blob: e175840d32c1d769ff0c2a2a44454366375df88e [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPixelXorXfermode.h"
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkString.h"
// we always return an opaque color, 'cause I don't know what to do with
// the alpha-component and still return a valid premultiplied color.
SkPMColor SkPixelXorXfermode::xferColor(SkPMColor src, SkPMColor dst) const {
SkPMColor res = src ^ dst ^ fOpColor;
res |= (SK_A32_MASK << SK_A32_SHIFT); // force it to be opaque
return res;
}
void SkPixelXorXfermode::flatten(SkWriteBuffer& wb) const {
wb.writeColor(SkColorSetRGB(SkGetPackedR32(fOpColor),
SkGetPackedG32(fOpColor),
SkGetPackedB32(fOpColor)));
}
SkFlattenable* SkPixelXorXfermode::CreateProc(SkReadBuffer& buffer) {
return Create(buffer.readColor());
}
#ifndef SK_IGNORE_TO_STRING
void SkPixelXorXfermode::toString(SkString* str) const {
str->append("SkPixelXorXfermode: ");
str->appendHex(fOpColor);
}
#endif
#if SK_SUPPORT_GPU
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "GrXferProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLXferProcessor.h"
///////////////////////////////////////////////////////////////////////////////
// Fragment Processor
///////////////////////////////////////////////////////////////////////////////
static void add_pixelxor_code(GrGLSLFragmentBuilder* fragBuilder,
const char* srcColor,
const char* dstColor,
const char* outputColor,
const char* opColor) {
static const GrGLSLShaderVar gXorArgs[] = {
GrGLSLShaderVar("f1", kFloat_GrSLType),
GrGLSLShaderVar("f2", kFloat_GrSLType),
GrGLSLShaderVar("f3", kFloat_GrSLType),
GrGLSLShaderVar("fPowerOf2Divisor", kFloat_GrSLType),
};
SkString xorFuncName;
// The xor function checks if the three passed in floats (f1, f2, f3) would
// have a bit in the log2(fPowerOf2Divisor)-th position if they were
// represented by an int. It then performs an xor of the 3 bits (using
// the property that serial xors can be treated as a sum of 0s & 1s mod 2).
fragBuilder->emitFunction(kFloat_GrSLType,
"xor",
SK_ARRAY_COUNT(gXorArgs),
gXorArgs,
"float bit1 = floor(f1 / fPowerOf2Divisor);"
"float bit2 = floor(f2 / fPowerOf2Divisor);"
"float bit3 = floor(f3 / fPowerOf2Divisor);"
"return mod(bit1 + bit2 + bit3, 2.0);",
&xorFuncName);
fragBuilder->codeAppend("float red = 0.0, green = 0.0, blue = 0.0;");
if (srcColor) {
fragBuilder->codeAppendf("vec3 src = 255.99 * %s.rgb;", srcColor);
} else {
fragBuilder->codeAppendf("vec3 src = vec3(255.99);");
}
fragBuilder->codeAppendf("vec3 dst = 255.99 * %s.rgb;", dstColor);
fragBuilder->codeAppendf("vec3 op = 255.99 * %s;", opColor);
fragBuilder->codeAppend("float modValue = 128.0;");
fragBuilder->codeAppend("for (int i = 0; i < 8; i++) {");
fragBuilder->codeAppendf("float bit = %s(src.r, dst.r, op.r, modValue);", xorFuncName.c_str());
fragBuilder->codeAppend("red += modValue * bit;");
fragBuilder->codeAppend("src.r = mod(src.r, modValue);");
fragBuilder->codeAppend("dst.r = mod(dst.r, modValue);");
fragBuilder->codeAppend("op.r = mod(op.r, modValue);");
fragBuilder->codeAppendf("bit = %s(src.g, dst.g, op.g, modValue);", xorFuncName.c_str());
fragBuilder->codeAppend("green += modValue * bit;");
fragBuilder->codeAppend("src.g = mod(src.g, modValue);");
fragBuilder->codeAppend("dst.g = mod(dst.g, modValue);");
fragBuilder->codeAppend("op.g = mod(op.g, modValue);");
fragBuilder->codeAppendf("bit = %s(src.b, dst.b, op.b, modValue);", xorFuncName.c_str());
fragBuilder->codeAppend("blue += modValue * bit;");
fragBuilder->codeAppend("src.b = mod(src.b, modValue);");
fragBuilder->codeAppend("dst.b = mod(dst.b, modValue);");
fragBuilder->codeAppend("op.b = mod(op.b, modValue);");
fragBuilder->codeAppend("modValue /= 2.0;");
fragBuilder->codeAppend("}");
fragBuilder->codeAppendf("%s = vec4(red/255.0, green/255.0, blue/255.0, 1.0);", outputColor);
}
class GLPixelXorFP;
class PixelXorFP : public GrFragmentProcessor {
public:
static const GrFragmentProcessor* Create(SkPMColor opColor, const GrFragmentProcessor* dst) {
return new PixelXorFP(opColor, dst);
}
~PixelXorFP() override {};
