blob: 736cb56f6f3cc8ca8d01f3b6a6e10dc433522265 [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLInliner.h"
#include "limits.h"
#include <memory>
#include <unordered_set>
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalValueReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLLayout.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLNullLiteral.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVarDeclarationsStatement.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#include "src/sksl/ir/SkSLWhileStatement.h"
namespace SkSL {
namespace {
static int count_all_returns(const FunctionDefinition& funcDef) {
class CountAllReturns : public ProgramVisitor {
public:
CountAllReturns(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.fKind) {
case Statement::kReturn_Kind:
++fNumReturns;
[[fallthrough]];
default:
return this->INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
using INHERITED = ProgramVisitor;
};
return CountAllReturns{funcDef}.fNumReturns;
}
static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) {
class CountReturnsAtEndOfControlFlow : public ProgramVisitor {
public:
CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.fKind) {
case Statement::kBlock_Kind: {
// Check only the last statement of a block.
const auto& blockStmts = stmt.as<Block>().fStatements;
return (blockStmts.size() > 0) ? this->visitStatement(*blockStmts.back())
: false;
}
case Statement::kSwitch_Kind:
case Statement::kWhile_Kind:
case Statement::kDo_Kind:
case Statement::kFor_Kind:
// Don't introspect switches or loop structures at all.
return false;
case Statement::kReturn_Kind:
++fNumReturns;
[[fallthrough]];
default:
return this->INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
using INHERITED = ProgramVisitor;
};
return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns;
}
static int count_returns_in_breakable_constructs(const FunctionDefinition& funcDef) {
class CountReturnsInBreakableConstructs : public ProgramVisitor {
public:
CountReturnsInBreakableConstructs(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.fKind) {
case Statement::kSwitch_Kind:
case Statement::kWhile_Kind:
case Statement::kDo_Kind:
case Statement::kFor_Kind: {
++fInsideBreakableConstruct;
bool result = this->INHERITED::visitStatement(stmt);
--fInsideBreakableConstruct;
return result;
}
case Statement::kReturn_Kind:
fNumReturns += (fInsideBreakableConstruct > 0) ? 1 : 0;
[[fallthrough]];
default:
return this->INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
int fInsideBreakableConstruct = 0;
using INHERITED = ProgramVisitor;
};
return CountReturnsInBreakableConstructs{funcDef}.fNumReturns;
}
static bool has_early_return(const FunctionDefinition& funcDef) {
int returnCount = count_all_returns(funcDef);
if (returnCount == 0) {
return false;
}
int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef);
return returnCount > returnsAtEndOfControlFlow;
}
static const Type* copy_if_needed(const Type* src, SymbolTable& symbolTable) {
if (src->kind() == Type::kArray_Kind) {
return symbolTable.takeOwnershipOfSymbol(std::make_unique<Type>(*src));
}
return src;
}
} // namespace
void Inliner::reset(const Context& context, const Program::Settings& settings) {
fContext = &context;
fSettings = &settings;
fInlineVarCounter = 0;
}
std::unique_ptr<Expression> Inliner::inlineExpression(int offset,
VariableRewriteMap* varMap,
const Expression& expression) {
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(offset, varMap, *e);
}
return nullptr;
};
auto argList = [&](const std::vector<std::unique_ptr<Expression>>& originalArgs)
-> std::vector<std::unique_ptr<Expression>> {
std::vector<std::unique_ptr<Expression>> args;
args.reserve(originalArgs.size());
for (const std::unique_ptr<Expression>& arg : originalArgs) {
args.push_back(expr(arg));
}
return args;
};
switch (expression.fKind) {
case Expression::kBinary_Kind: {
const BinaryExpression& b = expression.as<BinaryExpression>();
return std::make_unique<BinaryExpression>(offset,
