blob: 5414fcc9c3b5a340ecbc4941046a8425cda2c85f [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkPaint.h"
#include "include/core/SkRect.h"
#include "include/core/SkSurface.h"
#include "include/core/SkYUVAInfo.h"
#include "include/core/SkYUVAPixmaps.h"
#include "include/effects/SkGradientShader.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/gpu/ganesh/SkImageGanesh.h"
#include "src/base/SkScopeExit.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "tools/Resources.h"
#include "tools/ToolUtils.h"
#include "tools/gpu/YUVUtils.h"
#if defined(SK_GRAPHITE)
#include "include/gpu/graphite/Context.h"
#include "include/gpu/graphite/Image.h"
#include "src/gpu/graphite/RecorderPriv.h"
#endif
namespace {
struct AsyncContext {
bool fCalled = false;
std::unique_ptr<const SkImage::AsyncReadResult> fResult;
};
} // anonymous namespace
// Making this a lambda in the test functions caused:
// "error: cannot compile this forwarded non-trivially copyable parameter yet"
// on x86/Win/Clang bot, referring to 'result'.
static void async_callback(void* c, std::unique_ptr<const SkImage::AsyncReadResult> result) {
auto context = static_cast<AsyncContext*>(c);
context->fResult = std::move(result);
context->fCalled = true;
}
// Draws the image to a surface, does a asyncRescaleAndReadPixels of the image, and then sticks
// the result in a raster image.
template <typename Src>
static sk_sp<SkImage> do_read_and_scale(Src* src,
GrDirectContext* direct,
skgpu::graphite::Recorder* recorder,
const SkIRect& srcRect,
const SkImageInfo& ii,
SkImage::RescaleGamma rescaleGamma,
SkImage::RescaleMode rescaleMode) {
auto* asyncContext = new AsyncContext();
if (recorder) {
#if defined(SK_GRAPHITE)
skgpu::graphite::Context* graphiteContext = recorder->priv().context();
if (!graphiteContext) {
return nullptr;
}
// We need to flush the existing drawing commands before we try to read
std::unique_ptr<skgpu::graphite::Recording> recording = recorder->snap();
if (!recording) {
return nullptr;
}
skgpu::graphite::InsertRecordingInfo recordingInfo;
recordingInfo.fRecording = recording.get();
if (!graphiteContext->insertRecording(recordingInfo)) {
return nullptr;
}
graphiteContext->asyncRescaleAndReadPixels(src, ii, srcRect, rescaleGamma, rescaleMode,
async_callback, asyncContext);
graphiteContext->submit();
while (!asyncContext->fCalled) {
graphiteContext->checkAsyncWorkCompletion();
}
#endif
} else {
src->asyncRescaleAndReadPixels(ii, srcRect, rescaleGamma, rescaleMode, async_callback,
asyncContext);
if (direct) {
direct->submit();
}
while (!asyncContext->fCalled) {
// Only GPU should actually be asynchronous.
SkASSERT(direct);
direct->checkAsyncWorkCompletion();
}
}
if (!asyncContext->fResult) {
return nullptr;
}
SkPixmap pixmap(ii, asyncContext->fResult->data(0), asyncContext->fResult->rowBytes(0));
auto releasePixels = [](const void*, void* c) { delete static_cast<AsyncContext*>(c); };
return SkImages::RasterFromPixmap(pixmap, releasePixels, asyncContext);
}
template <typename Src>
static sk_sp<SkImage> do_read_and_scale_yuv(Src* src,
GrDirectContext* direct,
skgpu::graphite::Recorder* recorder,
SkYUVColorSpace yuvCS,
bool readAlpha,
