blob: a8e21b4f5f544c44dbfb76389cccc277f48ddde6 [file] [log] [blame]
#include "SkBitmapProcShader.h"
#include "SkColorPriv.h"
#include "SkPixelRef.h"
bool SkBitmapProcShader::CanDo(const SkBitmap& bm, TileMode tx, TileMode ty) {
switch (bm.config()) {
case SkBitmap::kA8_Config:
case SkBitmap::kRGB_565_Config:
case SkBitmap::kIndex8_Config:
case SkBitmap::kARGB_8888_Config:
// if (tx == ty && (kClamp_TileMode == tx || kRepeat_TileMode == tx))
return true;
default:
break;
}
return false;
}
SkBitmapProcShader::SkBitmapProcShader(const SkBitmap& src,
TileMode tmx, TileMode tmy) {
fRawBitmap = src;
fState.fTileModeX = (uint8_t)tmx;
fState.fTileModeY = (uint8_t)tmy;
fFlags = 0; // computed in setContext
}
SkBitmapProcShader::SkBitmapProcShader(SkFlattenableReadBuffer& buffer)
: INHERITED(buffer) {
fRawBitmap.unflatten(buffer);
fState.fTileModeX = buffer.readU8();
fState.fTileModeY = buffer.readU8();
fFlags = 0; // computed in setContext
}
void SkBitmapProcShader::beginSession() {
this->INHERITED::beginSession();
fRawBitmap.lockPixels();
}
void SkBitmapProcShader::endSession() {
fRawBitmap.unlockPixels();
this->INHERITED::endSession();
}
bool SkBitmapProcShader::asABitmap(SkBitmap* texture, SkMatrix* texM,
TileMode xy[]) {
if (texture) {
*texture = fRawBitmap;
}
if (texM) {
texM->reset();
}
if (xy) {
xy[0] = (TileMode)fState.fTileModeX;
xy[1] = (TileMode)fState.fTileModeY;
}
return true;
}
void SkBitmapProcShader::flatten(SkFlattenableWriteBuffer& buffer) {
this->INHERITED::flatten(buffer);
fRawBitmap.flatten(buffer);
buffer.write8(fState.fTileModeX);
buffer.write8(fState.fTileModeY);
}
static bool only_scale_and_translate(const SkMatrix& matrix) {
unsigned mask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;
return (matrix.getType() & ~mask) == 0;
}
bool SkBitmapProcShader::setContext(const SkBitmap& device,
const SkPaint& paint,
const SkMatrix& matrix) {
// do this first, so we have a correct inverse matrix
if (!this->INHERITED::setContext(device, paint, matrix)) {
return false;
}
fState.fOrigBitmap = fRawBitmap;
fState.fOrigBitmap.lockPixels();
if (fState.fOrigBitmap.getPixels() == NULL) {
fState.fOrigBitmap.unlockPixels();
return false;
}
if (!fState.chooseProcs(this->getTotalInverse(), paint)) {
return false;
}
bool bitmapIsOpaque = fState.fBitmap->isOpaque();
// filtering doesn't guarantee that opaque stays opaque (finite precision)
// so pretend we're not opaque if we're being asked to filter. If we had
// more blit-procs, we could specialize on opaque src, and just OR in 0xFF
// after the filter to be sure...