expr(b.fLeft),
b.fOperator,
expr(b.fRight),
b.fType);
}
case Expression::kBoolLiteral_Kind:
case Expression::kIntLiteral_Kind:
case Expression::kFloatLiteral_Kind:
case Expression::kNullLiteral_Kind:
return expression.clone();
case Expression::kConstructor_Kind: {
const Constructor& constructor = expression.as<Constructor>();
return std::make_unique<Constructor>(offset, constructor.fType,
argList(constructor.fArguments));
}
case Expression::kExternalFunctionCall_Kind: {
const ExternalFunctionCall& externalCall = expression.as<ExternalFunctionCall>();
return std::make_unique<ExternalFunctionCall>(offset, externalCall.fType,
externalCall.fFunction,
argList(externalCall.fArguments));
}
case Expression::kExternalValue_Kind:
return expression.clone();
case Expression::kFieldAccess_Kind: {
const FieldAccess& f = expression.as<FieldAccess>();
return std::make_unique<FieldAccess>(expr(f.fBase), f.fFieldIndex, f.fOwnerKind);
}
case Expression::kFunctionCall_Kind: {
const FunctionCall& funcCall = expression.as<FunctionCall>();
return std::make_unique<FunctionCall>(offset, funcCall.fType, funcCall.fFunction,
argList(funcCall.fArguments));
}
case Expression::kIndex_Kind: {
const IndexExpression& idx = expression.as<IndexExpression>();
return std::make_unique<IndexExpression>(*fContext, expr(idx.fBase), expr(idx.fIndex));
}
case Expression::kPrefix_Kind: {
const PrefixExpression& p = expression.as<PrefixExpression>();
return std::make_unique<PrefixExpression>(p.fOperator, expr(p.fOperand));
}
case Expression::kPostfix_Kind: {
const PostfixExpression& p = expression.as<PostfixExpression>();
return std::make_unique<PostfixExpression>(expr(p.fOperand), p.fOperator);
}
case Expression::kSetting_Kind:
return expression.clone();
case Expression::kSwizzle_Kind: {
const Swizzle& s = expression.as<Swizzle>();
return std::make_unique<Swizzle>(*fContext, expr(s.fBase), s.fComponents);
}
case Expression::kTernary_Kind: {
const TernaryExpression& t = expression.as<TernaryExpression>();
return std::make_unique<TernaryExpression>(offset, expr(t.fTest),
expr(t.fIfTrue), expr(t.fIfFalse));
}
case Expression::kVariableReference_Kind: {
const VariableReference& v = expression.as<VariableReference>();
auto found = varMap->find(&v.fVariable);
if (found != varMap->end()) {
return std::make_unique<VariableReference>(offset, *found->second, v.fRefKind);
}
return v.clone();
}
default:
SkASSERT(false);
return nullptr;
}
}
std::unique_ptr<Statement> Inliner::inlineStatement(int offset,
VariableRewriteMap* varMap,
SymbolTable* symbolTableForStatement,
const Variable* returnVar,
bool haveEarlyReturns,
const Statement& statement) {
auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
if (s) {
return this->inlineStatement(offset, varMap, symbolTableForStatement, returnVar,
haveEarlyReturns, *s);
}
return nullptr;
};
auto stmts = [&](const std::vector<std::unique_ptr<Statement>>& ss) {
std::vector<std::unique_ptr<Statement>> result;
for (const auto& s : ss) {
result.push_back(stmt(s));
}
return result;
};
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(offset, varMap, *e);
}
return nullptr;
};
switch (statement.fKind) {
case Statement::kBlock_Kind: {
const Block& b = statement.as<Block>();
return std::make_unique<Block>(offset, stmts(b.fStatements), b.fSymbols, b.fIsScope);
}
case Statement::kBreak_Kind:
case Statement::kContinue_Kind:
case Statement::kDiscard_Kind:
return statement.clone();
case Statement::kDo_Kind: {
const DoStatement& d = statement.as<DoStatement>();
return std::make_unique<DoStatement>(offset, stmt(d.fStatement), expr(d.fTest));
}
case Statement::kExpression_Kind: {
const ExpressionStatement& e = statement.as<ExpressionStatement>();
return std::make_unique<ExpressionStatement>(expr(e.fExpression));
}
case Statement::kFor_Kind: {
const ForStatement& f = statement.as<ForStatement>();
// need to ensure initializer is evaluated first so that we've already remapped its
// declarations by the time we evaluate test & next
