blob: 31e3f3e261adbb7b59efea2ad196c941d4ff7eb5 [file] [log] [blame]
/*
* Copyright 2020 Google LLC.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/tessellate/GrStrokeHardwareTessellator.h"
#include "src/core/SkPathPriv.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/geometry/GrPathUtils.h"
#include "src/gpu/tessellate/GrWangsFormula.h"
using Patch = GrStrokeTessellateShader::Patch;
static float num_combined_segments(float numParametricSegments, float numRadialSegments) {
// The first and last edges are shared by both the parametric and radial sets of edges, so
// the total number of edges is:
//
// numCombinedEdges = numParametricEdges + numRadialEdges - 2
//
// It's also important to differentiate between the number of edges and segments in a strip:
//
// numCombinedSegments = numCombinedEdges - 1
//
// So the total number of segments in the combined strip is:
//
// numCombinedSegments = numParametricEdges + numRadialEdges - 2 - 1
// = numParametricSegments + 1 + numRadialSegments + 1 - 2 - 1
// = numParametricSegments + numRadialSegments - 1
//
return numParametricSegments + numRadialSegments - 1;
}
static float num_parametric_segments(float numCombinedSegments, float numRadialSegments) {
// numCombinedSegments = numParametricSegments + numRadialSegments - 1.
// (See num_combined_segments()).
return std::max(numCombinedSegments + 1 - numRadialSegments, 0.f);
}
static float pow4(float x) {
float xx = x*x;
return xx*xx;
}
GrStrokeHardwareTessellator::GrStrokeHardwareTessellator(const GrShaderCaps& shaderCaps,
const SkMatrix& viewMatrix,
const SkStrokeRec& stroke)
// Subtract 2 because the tessellation shader chops every cubic at two locations, and each
// chop has the potential to introduce an extra segment.
: fMaxTessellationSegments(shaderCaps.maxTessellationSegments() - 2)
, fStroke(stroke)
, fTolerances(GrStrokeTessellateShader::Tolerances::MakePreTransform(viewMatrix, stroke)) {
// Calculate the worst-case numbers of parametric segments our hardware can support for the
// current stroke radius, in the event that there are also enough radial segments to rotate
// 180 and 360 degrees respectively. These are used for "quick accepts" that allow us to
// send almost all curves directly to the hardware without having to chop.
float numRadialSegments180 = std::max(std::ceil(
SK_ScalarPI * fTolerances.fNumRadialSegmentsPerRadian), 1.f);
float maxParametricSegments180 = num_parametric_segments(fMaxTessellationSegments,
numRadialSegments180);
fMaxParametricSegments180_pow4 = pow4(maxParametricSegments180);
float numRadialSegments360 = std::max(std::ceil(
2*SK_ScalarPI * fTolerances.fNumRadialSegmentsPerRadian), 1.f);
float maxParametricSegments360 = num_parametric_segments(fMaxTessellationSegments,
numRadialSegments360);
fMaxParametricSegments360_pow4 = pow4(maxParametricSegments360);
// Now calculate the worst-case numbers of parametric segments if we are to integrate a join
// into the same patch as the curve.
float maxNumSegmentsInJoin;
switch (fStroke.getJoin()) {
case SkPaint::kBevel_Join:
maxNumSegmentsInJoin = 1;
break;
case SkPaint::kMiter_Join:
maxNumSegmentsInJoin = 2;
break;
case SkPaint::kRound_Join:
// 180-degree round join.
maxNumSegmentsInJoin = numRadialSegments180;
break;
}
// Subtract an extra 1 off the end because when we integrate a join, the tessellator has to add
// a redundant edge between the join and curve.
fMaxParametricSegments180_pow4_withJoin = pow4(std::max(
maxParametricSegments180 - maxNumSegmentsInJoin - 1, 0.f));
fMaxParametricSegments360_pow4_withJoin = pow4(std::max(
maxParametricSegments360 - maxNumSegmentsInJoin - 1, 0.f));
fMaxCombinedSegments_withJoin = fMaxTessellationSegments - maxNumSegmentsInJoin - 1;
fSoloRoundJoinAlwaysFitsInPatch = (numRadialSegments180 <= fMaxTessellationSegments);
}
void GrStrokeHardwareTessellator::prepare(GrMeshDrawOp::Target* target, const SkMatrix& viewMatrix,
const GrSTArenaList<SkPath>& pathList, const SkStrokeRec&,
int totalCombinedVerbCnt) {
fTarget = target;
fViewMatrix = &viewMatrix;
// Pre-allocate at least enough vertex space for 1 in 4 strokes to chop, and for 8 caps.
