blob: 9cd7a049b4ff30446567502b1c46cdf64bfd7345 [file] [log] [blame]
/*
* Copyright 2021 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "experimental/graphite/src/UniformManager.h"
#include "include/core/SkMatrix.h"
#include "include/private/SkTemplates.h"
// ensure that these types are the sizes the uniform data is expecting
static_assert(sizeof(int32_t) == 4);
static_assert(sizeof(float) == 4);
namespace skgpu {
//////////////////////////////////////////////////////////////////////////////
UniformManager::UniformManager(Layout layout) : fLayout(layout) {}
template<typename BaseType>
static constexpr size_t tight_vec_size(int vecLength) {
return sizeof(BaseType) * vecLength;
}
/**
* From Section 7.6.2.2 "Standard Uniform Block Layout":
* 1. If the member is a scalar consuming N basic machine units, the base alignment is N.
* 2. If the member is a two- or four-component vector with components consuming N basic machine
* units, the base alignment is 2N or 4N, respectively.
* 3. If the member is a three-component vector with components consuming N
* basic machine units, the base alignment is 4N.
* 4. If the member is an array of scalars or vectors, the base alignment and array
* stride are set to match the base alignment of a single array element, according
* to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
* array may have padding at the end; the base offset of the member following
* the array is rounded up to the next multiple of the base alignment.
* 5. If the member is a column-major matrix with C columns and R rows, the
* matrix is stored identically to an array of C column vectors with R components each,
* according to rule (4).
* 6. If the member is an array of S column-major matrices with C columns and
* R rows, the matrix is stored identically to a row of S × C column vectors
* with R components each, according to rule (4).
* 7. If the member is a row-major matrix with C columns and R rows, the matrix
* is stored identically to an array of R row vectors with C components each,
* according to rule (4).
* 8. If the member is an array of S row-major matrices with C columns and R
* rows, the matrix is stored identically to a row of S × R row vectors with C
* components each, according to rule (4).
* 9. If the member is a structure, the base alignment of the structure is N, where
* N is the largest base alignment value of any of its members, and rounded
* up to the base alignment of a vec4. The individual members of this substructure are then
* assigned offsets by applying this set of rules recursively,
* where the base offset of the first member of the sub-structure is equal to the
* aligned offset of the structure. The structure may have padding at the end;
* the base offset of the member following the sub-structure is rounded up to
* the next multiple of the base alignment of the structure.
* 10. If the member is an array of S structures, the S elements of the array are laid
* out in order, according to rule (9).
*/
template<typename BaseType, int RowsOrVecLength = 1, int Cols = 1>
struct Rules140 {
/**
* For an array of scalars or vectors this returns the stride between array elements. For
* matrices or arrays of matrices this returns the stride between columns of the matrix. Note
* that for single (non-array) scalars or vectors we don't require a stride.
*/
static constexpr size_t Stride(int count) {
SkASSERT(count >= 1 || count == Uniform::kNonArray);
static_assert(RowsOrVecLength >= 1 && RowsOrVecLength <= 4);
static_assert(Cols >= 1 && Cols <= 4);
if (Cols != 1) {
// This is a matrix or array of matrices. We return the stride between columns.
SkASSERT(RowsOrVecLength > 1);
return Rules140<BaseType, RowsOrVecLength>::Stride(1);
}
if (count == 0) {
// Stride doesn't matter for a non-array.
return RowsOrVecLength * sizeof(BaseType);
}
// Rule 4.
// Alignment of vec4 by Rule 2.
constexpr size_t kVec4Alignment = tight_vec_size<float>(4);
// Get alignment of a single vector of BaseType by Rule 1, 2, or 3
int n = RowsOrVecLength == 3 ? 4 : RowsOrVecLength;
size_t kElementAlignment = tight_vec_size<BaseType>(n);
// Round kElementAlignment up to multiple of kVec4Alignment.
size_t m = (kElementAlignment + kVec4Alignment - 1) / kVec4Alignment;
return m * kVec4Alignment;
}
};
/**
* When using the std430 storage layout, shader storage blocks will be laid out in buffer storage
* identically to uniform and shader storage blocks using the std140 layout, except that the base
* alignment and stride of arrays of scalars and vectors in rule 4 and of structures in rule 9 are
* not rounded up a multiple of the base alignment of a vec4.
