blob: ed2fc0ec9a817762df3650c034b377a9f96e7509 [file] [log] [blame]
/* libs/graphics/sgl/SkBlitter_ARGB32.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkCoreBlitters.h"
#include "SkColorPriv.h"
#include "SkShader.h"
#include "SkUtils.h"
#include "SkXfermode.h"
SkARGB32_Blitter::SkARGB32_Blitter(const SkBitmap& device, const SkPaint& paint)
: INHERITED(device) {
uint32_t color = paint.getColor();
fSrcA = SkColorGetA(color);
unsigned scale = SkAlpha255To256(fSrcA);
fSrcR = SkAlphaMul(SkColorGetR(color), scale);
fSrcG = SkAlphaMul(SkColorGetG(color), scale);
fSrcB = SkAlphaMul(SkColorGetB(color), scale);
fPMColor = SkPackARGB32(fSrcA, fSrcR, fSrcG, fSrcB);
}
const SkBitmap* SkARGB32_Blitter::justAnOpaqueColor(uint32_t* value) {
if (255 == fSrcA) {
*value = fPMColor;
return &fDevice;
}
return NULL;
}
#if defined _WIN32 && _MSC_VER >= 1300 // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif
void SkARGB32_Blitter::blitH(int x, int y, int width) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());
if (fSrcA == 0) {
return;
}
uint32_t* device = fDevice.getAddr32(x, y);
if (fSrcA == 255) {
sk_memset32(device, fPMColor, width);
} else {
uint32_t color = fPMColor;
unsigned dst_scale = SkAlpha255To256(255 - fSrcA);
uint32_t prevDst = ~device[0]; // so we always fail the test the first time
uint32_t result SK_INIT_TO_AVOID_WARNING;
for (int i = 0; i < width; i++) {
uint32_t currDst = device[i];
if (currDst != prevDst) {
result = color + SkAlphaMulQ(currDst, dst_scale);
prevDst = currDst;
}
device[i] = result;
}
}
}
void SkARGB32_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
if (fSrcA == 0) {
return;
}
uint32_t color = fPMColor;
uint32_t* device = fDevice.getAddr32(x, y);
unsigned opaqueMask = fSrcA; // if fSrcA is 0xFF, then we will catch the fast opaque case
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
unsigned aa = antialias[0];
if (aa) {
if ((opaqueMask & aa) == 255) {
sk_memset32(device, color, count);
} else {
uint32_t sc = SkAlphaMulQ(color, aa);
unsigned dst_scale = 255 - SkGetPackedA32(sc);
int n = count;
do {
--n;
device[n] = sc + SkAlphaMulQ(device[n], dst_scale);
} while (n > 0);
}
}
runs += count;
antialias += count;
device += count;
}
}
//////////////////////////////////////////////////////////////////////////////////////
#define solid_8_pixels(mask, dst, color) \
do { \
if (mask & 0x80) dst[0] = color; \
if (mask & 0x40) dst[1] = color; \
if (mask & 0x20) dst[2] = color; \
if (mask & 0x10) dst[3] = color; \
if (mask & 0x08) dst[4] = color; \
if (mask & 0x04) dst[5] = color; \
if (mask & 0x02) dst[6] = color; \
if (mask & 0x01) dst[7] = color; \
} while (0)
#define SK_BLITBWMASK_NAME SkARGB32_BlitBW
#define SK_BLITBWMASK_ARGS , SkPMColor color
#define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst, color)
#define SK_BLITBWMASK_GETADDR getAddr32
#define SK_BLITBWMASK_DEVTYPE uint32_t
#include "SkBlitBWMaskTemplate.h"
#define blend_8_pixels(mask, dst, sc, dst_scale) \
do { \
if (mask & 0x80) { dst[0] = sc + SkAlphaMulQ(dst[0], dst_scale); } \
if (mask & 0x40) { dst[1] = sc + SkAlphaMulQ(dst[1], dst_scale); } \
if (mask & 0x20) { dst[2] = sc + SkAlphaMulQ(dst[2], dst_scale); } \
if (mask & 0x10) { dst[3] = sc + SkAlphaMulQ(dst[3], dst_scale); } \
if (mask & 0x08) { dst[4] = sc + SkAlphaMulQ(dst[4], dst_scale); } \
if (mask & 0x04) { dst[5] = sc + SkAlphaMulQ(dst[5], dst_scale); } \
if (mask & 0x02) { dst[6] = sc + SkAlphaMulQ(dst[6], dst_scale); } \
if (mask & 0x01) { dst[7] = sc + SkAlphaMulQ(dst[7], dst_scale); } \
} while (0)
#define SK_BLITBWMASK_NAME SkARGB32_BlendBW
#define SK_BLITBWMASK_ARGS , uint32_t sc, unsigned dst_scale
#define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, sc, dst_scale)