std::unique_ptr<Statement> initializer = stmt(f.fInitializer);
return std::make_unique<ForStatement>(offset, std::move(initializer), expr(f.fTest),
expr(f.fNext), stmt(f.fStatement), f.fSymbols);
}
case Statement::kIf_Kind: {
const IfStatement& i = statement.as<IfStatement>();
return std::make_unique<IfStatement>(offset, i.fIsStatic, expr(i.fTest),
stmt(i.fIfTrue), stmt(i.fIfFalse));
}
case Statement::kNop_Kind:
return statement.clone();
case Statement::kReturn_Kind: {
const ReturnStatement& r = statement.as<ReturnStatement>();
if (r.fExpression) {
auto assignment = std::make_unique<ExpressionStatement>(
std::make_unique<BinaryExpression>(
offset,
std::make_unique<VariableReference>(offset, *returnVar,
VariableReference::kWrite_RefKind),
Token::Kind::TK_EQ,
expr(r.fExpression),
returnVar->fType));
if (haveEarlyReturns) {
std::vector<std::unique_ptr<Statement>> block;
block.push_back(std::move(assignment));
block.emplace_back(new BreakStatement(offset));
return std::make_unique<Block>(offset, std::move(block), /*symbols=*/nullptr,
/*isScope=*/true);
} else {
return std::move(assignment);
}
} else {
if (haveEarlyReturns) {
return std::make_unique<BreakStatement>(offset);
} else {
return std::make_unique<Nop>();
}
}
}
case Statement::kSwitch_Kind: {
const SwitchStatement& ss = statement.as<SwitchStatement>();
std::vector<std::unique_ptr<SwitchCase>> cases;
for (const auto& sc : ss.fCases) {
cases.emplace_back(new SwitchCase(offset, expr(sc->fValue),
stmts(sc->fStatements)));
}
return std::make_unique<SwitchStatement>(offset, ss.fIsStatic, expr(ss.fValue),
std::move(cases), ss.fSymbols);
}
case Statement::kVarDeclaration_Kind: {
const VarDeclaration& decl = statement.as<VarDeclaration>();
std::vector<std::unique_ptr<Expression>> sizes;
for (const auto& size : decl.fSizes) {
sizes.push_back(expr(size));
}
std::unique_ptr<Expression> initialValue = expr(decl.fValue);
const Variable* old = decl.fVar;
// need to copy the var name in case the originating function is discarded and we lose
// its symbols
std::unique_ptr<String> name(new String(old->fName));
const String* namePtr = symbolTableForStatement->takeOwnershipOfString(std::move(name));
const Type* typePtr = copy_if_needed(&old->fType, *symbolTableForStatement);
const Variable* clone = symbolTableForStatement->takeOwnershipOfSymbol(
std::make_unique<Variable>(offset,
old->fModifiers,
namePtr->c_str(),
*typePtr,
old->fStorage,
initialValue.get()));
(*varMap)[old] = clone;
return std::make_unique<VarDeclaration>(clone, std::move(sizes),
std::move(initialValue));
}
case Statement::kVarDeclarations_Kind: {
const VarDeclarations& decls = *statement.as<VarDeclarationsStatement>().fDeclaration;
std::vector<std::unique_ptr<VarDeclaration>> vars;
for (const auto& var : decls.fVars) {
vars.emplace_back(&stmt(var).release()->as<VarDeclaration>());
}
const Type* typePtr = copy_if_needed(&decls.fBaseType, *symbolTableForStatement);
return std::unique_ptr<Statement>(new VarDeclarationsStatement(
std::make_unique<VarDeclarations>(offset, typePtr, std::move(vars))));
}
case Statement::kWhile_Kind: {
const WhileStatement& w = statement.as<WhileStatement>();
return std::make_unique<WhileStatement>(offset, expr(w.fTest), stmt(w.fStatement));
}
default:
SkASSERT(false);
return nullptr;
}
}
Inliner::InlinedCall Inliner::inlineCall(std::unique_ptr<FunctionCall> call,
SymbolTable* symbolTableForCall) {
// Inlining is more complicated here than in a typical compiler, because we have to have a
// high-level IR and can't just drop statements into the middle of an expression or even use
// gotos.
//
// Since we can't insert statements into an expression, we run the inline function as extra
// statements before the statement we're currently processing, relying on a lack of execution
// order guarantees. Since we can't use gotos (which are normally used to replace return
// statements), we wrap the whole function in a loop and use break statements to jump to the
// end.