*/
template<typename BaseType, int RowsOrVecLength = 1, int Cols = 1>
struct Rules430 {
static constexpr size_t Stride(int count) {
SkASSERT(count >= 1 || count == Uniform::kNonArray);
static_assert(RowsOrVecLength >= 1 && RowsOrVecLength <= 4);
static_assert(Cols >= 1 && Cols <= 4);
if (Cols != 1) {
// This is a matrix or array of matrices. We return the stride between columns.
SkASSERT(RowsOrVecLength > 1);
return Rules430<BaseType, RowsOrVecLength>::Stride(1);
}
if (count == 0) {
// Stride doesn't matter for a non-array.
return RowsOrVecLength * sizeof(BaseType);
}
// Rule 4 without the round up to a multiple of align-of vec4.
return tight_vec_size<BaseType>(RowsOrVecLength == 3 ? 4 : RowsOrVecLength);
}
};
// The strides used here were derived from the rules we've imposed on ourselves in
// GrMtlPipelineStateDataManger. Everything is tight except 3-component which have the stride of
// their 4-component equivalents.
template<typename BaseType, int RowsOrVecLength = 1, int Cols = 1>
struct RulesMetal {
static constexpr size_t Stride(int count) {
SkASSERT(count >= 1 || count == Uniform::kNonArray);
static_assert(RowsOrVecLength >= 1 && RowsOrVecLength <= 4);
static_assert(Cols >= 1 && Cols <= 4);
if (Cols != 1) {
// This is a matrix or array of matrices. We return the stride between columns.
SkASSERT(RowsOrVecLength > 1);
return RulesMetal<BaseType, RowsOrVecLength>::Stride(1);
}
if (count == 0) {
// Stride doesn't matter for a non-array.
return RowsOrVecLength * sizeof(BaseType);
}
return tight_vec_size<BaseType>(RowsOrVecLength == 3 ? 4 : RowsOrVecLength);
}
};
template<template<typename BaseType, int RowsOrVecLength, int Cols> class Rules>
class Writer {
private:
template<typename BaseType, int RowsOrVecLength = 1, int Cols = 1>
static uint32_t Write(void *dst, int n, const BaseType src[]) {
size_t stride = Rules<BaseType, RowsOrVecLength, Cols>::Stride(n);
n = (n == Uniform::kNonArray) ? 1 : n;
n *= Cols;
if (dst) {
if (stride == RowsOrVecLength * sizeof(BaseType)) {
std::memcpy(dst, src, n * stride);
} else {
for (int i = 0; i < n; ++i) {
std::memcpy(dst, src, RowsOrVecLength * sizeof(BaseType));
src += RowsOrVecLength;
dst = SkTAddOffset<void>(dst, stride);
}
}
}
return n * stride;
}
static uint32_t WriteSkMatrices(void *dst, int n, const SkMatrix m[]) {
// Stride() will give us the stride of each column, so mul by 3 to get matrix stride.