#define SK_BLITBWMASK_GETADDR getAddr32
#define SK_BLITBWMASK_DEVTYPE uint32_t
#include "SkBlitBWMaskTemplate.h"
void SkARGB32_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
SkASSERT(fSrcA != 0xFF);
if (fSrcA == 0) {
return;
}
if (mask.fFormat == SkMask::kBW_Format) {
SkARGB32_BlendBW(fDevice, mask, clip, fPMColor, SkAlpha255To256(255 - fSrcA));
return;
}
int x = clip.fLeft;
int y = clip.fTop;
int width = clip.width();
int height = clip.height();
uint32_t* device = fDevice.getAddr32(x, y);
const uint8_t* alpha = mask.getAddr(x, y);
uint32_t srcColor = fPMColor;
unsigned devRB = fDevice.rowBytes() - (width << 2);
unsigned maskRB = mask.fRowBytes - width;
do {
int w = width;
do {
unsigned aa = *alpha++;
*device = SkBlendARGB32(srcColor, *device, aa);
device += 1;
} while (--w != 0);
device = (uint32_t*)((char*)device + devRB);
alpha += maskRB;
} while (--height != 0);
}
void SkARGB32_Opaque_Blitter::blitMask(const SkMask& mask,
const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
if (mask.fFormat == SkMask::kBW_Format) {
SkARGB32_BlitBW(fDevice, mask, clip, fPMColor);
return;
}
int x = clip.fLeft;
int y = clip.fTop;
int width = clip.width();
int height = clip.height();
uint32_t* device = fDevice.getAddr32(x, y);
const uint8_t* alpha = mask.getAddr(x, y);
uint32_t srcColor = fPMColor;
unsigned devRB = fDevice.rowBytes() - (width << 2);
unsigned maskRB = mask.fRowBytes - width;
do {
int w = width;
do {
unsigned aa = *alpha++;
*device = SkAlphaMulQ(srcColor, SkAlpha255To256(aa)) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
device += 1;
} while (--w != 0);
device = (uint32_t*)((char*)device + devRB);
alpha += maskRB;
} while (--height != 0);
}
//////////////////////////////////////////////////////////////////////////////////////
void SkARGB32_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
if (alpha == 0 || fSrcA == 0) {
return;
}
uint32_t* device = fDevice.getAddr32(x, y);
uint32_t color = fPMColor;
if (alpha != 255) {
color = SkAlphaMulQ(color, SkAlpha255To256(alpha));
}
unsigned dst_scale = 255 - SkGetPackedA32(color);
uint32_t prevDst = ~device[0];
uint32_t result SK_INIT_TO_AVOID_WARNING;
uint32_t rowBytes = fDevice.rowBytes();
while (--height >= 0) {
uint32_t dst = device[0];
if (dst != prevDst) {
result = color + SkAlphaMulQ(dst, dst_scale);
prevDst = dst;
}
device[0] = result;
device = (uint32_t*)((char*)device + rowBytes);
}
}
void SkARGB32_Blitter::blitRect(int x, int y, int width, int height) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width() && y + height <= fDevice.height());
if (fSrcA == 0) {
return;
}
uint32_t* device = fDevice.getAddr32(x, y);
uint32_t color = fPMColor;
if (fSrcA == 255) {
while (--height >= 0) {
sk_memset32(device, color, width);
device = (uint32_t*)((char*)device + fDevice.rowBytes());
}
} else {
unsigned dst_scale = SkAlpha255To256(255 - fSrcA);
while (--height >= 0) {
uint32_t prevDst = ~device[0];
uint32_t result SK_INIT_TO_AVOID_WARNING;
for (int i = 0; i < width; i++) {
uint32_t dst = device[i];
if (dst != prevDst) {
result = color + SkAlphaMulQ(dst, dst_scale);
prevDst = dst;
}
device[i] = result;
}
device = (uint32_t*)((char*)device + fDevice.rowBytes());
}
}
}
#if defined _WIN32 && _MSC_VER >= 1300
#pragma warning ( pop )
#endif
///////////////////////////////////////////////////////////////////////
void SkARGB32_Black_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
if (mask.fFormat == SkMask::kBW_Format) {
SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT);
SkARGB32_BlitBW(fDevice, mask, clip, black);
} else {
uint32_t* device = fDevice.getAddr32(clip.fLeft, clip.fTop);
const uint8_t* alpha = mask.getAddr(clip.fLeft, clip.fTop);
