blob: 7ec2aa21ec2502a968b4693d1f098cfc0b3bdaec [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkMagnifierImageFilter.h"
#include "SkColorPriv.h"
#include "SkDevice.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkValidationUtils.h"
////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "GrInvariantOutput.h"
#include "effects/GrSingleTextureEffect.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
class GrMagnifierEffect : public GrSingleTextureEffect {
public:
static GrFragmentProcessor* Create(GrTexture* texture,
const SkRect& bounds,
float xOffset,
float yOffset,
float xInvZoom,
float yInvZoom,
float xInvInset,
float yInvInset) {
return new GrMagnifierEffect(texture, bounds, xOffset, yOffset, xInvZoom, yInvZoom, xInvInset,
yInvInset);
}
virtual ~GrMagnifierEffect() {};
const char* name() const override { return "Magnifier"; }
const SkRect& bounds() const { return fBounds; } // Bounds of source image.
// Offset to apply to zoomed pixels, (srcRect position / texture size).
float x_offset() const { return fXOffset; }
float y_offset() const { return fYOffset; }
// Scale to apply to zoomed pixels (srcRect size / bounds size).
float x_inv_zoom() const { return fXInvZoom; }
float y_inv_zoom() const { return fYInvZoom; }
// 1/radius over which to transition from unzoomed to zoomed pixels (bounds size / inset).
float x_inv_inset() const { return fXInvInset; }
float y_inv_inset() const { return fYInvInset; }
private:
GrMagnifierEffect(GrTexture* texture,
const SkRect& bounds,
float xOffset,
float yOffset,
float xInvZoom,
float yInvZoom,
float xInvInset,
float yInvInset)
: INHERITED(texture, GrCoordTransform::MakeDivByTextureWHMatrix(texture))
, fBounds(bounds)
, fXOffset(xOffset)
, fYOffset(yOffset)
, fXInvZoom(xInvZoom)
, fYInvZoom(yInvZoom)
, fXInvInset(xInvInset)
, fYInvInset(yInvInset) {
this->initClassID<GrMagnifierEffect>();
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
void onGetGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder*) const override;
bool onIsEqual(const GrFragmentProcessor&) const override;
void onComputeInvariantOutput(GrInvariantOutput* inout) const override;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
SkRect fBounds;
float fXOffset;
float fYOffset;
float fXInvZoom;
float fYInvZoom;
float fXInvInset;
float fYInvInset;
typedef GrSingleTextureEffect INHERITED;
};
// For brevity
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
class GrGLMagnifierEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
private:
UniformHandle fOffsetVar;
UniformHandle fInvZoomVar;
UniformHandle fInvInsetVar;
UniformHandle fBoundsVar;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GrGLMagnifierEffect::emitCode(EmitArgs& args) {
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fOffsetVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Offset");
fInvZoomVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"InvZoom");
fInvInsetVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"InvInset");
fBoundsVar = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"Bounds");
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0);
fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str());
fragBuilder->codeAppendf("\t\tvec2 zoom_coord = %s + %s * %s;\n",
uniformHandler->getUniformCStr(fOffsetVar),
coords2D.c_str(),
uniformHandler->getUniformCStr(fInvZoomVar));
const char* bounds = uniformHandler->getUniformCStr(fBoundsVar);
fragBuilder->codeAppendf("\t\tvec2 delta = (coord - %s.xy) * %s.zw;\n", bounds, bounds);
fragBuilder->codeAppendf("\t\tdelta = min(delta, vec2(1.0, 1.0) - delta);\n");
fragBuilder->codeAppendf("\t\tdelta = delta * %s;\n",
uniformHandler->getUniformCStr(fInvInsetVar));
fragBuilder->codeAppend("\t\tfloat weight = 0.0;\n");