size_t stride = 3 * Rules<float, 3, 3>::Stride(1);
n = std::max(n, 1);
if (dst) {
size_t offset = 0;
for (int i = 0; i < n; ++i) {
float mt[] = {
m[i].get(SkMatrix::kMScaleX),
m[i].get(SkMatrix::kMSkewY),
m[i].get(SkMatrix::kMPersp0),
m[i].get(SkMatrix::kMSkewX),
m[i].get(SkMatrix::kMScaleY),
m[i].get(SkMatrix::kMPersp1),
m[i].get(SkMatrix::kMTransX),
m[i].get(SkMatrix::kMTransY),
m[i].get(SkMatrix::kMPersp2),
};
Write<float, 3, 3>(SkTAddOffset<void>(dst, offset), 1, mt);
offset += stride;
}
}
return n * stride;
}
public:
static uint32_t WriteUniform(SLType type,
CType ctype,
void *dest,
int n,
const void *src) {
SkASSERT(n >= 1 || n == Uniform::kNonArray);
switch (type) {
case SLType::kInt:
return Write<int32_t>(dest, n, static_cast<const int32_t *>(src));
case SLType::kInt2:
return Write<int32_t, 2>(dest, n, static_cast<const int32_t *>(src));
case SLType::kInt3:
return Write<int32_t, 3>(dest, n, static_cast<const int32_t *>(src));
case SLType::kInt4:
return Write<int32_t, 4>(dest, n, static_cast<const int32_t *>(src));
case SLType::kHalf:
case SLType::kFloat:
return Write<float>(dest, n, static_cast<const float *>(src));
case SLType::kHalf2:
case SLType::kFloat2:
return Write<float, 2>(dest, n, static_cast<const float *>(src));
case SLType::kHalf3:
case SLType::kFloat3:
return Write<float, 3>(dest, n, static_cast<const float *>(src));
case SLType::kHalf4:
case SLType::kFloat4:
return Write<float, 4>(dest, n, static_cast<const float *>(src));
case SLType::kHalf2x2:
case SLType::kFloat2x2:
return Write<float, 2, 2>(dest, n, static_cast<const float *>(src));
case SLType::kHalf3x3:
case SLType::kFloat3x3: {
switch (ctype) {
case CType::kDefault:
return Write<float, 3, 3>(dest, n, static_cast<const float *>(src));
case CType::kSkMatrix:
return WriteSkMatrices(dest, n, static_cast<const SkMatrix *>(src));
}
SkUNREACHABLE;
}
case SLType::kHalf4x4:
case SLType::kFloat4x4:
return Write<float, 4, 4>(dest, n, static_cast<const float *>(src));
default:
SK_ABORT("Unexpected uniform type");
}
}
};
#ifdef SK_DEBUG
// To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
// alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
// are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
static uint32_t sltype_to_alignment_mask(SLType type) {
switch(type) {
case SLType::kShort: // fall through
case SLType::kUShort:
return 0x1;
case SLType::kShort2: // fall through
case SLType::kUShort2:
return 0x3;
case SLType::kShort3: // fall through
case SLType::kShort4:
case SLType::kUShort3:
case SLType::kUShort4:
return 0x7;
case SLType::kInt:
case SLType::kUint:
return 0x3;
case SLType::kInt2:
case SLType::kUint2:
return 0x7;
case SLType::kInt3:
case SLType::kUint3:
case SLType::kInt4:
case SLType::kUint4:
return 0xF;
case SLType::kHalf: // fall through
case SLType::kFloat:
return 0x3;
case SLType::kHalf2: // fall through
case SLType::kFloat2:
return 0x7;
case SLType::kHalf3: // fall through
case SLType::kFloat3:
return 0xF;
case SLType::kHalf4: // fall through
case SLType::kFloat4:
return 0xF;
case SLType::kHalf2x2: // fall through
case SLType::kFloat2x2:
return 0x7;
case SLType::kHalf3x3: // fall through
case SLType::kFloat3x3:
return 0xF;
case SLType::kHalf4x4: // fall through
case SLType::kFloat4x4:
return 0xF;
// This query is only valid for certain types.