unsigned width = clip.width();
unsigned height = clip.height();
unsigned deviceRB = fDevice.rowBytes() - (width << 2);
unsigned maskRB = mask.fRowBytes - width;
SkASSERT((int)height > 0);
SkASSERT((int)width > 0);
SkASSERT((int)deviceRB >= 0);
SkASSERT((int)maskRB >= 0);
do {
unsigned w = width;
do {
unsigned aa = *alpha++;
*device = (aa << SK_A32_SHIFT) + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
device += 1;
} while (--w != 0);
device = (uint32_t*)((char*)device + deviceRB);
alpha += maskRB;
} while (--height != 0);
}
}
void SkARGB32_Black_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
uint32_t* device = fDevice.getAddr32(x, y);
SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT);
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
unsigned aa = antialias[0];
if (aa) {
if (aa == 255) {
sk_memset32(device, black, count);
} else {
SkPMColor src = aa << SK_A32_SHIFT;
unsigned dst_scale = 256 - aa;
int n = count;
do {
--n;
device[n] = src + SkAlphaMulQ(device[n], dst_scale);
} while (n > 0);
}
}
runs += count;
antialias += count;
device += count;
}
}
//////////////////////////////////////////////////////////////////////////////////////////
SkARGB32_Shader_Blitter::SkARGB32_Shader_Blitter(const SkBitmap& device,
const SkPaint& paint)
: INHERITED(device, paint) {
fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * (sizeof(SkPMColor)));
(fXfermode = paint.getXfermode())->safeRef();
}
SkARGB32_Shader_Blitter::~SkARGB32_Shader_Blitter() {
fXfermode->safeUnref();
sk_free(fBuffer);
}
void SkARGB32_Shader_Blitter::blitH(int x, int y, int width) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());
uint32_t* device = fDevice.getAddr32(x, y);
if (fXfermode == NULL && (fShader->getFlags() & SkShader::kOpaqueAlpha_Flag)) {
fShader->shadeSpan(x, y, device, width);
} else {
SkPMColor* span = fBuffer;
fShader->shadeSpan(x, y, span, width);
if (fXfermode) {
fXfermode->xfer32(device, span, width, NULL);
} else {
for (int i = 0; i < width; i++) {
uint32_t src = span[i];
if (src) {
unsigned srcA = SkGetPackedA32(src);
if (srcA != 0xFF) {
src += SkAlphaMulQ(device[i], SkAlpha255To256(255 - srcA));
}
device[i] = src;
}
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
void SkARGB32_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
SkPMColor* span = fBuffer;
uint32_t* device = fDevice.getAddr32(x, y);
SkShader* shader = fShader;
if (fXfermode) {
for (;;) {
SkXfermode* xfer = fXfermode;
int count = *runs;
if (count <= 0)
break;
int aa = *antialias;
if (aa) {
shader->shadeSpan(x, y, span, count);
if (aa == 255) {
xfer->xfer32(device, span, count, NULL);
} else {
// count is almost always 1
for (int i = count - 1; i >= 0; --i) {
xfer->xfer32(&device[i], &span[i], 1, antialias);
}
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
} else if (fShader->getFlags() & SkShader::kOpaqueAlpha_Flag) {
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (aa) {
if (aa == 255) { // cool, have the shader draw right into the device
shader->shadeSpan(x, y, device, count);
} else {
shader->shadeSpan(x, y, span, count);
for (int i = count - 1; i >= 0; --i) {
if (span[i]) {
device[i] = SkBlendARGB32(span[i], device[i], aa);
}
}
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
} else { // no xfermode but we are not opaque
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (aa) {
fShader->shadeSpan(x, y, span, count);
if (aa == 255) {
for (int i = count - 1; i >= 0; --i) {
if (span[i]) {
device[i] = SkPMSrcOver(span[i], device[i]);
}
}
} else {
for (int i = count - 1; i >= 0; --i) {
if (span[i]) {
device[i] = SkBlendARGB32(span[i], device[i], aa);
}
}
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
}
}