fragBuilder->codeAppend("\t\tif (delta.s < 2.0 && delta.t < 2.0) {\n");
fragBuilder->codeAppend("\t\t\tdelta = vec2(2.0, 2.0) - delta;\n");
fragBuilder->codeAppend("\t\t\tfloat dist = length(delta);\n");
fragBuilder->codeAppend("\t\t\tdist = max(2.0 - dist, 0.0);\n");
fragBuilder->codeAppend("\t\t\tweight = min(dist * dist, 1.0);\n");
fragBuilder->codeAppend("\t\t} else {\n");
fragBuilder->codeAppend("\t\t\tvec2 delta_squared = delta * delta;\n");
fragBuilder->codeAppend("\t\t\tweight = min(min(delta_squared.x, delta_squared.y), 1.0);\n");
fragBuilder->codeAppend("\t\t}\n");
fragBuilder->codeAppend("\t\tvec2 mix_coord = mix(coord, zoom_coord, weight);\n");
fragBuilder->codeAppend("\t\tvec4 output_color = ");
fragBuilder->appendTextureLookup(args.fSamplers[0], "mix_coord");
fragBuilder->codeAppend(";\n");
fragBuilder->codeAppendf("\t\t%s = output_color;", args.fOutputColor);
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fragBuilder->codeAppend(modulate.c_str());
}
void GrGLMagnifierEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& effect) {
const GrMagnifierEffect& zoom = effect.cast<GrMagnifierEffect>();
pdman.set2f(fOffsetVar, zoom.x_offset(), zoom.y_offset());
pdman.set2f(fInvZoomVar, zoom.x_inv_zoom(), zoom.y_inv_zoom());
pdman.set2f(fInvInsetVar, zoom.x_inv_inset(), zoom.y_inv_inset());
pdman.set4f(fBoundsVar, zoom.bounds().x(), zoom.bounds().y(),
zoom.bounds().width(), zoom.bounds().height());
}
/////////////////////////////////////////////////////////////////////
void GrMagnifierEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLMagnifierEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrMagnifierEffect::onCreateGLSLInstance() const {
return new GrGLMagnifierEffect;
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMagnifierEffect);
const GrFragmentProcessor* GrMagnifierEffect::TestCreate(GrProcessorTestData* d) {
GrTexture* texture = d->fTextures[0];
const int kMaxWidth = 200;
const int kMaxHeight = 200;
const int kMaxInset = 20;
uint32_t width = d->fRandom->nextULessThan(kMaxWidth);
uint32_t height = d->fRandom->nextULessThan(kMaxHeight);
uint32_t x = d->fRandom->nextULessThan(kMaxWidth - width);
uint32_t y = d->fRandom->nextULessThan(kMaxHeight - height);
uint32_t inset = d->fRandom->nextULessThan(kMaxInset);
GrFragmentProcessor* effect = GrMagnifierEffect::Create(
texture,
SkRect::MakeWH(SkIntToScalar(kMaxWidth), SkIntToScalar(kMaxHeight)),
(float) width / texture->width(),
(float) height / texture->height(),
texture->width() / (float) x,
texture->height() / (float) y,
(float) inset / texture->width(),
(float) inset / texture->height());
SkASSERT(effect);
return effect;
}
///////////////////////////////////////////////////////////////////////////////
bool GrMagnifierEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrMagnifierEffect& s = sBase.cast<GrMagnifierEffect>();
return (this->fBounds == s.fBounds &&
this->fXOffset == s.fXOffset &&
this->fYOffset == s.fYOffset &&
this->fXInvZoom == s.fXInvZoom &&
this->fYInvZoom == s.fYInvZoom &&
this->fXInvInset == s.fXInvInset &&
this->fYInvInset == s.fYInvInset);
}
void GrMagnifierEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
this->updateInvariantOutputForModulation(inout);
}
#endif
////////////////////////////////////////////////////////////////////////////////
SkImageFilter* SkMagnifierImageFilter::Create(const SkRect& srcRect, SkScalar inset,
SkImageFilter* input) {
if (!SkScalarIsFinite(inset) || !SkIsValidRect(srcRect)) {
return nullptr;
}
// Negative numbers in src rect are not supported
if (srcRect.fLeft < 0 || srcRect.fTop < 0) {
return nullptr;
}
return new SkMagnifierImageFilter(srcRect, inset, input);
}
SkMagnifierImageFilter::SkMagnifierImageFilter(const SkRect& srcRect, SkScalar inset,
SkImageFilter* input)
: INHERITED(1, &input), fSrcRect(srcRect), fInset(inset) {