case SLType::kVoid:
case SLType::kBool:
case SLType::kBool2:
case SLType::kBool3:
case SLType::kBool4:
case SLType::kTexture2DSampler:
case SLType::kTextureExternalSampler:
case SLType::kTexture2DRectSampler:
case SLType::kSampler:
case SLType::kTexture2D:
case SLType::kInput:
break;
}
SK_ABORT("Unexpected type");
}
/** Returns the size in bytes taken up in Metal buffers for GrSLTypes. */
inline uint32_t sltype_to_mtl_size(SLType type) {
switch(type) {
case SLType::kShort:
return sizeof(int16_t);
case SLType::kShort2:
return 2 * sizeof(int16_t);
case SLType::kShort3:
return 4 * sizeof(int16_t);
case SLType::kShort4:
return 4 * sizeof(int16_t);
case SLType::kUShort:
return sizeof(uint16_t);
case SLType::kUShort2:
return 2 * sizeof(uint16_t);
case SLType::kUShort3:
return 4 * sizeof(uint16_t);
case SLType::kUShort4:
return 4 * sizeof(uint16_t);
case SLType::kHalf: // fall through
case SLType::kFloat:
return sizeof(float);
case SLType::kHalf2: // fall through
case SLType::kFloat2:
return 2 * sizeof(float);
case SLType::kHalf3: // fall through
case SLType::kFloat3:
case SLType::kHalf4:
case SLType::kFloat4:
return 4 * sizeof(float);
case SLType::kInt: // fall through
case SLType::kUint:
return sizeof(int32_t);
case SLType::kInt2: // fall through
case SLType::kUint2:
return 2 * sizeof(int32_t);
case SLType::kInt3: // fall through
case SLType::kUint3:
case SLType::kInt4:
case SLType::kUint4:
return 4 * sizeof(int32_t);
case SLType::kHalf2x2: // fall through
case SLType::kFloat2x2:
return 4 * sizeof(float);
case SLType::kHalf3x3: // fall through
case SLType::kFloat3x3:
return 12 * sizeof(float);
case SLType::kHalf4x4: // fall through
case SLType::kFloat4x4:
return 16 * sizeof(float);
// This query is only valid for certain types.
case SLType::kVoid:
case SLType::kBool:
case SLType::kBool2:
case SLType::kBool3:
case SLType::kBool4:
case SLType::kTexture2DSampler:
case SLType::kTextureExternalSampler:
case SLType::kTexture2DRectSampler:
case SLType::kSampler:
case SLType::kTexture2D:
case SLType::kInput:
break;
}
SK_ABORT("Unexpected type");
}
// Given the current offset into the ubo, calculate the offset for the uniform we're trying to add
// taking into consideration all alignment requirements. The uniformOffset is set to the offset for
// the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
static uint32_t get_ubo_aligned_offset(uint32_t* currentOffset,
uint32_t* maxAlignment,
SLType type,
int arrayCount) {
uint32_t alignmentMask = sltype_to_alignment_mask(type);
if (alignmentMask > *maxAlignment) {
*maxAlignment = alignmentMask;
}
uint32_t offsetDiff = *currentOffset & alignmentMask;
if (offsetDiff != 0) {
offsetDiff = alignmentMask - offsetDiff + 1;
}
uint32_t uniformOffset = *currentOffset + offsetDiff;
SkASSERT(sizeof(float) == 4);
if (arrayCount) {
*currentOffset = uniformOffset + sltype_to_mtl_size(type) * arrayCount;
} else {
*currentOffset = uniformOffset + sltype_to_mtl_size(type);
}
return uniformOffset;
}
#endif // SK_DEBUG
uint32_t UniformManager::writeUniforms(SkSpan<const Uniform> uniforms,
void** srcs,
uint32_t* offsets,
void *dst) {
decltype(&Writer<Rules140>::WriteUniform) write;
switch (fLayout) {
case Layout::kStd140:
write = Writer<Rules140>::WriteUniform;
break;
case Layout::kStd430:
write = Writer<Rules430>::WriteUniform;
break;
case Layout::kMetal:
write = Writer<RulesMetal>::WriteUniform;
break;
}
#ifdef SK_DEBUG
uint32_t curUBOOffset = 0;
uint32_t curUBOMaxAlignment = 0;
#endif // SK_DEBUG
uint32_t offset = 0;
for (int i = 0; i < (int) uniforms.size(); ++i) {
const Uniform& u = uniforms[i];
#ifdef SK_DEBUG
uint32_t debugOffset = get_ubo_aligned_offset(&curUBOOffset,
&curUBOMaxAlignment,
u.type(),
u.count());
#endif // SK_DEBUG
uint32_t bytesWritten = write(u.type(),
CType::kDefault,
dst,
u.count(),
srcs ? srcs[i] : nullptr);
SkASSERT(debugOffset == offset);
if (offsets) {
offsets[i] = offset;
}
offset += bytesWritten;
}
return offset;
}
} // namespace skgpu