if (paint.isFilterBitmap()) {
bitmapIsOpaque = false;
}
// update fFlags
uint32_t flags = 0;
if (bitmapIsOpaque && (255 == this->getPaintAlpha())) {
flags |= kOpaqueAlpha_Flag;
}
switch (fState.fBitmap->config()) {
case SkBitmap::kRGB_565_Config:
flags |= (kHasSpan16_Flag | kIntrinsicly16_Flag);
break;
case SkBitmap::kIndex8_Config:
case SkBitmap::kARGB_8888_Config:
if (bitmapIsOpaque) {
flags |= kHasSpan16_Flag;
}
break;
case SkBitmap::kA8_Config:
break; // never set kHasSpan16_Flag
default:
break;
}
if (paint.isDither()) {
// gradients can auto-dither in their 16bit sampler, but we don't so
// we clear the flag here
flags &= ~kHasSpan16_Flag;
}
// if we're only 1-pixel heigh, and we don't rotate, then we can claim this
if (1 == fState.fBitmap->height() &&
only_scale_and_translate(this->getTotalInverse())) {
flags |= kConstInY32_Flag;
if (flags & kHasSpan16_Flag) {
flags |= kConstInY16_Flag;
}
}
fFlags = flags;
return true;
}
#define BUF_MAX 128
void SkBitmapProcShader::shadeSpan(int x, int y, SkPMColor dstC[], int count) {
const SkBitmapProcState& state = fState;
if (state.fShaderProc32) {
state.fShaderProc32(state, x, y, dstC, count);
return;
}
uint32_t buffer[BUF_MAX];
SkBitmapProcState::MatrixProc mproc = state.fMatrixProc;
SkBitmapProcState::SampleProc32 sproc = state.fSampleProc32;
int max = fState.maxCountForBufferSize(sizeof(buffer));
SkASSERT(state.fBitmap->getPixels());
SkASSERT(state.fBitmap->pixelRef() == NULL ||
state.fBitmap->pixelRef()->getLockCount());
for (;;) {
int n = count;
if (n > max) {
n = max;
}
mproc(state, buffer, n, x, y);
sproc(state, buffer, n, dstC);
if ((count -= n) == 0) {
break;
}
x += n;
dstC += n;
}
}
void SkBitmapProcShader::shadeSpan16(int x, int y, uint16_t dstC[], int count) {
const SkBitmapProcState& state = fState;
if (state.fShaderProc16) {
state.fShaderProc16(state, x, y, dstC, count);
return;
}
uint32_t buffer[BUF_MAX];
SkBitmapProcState::MatrixProc mproc = state.fMatrixProc;
SkBitmapProcState::SampleProc16 sproc = state.fSampleProc16;
int max = fState.maxCountForBufferSize(sizeof(buffer));
SkASSERT(state.fBitmap->getPixels());
SkASSERT(state.fBitmap->pixelRef() == NULL ||
state.fBitmap->pixelRef()->getLockCount());
for (;;) {
int n = count;
if (n > max) {
n = max;
}
mproc(state, buffer, n, x, y);
sproc(state, buffer, n, dstC);
if ((count -= n) == 0) {
break;
}
x += n;
dstC += n;
}
}
///////////////////////////////////////////////////////////////////////////////
#include "SkUnPreMultiply.h"
#include "SkColorShader.h"
// returns true and set color if the bitmap can be drawn as a single color
// (for efficiency)
static bool canUseColorShader(const SkBitmap& bm, SkColor* color) {
if (1 != bm.width() || 1 != bm.height()) {
return false;
}
SkAutoLockPixels alp(bm);
if (!bm.readyToDraw()) {
return false;
}
switch (bm.config()) {
case SkBitmap::kARGB_8888_Config:
*color = SkUnPreMultiply::PMColorToColor(*bm.getAddr32(0, 0));
return true;
case SkBitmap::kRGB_565_Config:
*color = SkPixel16ToColor(*bm.getAddr16(0, 0));
return true;
case SkBitmap::kIndex8_Config:
*color = SkUnPreMultiply::PMColorToColor(bm.getIndex8Color(0, 0));
return true;
default: // just skip the other configs for now
break;
}
return false;
}
#include "SkTemplatesPriv.h"
SkShader* SkShader::CreateBitmapShader(const SkBitmap& src,
TileMode tmx, TileMode tmy,
void* storage, size_t storageSize) {
SkShader* shader;
SkColor color;
if (canUseColorShader(src, &color)) {
SK_PLACEMENT_NEW_ARGS(shader, SkColorShader, storage, storageSize,
(color));
} else {
SK_PLACEMENT_NEW_ARGS(shader, SkBitmapProcShader, storage,
storageSize, (src, tmx, tmy));
}
return shader;
}
static SkFlattenable::Registrar gBitmapProcShaderReg("SkBitmapProcShader",
SkBitmapProcShader::CreateProc);
///////////////////////////////////////////////////////////////////////////////
static const char* gTileModeName[] = {
"clamp", "repeat", "mirror"
};
bool SkBitmapProcShader::toDumpString(SkString* str) const {
str->printf("BitmapShader: [%d %d %d",
fRawBitmap.width(), fRawBitmap.height(),
fRawBitmap.bytesPerPixel());
// add the pixelref
SkPixelRef* pr = fRawBitmap.pixelRef();
if (pr) {
const char* uri = pr->getURI();
if (uri) {
str->appendf(" \"%s\"", uri);
}
}
// add the (optional) matrix
{
SkMatrix m;
if (this->getLocalMatrix(&m)) {
SkString info;
m.toDumpString(&info);
str->appendf(" %s", info.c_str());
}
}
str->appendf(" [%s %s]]",
gTileModeName[fState.fTileModeX],
gTileModeName[fState.fTileModeY]);
return true;
}