const SkIRect& srcRect,
SkISize size,
SkImage::RescaleGamma rescaleGamma,
SkImage::RescaleMode rescaleMode,
SkScopeExit* cleanup) {
SkASSERT(!(size.width() & 0b1) && !(size.height() & 0b1));
SkISize uvSize = {size.width()/2, size.height()/2};
SkImageInfo yaII = SkImageInfo::Make(size , kGray_8_SkColorType, kPremul_SkAlphaType);
SkImageInfo uvII = SkImageInfo::Make(uvSize, kGray_8_SkColorType, kPremul_SkAlphaType);
AsyncContext asyncContext;
if (recorder) {
#if defined(SK_GRAPHITE)
skgpu::graphite::Context* graphiteContext = recorder->priv().context();
if (!graphiteContext) {
return nullptr;
}
// We need to flush the existing drawing commands before we try to read
std::unique_ptr<skgpu::graphite::Recording> recording = recorder->snap();
if (!recording) {
return nullptr;
}
skgpu::graphite::InsertRecordingInfo recordingInfo;
recordingInfo.fRecording = recording.get();
if (!graphiteContext->insertRecording(recordingInfo)) {
return nullptr;
}
if (readAlpha) {
graphiteContext->asyncRescaleAndReadPixelsYUVA420(src, yuvCS, SkColorSpace::MakeSRGB(),
srcRect, size, rescaleGamma,
rescaleMode, async_callback,
&asyncContext);
} else {
graphiteContext->asyncRescaleAndReadPixelsYUV420(src, yuvCS, SkColorSpace::MakeSRGB(),
srcRect, size, rescaleGamma,
rescaleMode, async_callback,
&asyncContext);
}
graphiteContext->submit();
while (!asyncContext.fCalled) {
graphiteContext->checkAsyncWorkCompletion();
}
#endif
} else {
if (readAlpha) {
src->asyncRescaleAndReadPixelsYUVA420(yuvCS, SkColorSpace::MakeSRGB(),
srcRect, size, rescaleGamma, rescaleMode,
async_callback, &asyncContext);
} else {
src->asyncRescaleAndReadPixelsYUV420(yuvCS, SkColorSpace::MakeSRGB(),
srcRect, size, rescaleGamma, rescaleMode,
async_callback, &asyncContext);
}
if (direct) {
direct->submit();
}
while (!asyncContext.fCalled) {
// Only GPU should actually be asynchronous.
SkASSERT(direct);
direct->checkAsyncWorkCompletion();
}
}
if (!asyncContext.fResult) {
return nullptr;
}
auto planeConfig = readAlpha ? SkYUVAInfo::PlaneConfig::kY_U_V_A
: SkYUVAInfo::PlaneConfig::kY_U_V;
SkYUVAInfo yuvaInfo(size,
planeConfig,
SkYUVAInfo::Subsampling::k420,
yuvCS);
SkPixmap yuvPMs[4] = {
{yaII, asyncContext.fResult->data(0), asyncContext.fResult->rowBytes(0)},
{uvII, asyncContext.fResult->data(1), asyncContext.fResult->rowBytes(1)},
{uvII, asyncContext.fResult->data(2), asyncContext.fResult->rowBytes(2)},
{},
};
if (readAlpha) {
yuvPMs[3] = {yaII, asyncContext.fResult->data(3), asyncContext.fResult->rowBytes(3)};
}
auto pixmaps = SkYUVAPixmaps::FromExternalPixmaps(yuvaInfo, yuvPMs);
SkASSERT(pixmaps.isValid());
auto lazyYUVImage = sk_gpu_test::LazyYUVImage::Make(pixmaps);
SkASSERT(lazyYUVImage);
#if defined(SK_GRAPHITE)
if (recorder) {
return lazyYUVImage->refImage(recorder, sk_gpu_test::LazyYUVImage::Type::kFromTextures);
} else
#endif
{
return lazyYUVImage->refImage(direct, sk_gpu_test::LazyYUVImage::Type::kFromTextures);
}
}
enum class ReadSource {
kImage,
kSurface,
};
enum class Type {
kRGBA,
kYUV,
kYUVA
};
// Draws a grid of rescales. The columns are none, low, and high filter quality. The rows are
// rescale in src gamma and rescale in linear gamma.