SkASSERT(srcRect.x() >= 0 && srcRect.y() >= 0 && inset >= 0);
}
#if SK_SUPPORT_GPU
bool SkMagnifierImageFilter::asFragmentProcessor(GrFragmentProcessor** fp,
GrTexture* texture, const SkMatrix&,
const SkIRect&bounds) const {
if (fp) {
SkScalar yOffset = texture->origin() == kTopLeft_GrSurfaceOrigin ? fSrcRect.y() :
texture->height() - fSrcRect.height() * texture->height() / bounds.height()
- fSrcRect.y();
int boundsY = (texture->origin() == kTopLeft_GrSurfaceOrigin) ? bounds.y() :
(texture->height() - bounds.height());
SkRect effectBounds = SkRect::MakeXYWH(
SkIntToScalar(bounds.x()) / texture->width(),
SkIntToScalar(boundsY) / texture->height(),
SkIntToScalar(texture->width()) / bounds.width(),
SkIntToScalar(texture->height()) / bounds.height());
SkScalar invInset = fInset > 0 ? SkScalarInvert(fInset) : SK_Scalar1;
*fp = GrMagnifierEffect::Create(texture,
effectBounds,
fSrcRect.x() / texture->width(),
yOffset / texture->height(),
fSrcRect.width() / bounds.width(),
fSrcRect.height() / bounds.height(),
bounds.width() * invInset,
bounds.height() * invInset);
}
return true;
}
#endif
SkFlattenable* SkMagnifierImageFilter::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
SkRect src;
buffer.readRect(&src);
return Create(src, buffer.readScalar(), common.getInput(0));
}
void SkMagnifierImageFilter::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeRect(fSrcRect);
buffer.writeScalar(fInset);
}
bool SkMagnifierImageFilter::onFilterImageDeprecated(Proxy* proxy, const SkBitmap& src,
const Context&, SkBitmap* dst,
SkIPoint* offset) const {
if ((src.colorType() != kN32_SkColorType) ||
(fSrcRect.width() >= src.width()) ||
(fSrcRect.height() >= src.height())) {
return false;
}
SkAutoLockPixels alp(src);
SkASSERT(src.getPixels());
if (!src.getPixels() || src.width() <= 0 || src.height() <= 0) {
return false;
}
SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(src.width(), src.height()));
if (!device) {
return false;
}
*dst = device->accessBitmap(false);
SkAutoLockPixels alp_dst(*dst);
SkScalar inv_inset = fInset > 0 ? SkScalarInvert(fInset) : SK_Scalar1;
SkScalar inv_x_zoom = fSrcRect.width() / src.width();
SkScalar inv_y_zoom = fSrcRect.height() / src.height();
SkColor* sptr = src.getAddr32(0, 0);
SkColor* dptr = dst->getAddr32(0, 0);
int width = src.width(), height = src.height();
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
SkScalar x_dist = SkMin32(x, width - x - 1) * inv_inset;
SkScalar y_dist = SkMin32(y, height - y - 1) * inv_inset;
SkScalar weight = 0;
static const SkScalar kScalar2 = SkScalar(2);
// To create a smooth curve at the corners, we need to work on
// a square twice the size of the inset.
if (x_dist < kScalar2 && y_dist < kScalar2) {
x_dist = kScalar2 - x_dist;
y_dist = kScalar2 - y_dist;
SkScalar dist = SkScalarSqrt(SkScalarSquare(x_dist) +
SkScalarSquare(y_dist));
dist = SkMaxScalar(kScalar2 - dist, 0);
weight = SkMinScalar(SkScalarSquare(dist), SK_Scalar1);
} else {
SkScalar sqDist = SkMinScalar(SkScalarSquare(x_dist),
SkScalarSquare(y_dist));
weight = SkMinScalar(sqDist, SK_Scalar1);
}
SkScalar x_interp = SkScalarMul(weight, (fSrcRect.x() + x * inv_x_zoom)) +
(SK_Scalar1 - weight) * x;
SkScalar y_interp = SkScalarMul(weight, (fSrcRect.y() + y * inv_y_zoom)) +
(SK_Scalar1 - weight) * y;
int x_val = SkTPin(SkScalarFloorToInt(x_interp), 0, width - 1);
int y_val = SkTPin(SkScalarFloorToInt(y_interp), 0, height - 1);
*dptr = sptr[y_val * width + x_val];
dptr++;
}
}
return true;
}
#ifndef SK_IGNORE_TO_STRING
void SkMagnifierImageFilter::toString(SkString* str) const {
str->appendf("SkMagnifierImageFilter: (");
str->appendf("src: (%f,%f,%f,%f) ",
fSrcRect.fLeft, fSrcRect.fTop, fSrcRect.fRight, fSrcRect.fBottom);
str->appendf("inset: %f", fInset);
str->append(")");
}
#endif