blob: e6f2ff800f4fb1396bf7becae753333fd5e3f06c [file] [log] [blame]
/*
* Copyright 2021 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/PathCurveTessellator.h"
#include "src/gpu/tessellate/AffineMatrix.h"
#include "src/gpu/tessellate/MiddleOutPolygonTriangulator.h"
#include "src/gpu/tessellate/PatchWriter.h"
#include "src/gpu/tessellate/WangsFormula.h"
#if SK_GPU_V1
#include "src/gpu/GrMeshDrawTarget.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrResourceProvider.h"
#endif
namespace skgpu {
static int write_patches(PatchWriter&& patchWriter,
const SkMatrix& shaderMatrix,
const PathTessellator::PathDrawList& pathDrawList) {
wangs_formula::VectorXform shaderXform(shaderMatrix);
for (auto [pathMatrix, path, color] : pathDrawList) {
AffineMatrix m(pathMatrix);
if (patchWriter.attribs() & PatchAttribs::kColor) {
patchWriter.updateColorAttrib(color);
}
for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) {
switch (verb) {
case SkPathVerb::kQuad: {
auto [p0, p1] = m.map2Points(pts);
auto p2 = m.map1Point(pts+2);
patchWriter.writeQuadratic(p0, p1, p2, shaderXform);
break;
}
case SkPathVerb::kConic: {
auto [p0, p1] = m.map2Points(pts);
auto p2 = m.map1Point(pts+2);
patchWriter.writeConic(p0, p1, p2, *w, shaderXform);
break;
}
case SkPathVerb::kCubic: {
auto [p0, p1] = m.map2Points(pts);
auto [p2, p3] = m.map2Points(pts+2);
patchWriter.writeCubic(p0, p1, p2, p3, shaderXform);
break;
}
default: break;
}
}
}
return patchWriter.requiredResolveLevel();
}
void PathCurveTessellator::WriteFixedVertexBuffer(VertexWriter vertexWriter, size_t bufferSize) {
SkASSERT(bufferSize >= sizeof(SkPoint) * 2);
SkASSERT(bufferSize % sizeof(SkPoint) == 0);
int vertexCount = bufferSize / sizeof(SkPoint);
SkASSERT(vertexCount > 3);
SkDEBUGCODE(auto end = vertexWriter.mark(vertexCount * sizeof(SkPoint));)
// Lay out the vertices in "middle-out" order:
//
// T= 0/1, 1/1, ; resolveLevel=0
// 1/2, ; resolveLevel=1 (0/2 and 2/2 are already in resolveLevel 0)
// 1/4, 3/4, ; resolveLevel=2 (2/4 is already in resolveLevel 1)
// 1/8, 3/8, 5/8, 7/8, ; resolveLevel=3 (2/8 and 6/8 are already in resolveLevel 2)
// ... ; resolveLevel=...
//
// Resolve level 0 is just the beginning and ending vertices.
vertexWriter << (float)0/*resolveLevel*/ << (float)0/*idx*/;
vertexWriter << (float)0/*resolveLevel*/ << (float)1/*idx*/;
// Resolve levels 1..kMaxResolveLevel.
int maxResolveLevel = SkPrevLog2(vertexCount - 1);
SkASSERT((1 << maxResolveLevel) + 1 == vertexCount);
for (int resolveLevel = 1; resolveLevel <= maxResolveLevel; ++resolveLevel) {
int numSegmentsInResolveLevel = 1 << resolveLevel;
// Write out the odd vertices in this resolveLevel. The even vertices were already written
// out in previous resolveLevels and will be indexed from there.
for (int i = 1; i < numSegmentsInResolveLevel; i += 2) {
vertexWriter << (float)resolveLevel << (float)i;
}
}
SkASSERT(vertexWriter.mark() == end);
}
void PathCurveTessellator::WriteFixedIndexBufferBaseIndex(VertexWriter vertexWriter,
size_t bufferSize,
uint16_t baseIndex) {
SkASSERT(bufferSize % (sizeof(uint16_t) * 3) == 0);
int triangleCount = bufferSize / (sizeof(uint16_t) * 3);
SkASSERT(triangleCount >= 1);
SkTArray<std::array<uint16_t, 3>> indexData(triangleCount);
// Connect the vertices with a middle-out triangulation. Refer to InitFixedCountVertexBuffer()
// for the exact vertex ordering.
//
// Resolve level 1 is just a single triangle at T=[0, 1/2, 1].
const auto* neighborInLastResolveLevel = &indexData.push_back({baseIndex,
(uint16_t)(baseIndex + 2),
(uint16_t)(baseIndex + 1)});
// Resolve levels 2..maxResolveLevel
int maxResolveLevel = SkPrevLog2(triangleCount + 1);
uint16_t nextIndex = baseIndex + 3;
SkASSERT(NumCurveTrianglesAtResolveLevel(maxResolveLevel) == triangleCount);
for (int resolveLevel = 2; resolveLevel <= maxResolveLevel; ++resolveLevel) {
SkDEBUGCODE(auto* firstTriangleInCurrentResolveLevel = indexData.end());
int numOuterTrianglelsInResolveLevel = 1 << (resolveLevel - 1);
SkASSERT(numOuterTrianglelsInResolveLevel % 2 == 0);
int numTrianglePairsInResolveLevel = numOuterTrianglelsInResolveLevel >> 1;
for (int i = 0; i < numTrianglePairsInResolveLevel; ++i) {
// First triangle shares the left edge of "neighborInLastResolveLevel".