template <typename Src>
static skiagm::DrawResult do_rescale_grid(SkCanvas* canvas,
Src* src,
GrDirectContext* direct,
skgpu::graphite::Recorder* recorder,
const SkIRect& srcRect,
SkISize newSize,
Type type,
SkString* errorMsg,
int pad = 0) {
if (canvas->imageInfo().colorType() == kUnknown_SkColorType) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
const auto ii = canvas->imageInfo().makeDimensions(newSize);
SkYUVColorSpace yuvColorSpace = kRec601_SkYUVColorSpace;
canvas->save();
for (auto gamma : {SkImage::RescaleGamma::kSrc, SkImage::RescaleGamma::kLinear}) {
canvas->save();
for (auto mode : {
SkImage::RescaleMode::kNearest,
SkImage::RescaleMode::kRepeatedLinear,
SkImage::RescaleMode::kRepeatedCubic}) {
SkScopeExit cleanup;
sk_sp<SkImage> result;
switch (type) {
case Type::kRGBA:
result = do_read_and_scale(src, direct, recorder, srcRect, ii, gamma, mode);
if (!result) {
errorMsg->printf("async read call failed.");
return skiagm::DrawResult::kFail;
}
break;
case Type::kYUV:
case Type::kYUVA:
result = do_read_and_scale_yuv(src, direct, recorder, yuvColorSpace,
/*readAlpha=*/type == Type::kYUVA, srcRect,
newSize, gamma, mode, &cleanup);
if (!result) {
errorMsg->printf("YUV[A]420 async call failed. Allowed for now.");
return skiagm::DrawResult::kSkip;
}
int nextCS =
static_cast<int>(yuvColorSpace + 1) % (kLastEnum_SkYUVColorSpace + 1);
yuvColorSpace = static_cast<SkYUVColorSpace>(nextCS);
break;
}
canvas->drawImage(result, 0, 0);
canvas->translate(newSize.width() + pad, 0);
}
canvas->restore();
canvas->translate(0, newSize.height() + pad);
}
canvas->restore();
return skiagm::DrawResult::kOk;
}
static skiagm::DrawResult do_rescale_image_grid(SkCanvas* canvas,
const char* imageFile,
const SkIRect& srcRect,
SkISize newSize,
ReadSource source,
Type type,
SkString* errorMsg) {
auto image = GetResourceAsImage(imageFile);
if (!image) {
errorMsg->printf("Could not load image file %s.", imageFile);
return skiagm::DrawResult::kFail;
}
if (canvas->imageInfo().colorType() == kUnknown_SkColorType) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
auto dContext = GrAsDirectContext(canvas->recordingContext());
if (!dContext && canvas->recordingContext()) {
*errorMsg = "Not supported in DDL mode";
return skiagm::DrawResult::kSkip;
}
auto recorder = canvas->recorder();
switch (source) {
case ReadSource::kImage:
#if defined(SK_GRAPHITE)
if (recorder) {
image = SkImages::TextureFromImage(recorder, image);
if (!image) {
*errorMsg = "Could not create image.";
return skiagm::DrawResult::kFail;
}
} else
#endif
if (dContext) {
image = SkImages::TextureFromImage(dContext, image);
if (!image) {
*errorMsg = "Could not create image.";
// When testing abandoned GrContext we expect surface creation to fail.
if (canvas->recordingContext() && canvas->recordingContext()->abandoned()) {
return skiagm::DrawResult::kSkip;
}
return skiagm::DrawResult::kFail;
}
}
return do_rescale_grid(canvas, image.get(), dContext, recorder, srcRect, newSize, type,
errorMsg);
case ReadSource::kSurface:
// Turn the image into a surface in order to call the read and rescale API
auto surfInfo = image->imageInfo().makeDimensions(image->dimensions());
auto surface = canvas->makeSurface(surfInfo);
if (!surface && surfInfo.colorType() == kBGRA_8888_SkColorType) {
surfInfo = surfInfo.makeColorType(kRGBA_8888_SkColorType);
surface = canvas->makeSurface(surfInfo);
}
if (!surface) {
*errorMsg = "Could not create surface for image.";
// When testing abandoned GrContext we expect surface creation to fail.