const char* name() const override { return "PixelXor"; }
SkString dumpInfo() const override {
SkString str;
str.appendf("Color: 0x%08x", fOpColor);
return str;
}
SkPMColor opColor() const { return fOpColor; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor& fpBase) const override {
const PixelXorFP& fp = fpBase.cast<PixelXorFP>();
return fOpColor == fp.fOpColor;
}
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->setToUnknown(GrInvariantOutput::kWill_ReadInput);
}
PixelXorFP(SkPMColor opColor, const GrFragmentProcessor* dst)
: fOpColor(opColor) {
this->initClassID<PixelXorFP>();
SkASSERT(dst);
SkDEBUGCODE(int dstIndex = )this->registerChildProcessor(dst);
SkASSERT(0 == dstIndex);
}
SkPMColor fOpColor;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
typedef GrFragmentProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class GLPixelXorFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString dstColor("dstColor");
this->emitChild(0, nullptr, &dstColor, args);
fOpColorUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec3f_GrSLType, kHigh_GrSLPrecision,
"opColor");
const char* kOpColorUni = args.fUniformHandler->getUniformCStr(fOpColorUni);
add_pixelxor_code(fragBuilder, args.fInputColor, dstColor.c_str(),
args.fOutputColor, kOpColorUni);
}
static void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*) { }
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& proc) override {
const PixelXorFP& pixXor = proc.cast<PixelXorFP>();
pdman.set3f(fOpColorUni,
SkGetPackedR32(pixXor.opColor())/255.0f,
SkGetPackedG32(pixXor.opColor())/255.0f,
SkGetPackedB32(pixXor.opColor())/255.0f);
}
private:
GrGLSLProgramDataManager::UniformHandle fOpColorUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
GrGLSLFragmentProcessor* PixelXorFP::onCreateGLSLInstance() const {
return new GLPixelXorFP;
}
void PixelXorFP::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const {
GLPixelXorFP::GenKey(*this, caps, b);
}
const GrFragmentProcessor* PixelXorFP::TestCreate(GrProcessorTestData* d) {
SkColor color = d->fRandom->nextU();
SkAutoTUnref<const GrFragmentProcessor> dst(GrProcessorUnitTest::CreateChildFP(d));
return new PixelXorFP(SkPreMultiplyColor(color), dst);
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(PixelXorFP);
///////////////////////////////////////////////////////////////////////////////
// Xfer Processor
///////////////////////////////////////////////////////////////////////////////
class PixelXorXP : public GrXferProcessor {
public:
PixelXorXP(const DstTexture* dstTexture, bool hasMixedSamples, SkPMColor opColor)
: INHERITED(dstTexture, true, hasMixedSamples)
, fOpColor(opColor) {
this->initClassID<PixelXorXP>();
}
const char* name() const override { return "PixelXor"; }
GrGLSLXferProcessor* createGLSLInstance() const override;
SkPMColor opColor() const { return fOpColor; }
private:
GrXferProcessor::OptFlags onGetOptimizations(const GrPipelineOptimizations& optimizations,
bool doesStencilWrite,
GrColor* overrideColor,
const GrCaps& caps) const override {
return GrXferProcessor::kNone_OptFlags;
}
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrXferProcessor& xpBase) const override {
const PixelXorXP& xp = xpBase.cast<PixelXorXP>();
return fOpColor == xp.fOpColor;
}
SkPMColor fOpColor;
typedef GrXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class GLPixelXorXP : public GrGLSLXferProcessor {
public:
GLPixelXorXP(const PixelXorXP& pixelXorXP) { }
~GLPixelXorXP() override {}
static void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*) { }
private:
void emitBlendCodeForDstRead(GrGLSLXPFragmentBuilder* fragBuilder,
GrGLSLUniformHandler* uniformHandler,
const char* srcColor,
const char* srcCoverage,
const char* dstColor,
const char* outColor,
const char* outColorSecondary,
const GrXferProcessor& proc) override {
fOpColorUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec3f_GrSLType, kHigh_GrSLPrecision,
"opColor");
const char* kOpColorUni = uniformHandler->getUniformCStr(fOpColorUni);
add_pixelxor_code(fragBuilder, srcColor, dstColor, outColor, kOpColorUni);
// Apply coverage.