SkASSERT(fSettings);
SkASSERT(fContext);
SkASSERT(call);
SkASSERT(this->isSafeToInline(*call, /*inlineThreshold=*/INT_MAX));
int offset = call->fOffset;
std::vector<std::unique_ptr<Expression>>& arguments = call->fArguments;
const FunctionDefinition& function = *call->fFunction.fDefinition;
InlinedCall inlinedCall;
std::vector<std::unique_ptr<Statement>> inlinedBody;
auto makeInlineVar = [&](const String& baseName, const Type& type, Modifiers modifiers,
std::unique_ptr<Expression>* initialValue) -> const Variable* {
// If the base name starts with an underscore, like "_coords", we can't append another
// underscore, because some OpenGL platforms error out when they see two consecutive
// underscores (anywhere in the string!). But in the general case, using the underscore as
// a splitter reads nicely enough that it's worth putting in this special case.
const char* splitter = baseName.startsWith("_") ? "_X" : "_";
// Append a unique numeric prefix to avoid name overlap. Check the symbol table to make sure
// we're not reusing an existing name. (Note that within a single compilation pass, this
// check isn't fully comprehensive, as code isn't always generated in top-to-bottom order.)
String uniqueName;
for (;;) {
uniqueName = String::printf("_%d%s%s", fInlineVarCounter++, splitter, baseName.c_str());
StringFragment frag{uniqueName.data(), uniqueName.length()};
if ((*symbolTableForCall)[frag] == nullptr) {
break;
}
}
// Add our new variable's name to the symbol table.
const String* namePtr = symbolTableForCall->takeOwnershipOfString(
std::make_unique<String>(std::move(uniqueName)));
StringFragment nameFrag{namePtr->c_str(), namePtr->length()};
// Add our new variable to the symbol table.
auto newVar = std::make_unique<Variable>(/*offset=*/-1, Modifiers(), nameFrag, type,
Variable::kLocal_Storage, initialValue->get());
const Variable* variableSymbol = symbolTableForCall->add(nameFrag, std::move(newVar));
// Prepare the variable declaration (taking extra care with `out` params to not clobber any
// initial value).
std::vector<std::unique_ptr<VarDeclaration>> variables;
if (initialValue && (modifiers.fFlags & Modifiers::kOut_Flag)) {
variables.push_back(std::make_unique<VarDeclaration>(
variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{},
(*initialValue)->clone()));
} else {
variables.push_back(std::make_unique<VarDeclaration>(
variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{},
std::move(*initialValue)));
}
// Add the new variable-declaration statement to our block of extra statements.
inlinedBody.push_back(std::make_unique<VarDeclarationsStatement>(
std::make_unique<VarDeclarations>(offset, &type, std::move(variables))));
return variableSymbol;
};
// Create a variable to hold the result in the extra statements (excepting void).
const Variable* resultVar = nullptr;
if (function.fDeclaration.fReturnType != *fContext->fVoid_Type) {
std::unique_ptr<Expression> noInitialValue;
resultVar = makeInlineVar(String(function.fDeclaration.fName),
function.fDeclaration.fReturnType, Modifiers{}, &noInitialValue);
}
// Create variables in the extra statements to hold the arguments, and assign the arguments to
// them.
VariableRewriteMap varMap;
for (int i = 0; i < (int) arguments.size(); ++i) {
const Variable* param = function.fDeclaration.fParameters[i];
if (arguments[i]->fKind == Expression::kVariableReference_Kind) {
// The argument is just a variable, so we only need to copy it if it's an out parameter
// or it's written to within the function.
if ((param->fModifiers.fFlags & Modifiers::kOut_Flag) ||
!Analysis::StatementWritesToVariable(*function.fBody, *param)) {
varMap[param] = &arguments[i]->as<VariableReference>().fVariable;
continue;
}
}
varMap[param] = makeInlineVar(String(param->fName), arguments[i]->fType, param->fModifiers,
&arguments[i]);
}
const Block& body = function.fBody->as<Block>();
bool hasEarlyReturn = has_early_return(function);
auto inlineBlock = std::make_unique<Block>(offset, std::vector<std::unique_ptr<Statement>>{});
inlineBlock->fStatements.reserve(body.fStatements.size());
for (const std::unique_ptr<Statement>& stmt : body.fStatements) {
inlineBlock->fStatements.push_back(this->inlineStatement(
offset, &varMap, symbolTableForCall, resultVar, hasEarlyReturn, *stmt));
}
if (hasEarlyReturn) {
// Since we output to backends that don't have a goto statement (which would normally be
// used to perform an early return), we fake it by wrapping the function in a
// do { } while (false); and then use break statements to jump to the end in order to
// emulate a goto.