if (canvas->recordingContext() && canvas->recordingContext()->abandoned()) {
return skiagm::DrawResult::kSkip;
}
return skiagm::DrawResult::kFail;
}
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
surface->getCanvas()->drawImage(image, 0, 0, SkSamplingOptions(), &paint);
return do_rescale_grid(canvas, surface.get(), dContext, recorder, srcRect, newSize,
type, errorMsg);
}
SkUNREACHABLE;
}
#define DEF_RESCALE_AND_READ_GM(IMAGE_FILE, TAG, SRC_RECT, W, H, SOURCE, TYPE) \
DEF_SIMPLE_GM_CAN_FAIL(async_rescale_and_read_##TAG, canvas, errorMsg, 3 * W, 2 * H) { \
ToolUtils::draw_checkerboard(canvas, SK_ColorDKGRAY, SK_ColorLTGRAY, 25); \
return do_rescale_image_grid( \
canvas, #IMAGE_FILE, SRC_RECT, {W, H}, SOURCE, TYPE, errorMsg); \
}
DEF_RESCALE_AND_READ_GM(images/yellow_rose.webp,
yuv420_rose,
SkIRect::MakeXYWH(50, 5, 200, 150),
410,
376,
ReadSource::kSurface,
Type::kYUVA)
DEF_RESCALE_AND_READ_GM(images/yellow_rose.webp,
yuv420_rose_down,
SkIRect::MakeXYWH(50, 5, 200, 150),
106,
60,
ReadSource::kImage,
Type::kYUV)
DEF_RESCALE_AND_READ_GM(images/yellow_rose.webp,
rose,
SkIRect::MakeXYWH(100, 20, 100, 100),
410,
410,
ReadSource::kSurface,
Type::kRGBA)
DEF_RESCALE_AND_READ_GM(images/dog.jpg,
dog_down,
SkIRect::MakeXYWH(0, 10, 180, 150),
45,
45,
ReadSource::kSurface,
Type::kRGBA)
DEF_RESCALE_AND_READ_GM(images/dog.jpg,
dog_up,
SkIRect::MakeWH(180, 180),
800,
400,
ReadSource::kImage,
Type::kRGBA)
DEF_RESCALE_AND_READ_GM(images/text.png,
text_down,
SkIRect::MakeWH(637, 105),
(int)(0.7 * 637),
(int)(0.7 * 105),
ReadSource::kImage,
Type::kRGBA)
DEF_RESCALE_AND_READ_GM(images/text.png,
text_up,
SkIRect::MakeWH(637, 105),
(int)(1.2 * 637),
(int)(1.2 * 105),
ReadSource::kSurface,
Type::kRGBA)
DEF_RESCALE_AND_READ_GM(images/text.png,
text_up_large,
SkIRect::MakeXYWH(300, 0, 300, 105),
(int)(2.4 * 300),
(int)(2.4 * 105),
ReadSource::kImage,
Type::kRGBA)
// Exercises non-scaling YUV420. Reads from the original canvas's surface in order to
// exercise case where source surface is not a texture (in glbert config).
DEF_SIMPLE_GM_CAN_FAIL(async_yuv_no_scale, canvas, errorMsg, 400, 300) {
auto surface = canvas->getSurface();
if (!surface) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
auto dContext = GrAsDirectContext(surface->recordingContext());
if (!dContext && surface->recordingContext()) {
*errorMsg = "Not supported in DDL mode";
return skiagm::DrawResult::kSkip;
}
auto image = GetResourceAsImage("images/yellow_rose.webp");
if (!image) {
return skiagm::DrawResult::kFail;
}
SkPaint paint;
canvas->drawImage(image.get(), 0, 0);
skgpu::graphite::Recorder* recorder = canvas->recorder();
SkScopeExit scopeExit;
auto yuvImage = do_read_and_scale_yuv(surface, dContext, recorder, kRec601_SkYUVColorSpace,
/*readAlpha=*/false, SkIRect::MakeWH(400, 300),
{400, 300}, SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kNearest, &scopeExit);
canvas->clear(SK_ColorWHITE);
canvas->drawImage(yuvImage.get(), 0, 0);
return skiagm::DrawResult::kOk;
}
DEF_SIMPLE_GM_CAN_FAIL(async_rescale_and_read_no_bleed, canvas, errorMsg, 60, 60) {
if (canvas->imageInfo().colorType() == kUnknown_SkColorType) {
*errorMsg = "Not supported on recording/vector backends.";
return skiagm::DrawResult::kSkip;
}
auto dContext = GrAsDirectContext(canvas->recordingContext());
if (!dContext && canvas->recordingContext()) {
*errorMsg = "Not supported in DDL mode";
return skiagm::DrawResult::kSkip;
}
auto recorder = canvas->recorder();
static constexpr int kBorder = 5;
static constexpr int kInner = 5;
const auto srcRect = SkIRect::MakeXYWH(kBorder, kBorder, kInner, kInner);
auto surfaceII =
SkImageInfo::Make(kInner + 2 * kBorder, kInner + 2 * kBorder, kRGBA_8888_SkColorType,
kPremul_SkAlphaType, SkColorSpace::MakeSRGB());
auto surface = canvas->makeSurface(surfaceII);
if (!surface) {
*errorMsg = "Could not create surface for image.";
// When testing abandoned GrContext we expect surface creation to fail.