INHERITED::DefaultCoverageModulation(fragBuilder, srcCoverage, dstColor, outColor,
outColorSecondary, proc);
}
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrXferProcessor& processor) override {
const PixelXorXP& pixelXor = processor.cast<PixelXorXP>();
pdman.set3f(fOpColorUni,
SkGetPackedR32(pixelXor.opColor())/255.0f,
SkGetPackedG32(pixelXor.opColor())/255.0f,
SkGetPackedB32(pixelXor.opColor())/255.0f);
};
GrGLSLProgramDataManager::UniformHandle fOpColorUni;
typedef GrGLSLXferProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
void PixelXorXP::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const {
GLPixelXorXP::GenKey(*this, caps, b);
}
GrGLSLXferProcessor* PixelXorXP::createGLSLInstance() const { return new GLPixelXorXP(*this); }
///////////////////////////////////////////////////////////////////////////////
class GrPixelXorXPFactory : public GrXPFactory {
public:
static GrXPFactory* Create(SkPMColor opColor) {
return new GrPixelXorXPFactory(opColor);
}
void getInvariantBlendedColor(const GrProcOptInfo& colorPOI,
GrXPFactory::InvariantBlendedColor* blendedColor) const override {
blendedColor->fWillBlendWithDst = true;
blendedColor->fKnownColorFlags = kNone_GrColorComponentFlags;
}
private:
GrPixelXorXPFactory(SkPMColor opColor)
: fOpColor(opColor) {
this->initClassID<GrPixelXorXPFactory>();
}
GrXferProcessor* onCreateXferProcessor(const GrCaps& caps,
const GrPipelineOptimizations& optimizations,
bool hasMixedSamples,
const DstTexture* dstTexture) const override {
return new PixelXorXP(dstTexture, hasMixedSamples, fOpColor);
}
bool onWillReadDstColor(const GrCaps& caps,
const GrPipelineOptimizations& optimizations,
bool hasMixedSamples) const override {
return true;
}
bool onIsEqual(const GrXPFactory& xpfBase) const override {
const GrPixelXorXPFactory& xpf = xpfBase.cast<GrPixelXorXPFactory>();
return fOpColor == xpf.fOpColor;
}
GR_DECLARE_XP_FACTORY_TEST;
SkPMColor fOpColor;
typedef GrXPFactory INHERITED;
};
GR_DEFINE_XP_FACTORY_TEST(GrPixelXorXPFactory);
const GrXPFactory* GrPixelXorXPFactory::TestCreate(GrProcessorTestData* d) {
SkColor color = d->fRandom->nextU();
return GrPixelXorXPFactory::Create(SkPreMultiplyColor(color));
}
///////////////////////////////////////////////////////////////////////////////
const GrFragmentProcessor* SkPixelXorXfermode::getFragmentProcessorForImageFilter(
const GrFragmentProcessor* dst) const {
return PixelXorFP::Create(fOpColor, dst);
}
GrXPFactory* SkPixelXorXfermode::asXPFactory() const {
return GrPixelXorXPFactory::Create(fOpColor);
}
#endif