inlinedBody.push_back(std::make_unique<DoStatement>(
/*offset=*/-1,
std::move(inlineBlock),
std::make_unique<BoolLiteral>(*fContext, offset, /*value=*/false)));
} else {
// No early returns, so we can just dump the code in. We need to use a block so we don't get
// name conflicts with locals.
inlinedBody.push_back(std::move(inlineBlock));
}
// Copy the values of `out` parameters into their destinations.
for (size_t i = 0; i < arguments.size(); ++i) {
const Variable* p = function.fDeclaration.fParameters[i];
if (p->fModifiers.fFlags & Modifiers::kOut_Flag) {
SkASSERT(varMap.find(p) != varMap.end());
if (arguments[i]->fKind == Expression::kVariableReference_Kind &&
&arguments[i]->as<VariableReference>().fVariable == varMap[p]) {
// we didn't create a temporary for this parameter, so there's nothing to copy back
// out
continue;
}
auto varRef = std::make_unique<VariableReference>(offset, *varMap[p]);
inlinedBody.push_back(std::make_unique<ExpressionStatement>(
std::make_unique<BinaryExpression>(offset,
arguments[i]->clone(),
Token::Kind::TK_EQ,
std::move(varRef),
arguments[i]->fType)));
}
}
if (function.fDeclaration.fReturnType != *fContext->fVoid_Type) {
// Return a reference to the result variable as our replacement expression.
inlinedCall.fReplacementExpr = std::make_unique<VariableReference>(offset, *resultVar);
} else {
// It's a void function, so it doesn't actually result in anything, but we have to return
// something non-null as a standin.
inlinedCall.fReplacementExpr = std::make_unique<BoolLiteral>(*fContext, offset,
/*value=*/false);
}
switch (inlinedBody.size()) {
case 0:
break;
case 1:
inlinedCall.fInlinedBody = std::move(inlinedBody.front());
break;
default:
inlinedCall.fInlinedBody = std::make_unique<Block>(offset, std::move(inlinedBody),
/*symbols=*/nullptr,
/*isScope=*/false);
break;
}
return inlinedCall;
}
bool Inliner::isSafeToInline(const FunctionCall& functionCall,
int inlineThreshold) {
SkASSERT(fSettings);
if (functionCall.fFunction.fDefinition == nullptr) {
// Can't inline something if we don't actually have its definition.
return false;
}
const FunctionDefinition& functionDef = *functionCall.fFunction.fDefinition;
if (inlineThreshold < INT_MAX) {
if (!(functionDef.fDeclaration.fModifiers.fFlags & Modifiers::kInline_Flag) &&
Analysis::NodeCount(functionDef) >= inlineThreshold) {
// The function exceeds our maximum inline size and is not flagged 'inline'.
return false;
}
}
if (!fSettings->fCaps || !fSettings->fCaps->canUseDoLoops()) {
// We don't have do-while loops. We use do-while loops to simulate early returns, so we
// can't inline functions that have an early return.
bool hasEarlyReturn = has_early_return(functionDef);
// If we didn't detect an early return, there shouldn't be any returns in breakable
// constructs either.
SkASSERT(hasEarlyReturn || count_returns_in_breakable_constructs(functionDef) == 0);
return !hasEarlyReturn;
}
// We have do-while loops, but we don't have any mechanism to simulate early returns within a
// breakable construct (switch/for/do/while), so we can't inline if there's a return inside one.
bool hasReturnInBreakableConstruct = (count_returns_in_breakable_constructs(functionDef) > 0);
// If we detected returns in breakable constructs, we should also detect an early return.
SkASSERT(!hasReturnInBreakableConstruct || has_early_return(functionDef));
return !hasReturnInBreakableConstruct;
}
} // namespace SkSL