if (canvas->recordingContext() && canvas->recordingContext()->abandoned()) {
return skiagm::DrawResult::kSkip;
}
return skiagm::DrawResult::kFail;
}
surface->getCanvas()->clear(SK_ColorRED);
surface->getCanvas()->save();
surface->getCanvas()->clipRect(SkRect::Make(srcRect), SkClipOp::kIntersect, false);
surface->getCanvas()->clear(SK_ColorBLUE);
surface->getCanvas()->restore();
static constexpr int kPad = 2;
canvas->translate(kPad, kPad);
skiagm::DrawResult result;
SkISize downSize = {static_cast<int>(kInner/2), static_cast<int>(kInner / 2)};
result = do_rescale_grid(canvas, surface.get(), dContext, recorder, srcRect, downSize,
Type::kRGBA, errorMsg, kPad);
if (result != skiagm::DrawResult::kOk) {
return result;
}
canvas->translate(0, 4 * downSize.height());
SkISize upSize = {static_cast<int>(kInner * 3.5), static_cast<int>(kInner * 4.6)};
result = do_rescale_grid(canvas, surface.get(), dContext, recorder, srcRect, upSize,
Type::kRGBA, errorMsg, kPad);
if (result != skiagm::DrawResult::kOk) {
return result;
}
return skiagm::DrawResult::kOk;
}
DEF_SIMPLE_GM_CAN_FAIL(async_rescale_and_read_alpha_type, canvas, errorMsg, 512, 512) {
auto dContext = GrAsDirectContext(canvas->recordingContext());
if (!dContext && canvas->recordingContext()) {
*errorMsg = "Not supported in DDL mode";
return skiagm::DrawResult::kSkip;
}
if (dContext && dContext->abandoned()) {
return skiagm::DrawResult::kSkip;
}
auto upmII = SkImageInfo::Make(200, 200, kRGBA_8888_SkColorType, kUnpremul_SkAlphaType);
auto pmII = upmII.makeAlphaType(kPremul_SkAlphaType);
auto upmSurf = SkSurfaces::Raster(upmII);
auto pmSurf = SkSurfaces::Raster(pmII);
SkColor4f colors[] = {
{.3f, .3f, .3f, .3f},
{1.f, .2f, .6f, .9f},
{0.f, .1f, 1.f, .1f},
{.7f, .8f, .2f, .7f},
};
auto shader = SkGradientShader::MakeRadial({100, 100},
230,
colors,
nullptr,
nullptr,
std::size(colors),
SkTileMode::kRepeat);
SkPaint paint;
paint.setShader(std::move(shader));
upmSurf->getCanvas()->drawPaint(paint);
pmSurf ->getCanvas()->drawPaint(paint);
auto pmImg = pmSurf->makeImageSnapshot();
auto upmImg = upmSurf->makeImageSnapshot();
if (dContext) {
pmImg = SkImages::TextureFromImage(dContext, pmImg);
upmImg = SkImages::TextureFromImage(dContext, upmImg);
if (!pmImg || !upmImg) {
*errorMsg = "could not make texture images";
return skiagm::DrawResult::kFail;
}
}
int size = 256;
ToolUtils::draw_checkerboard(canvas, SK_ColorWHITE, SK_ColorBLACK, 32);
for (const auto& img : {pmImg, upmImg}) {
canvas->save();
for (auto readAT : {kPremul_SkAlphaType, kUnpremul_SkAlphaType}) {
auto readInfo = img->imageInfo().makeAlphaType(readAT).makeWH(size, size);
auto* asyncContext = new AsyncContext();
img->asyncRescaleAndReadPixels(readInfo,
SkIRect::MakeSize(img->dimensions()),
SkImage::RescaleGamma::kSrc,
SkImage::RescaleMode::kRepeatedCubic,
async_callback,
asyncContext);
if (dContext) {
dContext->submit();
}
while (!asyncContext->fCalled) {
// Only GPU should actually be asynchronous.
SkASSERT(dContext);
dContext->checkAsyncWorkCompletion();
}
if (asyncContext->fResult) {
SkPixmap pixmap(readInfo,
asyncContext->fResult->data(0),
asyncContext->fResult->rowBytes(0));
auto releasePixels = [](const void*, void* c) {
delete static_cast<AsyncContext*>(c);
};
auto result = SkImages::RasterFromPixmap(pixmap, releasePixels, asyncContext);
canvas->drawImage(result, 0, 0);
} else {
delete asyncContext;
*errorMsg = "async readback failed";
return skiagm::DrawResult::kFail;
}
canvas->translate(size, 0);
}
canvas->restore();
canvas->translate(0, size);
}
return skiagm::DrawResult::kOk;
}