {
case kRotate_MatrixType: {
float angle = rand.nextF() * 2 *3.14159265358979323846f;
GrScalar cosa = GrFloatToScalar(cosf(angle));
GrScalar sina = GrFloatToScalar(sinf(angle));
matrix->setAll(cosa, -sina, 0,
sina, cosa, 0,
0, 0, GrMatrix::I()[8]);
} break;
case kScaleX_MatrixType: {
GrScalar scale = GrFloatToScalar(rand.nextF(-2, 2));
matrix->setAll(scale, 0, 0,
0, GR_Scalar1, 0,
0, 0, GrMatrix::I()[8]);
} break;
case kScaleY_MatrixType: {
GrScalar scale = GrFloatToScalar(rand.nextF(-2, 2));
matrix->setAll(GR_Scalar1, 0, 0,
0, scale, 0,
0, 0, GrMatrix::I()[8]);
} break;
case kSkewX_MatrixType: {
GrScalar skew = GrFloatToScalar(rand.nextF(-2, 2));
matrix->setAll(GR_Scalar1, skew, 0,
0, GR_Scalar1, 0,
0, 0, GrMatrix::I()[8]);
} break;
case kSkewY_MatrixType: {
GrScalar skew = GrFloatToScalar(rand.nextF(-2, 2));
matrix->setAll(GR_Scalar1, 0, 0,
skew, GR_Scalar1, 0,
0, 0, GrMatrix::I()[8]);
} break;
case kTranslateX_MatrixType: {
GrScalar trans = GrFloatToScalar(rand.nextF(-10, 10));
matrix->setAll(GR_Scalar1, 0, trans,
0, GR_Scalar1, 0,
0, 0, GrMatrix::I()[8]);
} break;
case kTranslateY_MatrixType: {
GrScalar trans = GrFloatToScalar(rand.nextF(-10, 10));
matrix->setAll(GR_Scalar1, 0, 0,
0, GR_Scalar1, trans,
0, 0, GrMatrix::I()[8]);
} break;
case kSwapScaleXY_MatrixType: {
GrScalar xy = GrFloatToScalar(rand.nextF(-2, 2));
GrScalar yx = GrFloatToScalar(rand.nextF(-2, 2));
matrix->setAll(0, xy, 0,
yx, 0, 0,
0, 0, GrMatrix::I()[8]);
} break;
case kPersp_MatrixType: {
GrScalar p0 = GrFloatToScalar(rand.nextF(-2, 2));
GrScalar p1 = GrFloatToScalar(rand.nextF(-2, 2));
GrScalar p2 = GrFloatToScalar(rand.nextF(-0.5f, 0.75f));
matrix->setAll(GR_Scalar1, 0, 0,
0, GR_Scalar1, 0,
p0, p1, GrMul(p2,GrMatrix::I()[8]));
} break;
default:
GrAssert(0);
break;
}
}
#endif
void GrMatrix::UnitTest() {
GrRandom rand;
// Create a bunch of matrices and test point mapping, max stretch calc,
// inversion and multiply-by-inverse.
#if GR_DEBUG
for (int i = 0; i < 10000; ++i) {
GrMatrix a, b;
a.setIdentity();
int num = rand.nextU() % 6;
// force testing of I and swapXY
if (0 == i) {
num = 0;
GrAssert(a.isIdentity());
} else if (1 == i) {
num = 0;
a.setAll(0, GR_Scalar1, 0,
GR_Scalar1, 0, 0,
0, 0, I()[8]);
}
for (int j = 0; j < num; ++j) {
create_matrix(&b, rand);
a.preConcat(b);
}
GrScalar maxStretch = a.getMaxStretch();
if (maxStretch > 0) {
maxStretch = GrMul(GR_Scalar1 + GR_Scalar1 / 100, maxStretch);
}
GrPoint origin = a.mapPoint(GrPoint::Make(0,0));
for (int j = 0; j < 9; ++j) {
int mask, origMask = a.fTypeMask;
GrScalar old = a[j];
a.set(j, GR_Scalar1);
mask = a.fTypeMask;
a.computeTypeMask();
GrAssert(mask == a.fTypeMask);
a.set(j, 0);
mask = a.fTypeMask;
a.computeTypeMask();
GrAssert(mask == a.fTypeMask);
a.set(j, 10 * GR_Scalar1);
mask = a.fTypeMask;
a.computeTypeMask();
GrAssert(mask == a.fTypeMask);
a.set(j, old);
GrAssert(a.fTypeMask == origMask);
}
for (int j = 0; j < 100; ++j) {
GrPoint pt;
pt.fX = GrFloatToScalar(rand.nextF(-10, 10));
pt.fY = GrFloatToScalar(rand.nextF(-10, 10));
GrPoint t0, t1, t2;
t0 = a.mapPoint(pt); // map to a new point
t1 = pt;
a.mapPoints(&t1, &t1, 1); // in place
a.mapPerspective(&t2, &pt, 1); // full mult
GrAssert(t0 == t1 && t1 == t2);
if (maxStretch >= 0.f) {
GrVec vec = origin - t0;
// vec.setBetween(t0, origin);
GrScalar stretch = vec.length() / pt.distanceToOrigin();
GrAssert(stretch <= maxStretch);
}
}
double det = a.determinant();
if (fabs(det) > 1e-3 && a.invert(&b)) {
GrMatrix c;
c.setConcat(a,b);
for (int i = 0; i < 9; ++i) {
GrScalar diff = GrScalarAbs(c[i] - I()[i]);
GrAssert(diff < (5*GR_Scalar1 / 100));
}
}
}
#endif
}
///////////////////////////////////////////////////////////////////////////////
#endif
int Gr_clz(uint32_t n) {
if (0 == n) {
return 32;
}
int count = 0;
if (0 == (n & 0xFFFF0000)) {
count += 16;
n <<= 16;
}
if (0 == (n & 0xFF000000)) {
count += 8;
n <<= 8;
}
if (0 == (n & 0xF0000000)) {
count += 4;
n <<= 4;
}
if (0 == (n & 0xC0000000)) {
count += 2;
n <<= 2;
}
if (0 == (n & 0x80000000)) {
count += 1;
}
return count;
}