indexData.push_back({(*neighborInLastResolveLevel)[0],
nextIndex++,
(*neighborInLastResolveLevel)[1]});
// Second triangle shares the right edge of "neighborInLastResolveLevel".
indexData.push_back({(*neighborInLastResolveLevel)[1],
nextIndex++,
(*neighborInLastResolveLevel)[2]});
++neighborInLastResolveLevel;
}
SkASSERT(neighborInLastResolveLevel == firstTriangleInCurrentResolveLevel);
}
SkASSERT(indexData.count() == triangleCount);
SkASSERT(nextIndex == baseIndex + triangleCount + 2);
vertexWriter << VertexWriter::Array(indexData.data(), indexData.count());
}
#if SK_GPU_V1
SKGPU_DECLARE_STATIC_UNIQUE_KEY(gFixedVertexBufferKey);
SKGPU_DECLARE_STATIC_UNIQUE_KEY(gFixedIndexBufferKey);
void PathCurveTessellator::prepareWithTriangles(
GrMeshDrawTarget* target,
int maxTessellationSegments,
const SkMatrix& shaderMatrix,
GrInnerFanTriangulator::BreadcrumbTriangleList* extraTriangles,
const PathDrawList& pathDrawList,
int totalCombinedPathVerbCnt,
bool willUseTessellationShaders) {
int patchPreallocCount = PatchPreallocCount(totalCombinedPathVerbCnt) +
(extraTriangles ? extraTriangles->count() : 0);
if (patchPreallocCount) {
PatchWriter writer{target, &fVertexChunkArray, fAttribs,
maxTessellationSegments, patchPreallocCount};
// Write out extra space-filling triangles to connect the curve patches with any external
// source of geometry (e.g. inner triangulation that handles winding explicitly).
if (extraTriangles) {
SkDEBUGCODE(int breadcrumbCount = 0;)
for (const auto* tri = extraTriangles->head(); tri; tri = tri->fNext) {
SkDEBUGCODE(++breadcrumbCount;)
auto p0 = float2::Load(tri->fPts);
auto p1 = float2::Load(tri->fPts + 1);
auto p2 = float2::Load(tri->fPts + 2);
if (skvx::any((p0 == p1) & (p1 == p2))) {
// Cull completely horizontal or vertical triangles. GrTriangulator can't always
// get these breadcrumb edges right when they run parallel to the sweep
// direction because their winding is undefined by its current definition.
// FIXME(skia:12060): This seemed safe, but if there is a view matrix it will
// introduce T-junctions.
continue;
}
writer.writeTriangle(p0, p1, p2);
}
SkASSERT(breadcrumbCount == extraTriangles->count());
}
int resolveLevel = write_patches(std::move(writer), shaderMatrix, pathDrawList);
this->updateResolveLevel(resolveLevel);
}
if (!willUseTessellationShaders) {
this->prepareFixedCountBuffers(target);
}
}
void PathCurveTessellator::prepareFixedCountBuffers(GrMeshDrawTarget* target) {
GrResourceProvider* rp = target->resourceProvider();
SKGPU_DEFINE_STATIC_UNIQUE_KEY(gFixedVertexBufferKey);
fFixedVertexBuffer = rp->findOrMakeStaticBuffer(GrGpuBufferType::kVertex,
FixedVertexBufferSize(kMaxFixedResolveLevel),
gFixedVertexBufferKey,
WriteFixedVertexBuffer);
SKGPU_DEFINE_STATIC_UNIQUE_KEY(gFixedIndexBufferKey);
fFixedIndexBuffer = rp->findOrMakeStaticBuffer(GrGpuBufferType::kIndex,
FixedIndexBufferSize(kMaxFixedResolveLevel),
gFixedIndexBufferKey,
WriteFixedIndexBuffer);
}
void PathCurveTessellator::drawTessellated(GrOpFlushState* flushState) const {
for (const GrVertexChunk& chunk : fVertexChunkArray) {
flushState->bindBuffers(nullptr, nullptr, chunk.fBuffer);
flushState->draw(chunk.fCount * 4, chunk.fBase * 4);
}
}
void PathCurveTessellator::drawFixedCount(GrOpFlushState* flushState) const {
if (!fFixedVertexBuffer || !fFixedIndexBuffer) {
return;
}
int fixedIndexCount = NumCurveTrianglesAtResolveLevel(fFixedResolveLevel) * 3;
for (const GrVertexChunk& chunk : fVertexChunkArray) {
flushState->bindBuffers(fFixedIndexBuffer, chunk.fBuffer, fFixedVertexBuffer);
flushState->drawIndexedInstanced(fixedIndexCount, 0, chunk.fCount, chunk.fBase, 0);
}
}
void PathCurveTessellator::drawHullInstances(GrOpFlushState* flushState,
sk_sp<const GrGpuBuffer> vertexBufferIfNeeded) const {
for (const GrVertexChunk& chunk : fVertexChunkArray) {
flushState->bindBuffers(nullptr, chunk.fBuffer, vertexBufferIfNeeded);
flushState->drawInstanced(chunk.fCount, chunk.fBase, 4, 0);
}
}
#endif
} // namespace skgpu