int strokePreallocCount = totalCombinedVerbCnt * 5/4;
int capPreallocCount = 8;
this->allocPatchChunkAtLeast(strokePreallocCount + capPreallocCount);
for (const SkPath& path : pathList) {
fHasLastControlPoint = false;
SkDEBUGCODE(fHasCurrentPoint = false;)
SkPathVerb previousVerb = SkPathVerb::kClose;
for (auto [verb, pts, w] : SkPathPriv::Iterate(path)) {
switch (verb) {
case SkPathVerb::kMove:
// "A subpath ... consisting of a single moveto shall not be stroked."
// https://www.w3.org/TR/SVG11/painting.html#StrokeProperties
if (previousVerb != SkPathVerb::kMove && previousVerb != SkPathVerb::kClose) {
this->cap();
}
this->moveTo(pts[0]);
break;
case SkPathVerb::kLine:
SkASSERT(fHasCurrentPoint);
SkASSERT(pts[0] == fCurrentPoint);
this->lineTo(pts[1]);
break;
case SkPathVerb::kQuad:
this->conicTo(pts, 1);
break;
case SkPathVerb::kConic:
this->conicTo(pts, *w);
break;
case SkPathVerb::kCubic:
this->cubicTo(pts);
break;
case SkPathVerb::kClose:
this->close();
break;
}
previousVerb = verb;
}
if (previousVerb != SkPathVerb::kMove && previousVerb != SkPathVerb::kClose) {
this->cap();
}
}
fTarget = nullptr;
fViewMatrix = nullptr;
}
void GrStrokeHardwareTessellator::moveTo(SkPoint pt) {
fCurrentPoint = fCurrContourStartPoint = pt;
fHasLastControlPoint = false;
SkDEBUGCODE(fHasCurrentPoint = true;)
}
void GrStrokeHardwareTessellator::moveTo(SkPoint pt, SkPoint lastControlPoint) {
fCurrentPoint = fCurrContourStartPoint = pt;
fCurrContourFirstControlPoint = fLastControlPoint = lastControlPoint;
fHasLastControlPoint = true;
SkDEBUGCODE(fHasCurrentPoint = true;)
}
void GrStrokeHardwareTessellator::lineTo(SkPoint pt, JoinType prevJoinType) {
SkASSERT(fHasCurrentPoint);
// Zero-length paths need special treatment because they are spec'd to behave differently.
if (pt == fCurrentPoint) {
return;
}
if (fMaxCombinedSegments_withJoin < 1) {
// The stroke has extremely thick round joins and there aren't enough guaranteed segments to
// always combine a join with a line patch. Emit the join in its own separate patch.
this->joinTo(prevJoinType, pt);
prevJoinType = JoinType::kNone;
}
SkPoint asPatch[4] = {fCurrentPoint, fCurrentPoint, pt, pt};
this->emitPatch(prevJoinType, asPatch, pt);
}
void GrStrokeHardwareTessellator::conicTo(const SkPoint p[3], float w, JoinType prevJoinType,
int maxDepth) {
SkASSERT(fHasCurrentPoint);
SkASSERT(p[0] == fCurrentPoint);
// Zero-length paths need special treatment because they are spec'd to behave differently. If
// the control point is colocated on an endpoint then this might end up being the case. Fall
// back on a lineTo and let it make the final check.
if (p[1] == p[0] || p[1] == p[2] || w == 0) {
this->lineTo(p[2], prevJoinType);
return;
}
// Check for a cusp. A conic of any class can only have a cusp if it is a degenerate flat line
// with a 180 degree turnarund. To detect this, the beginning and ending tangents must be
// parallel (a.cross(b) == 0) and pointing in opposite directions (a.dot(b) < 0).
SkVector a = p[1] - p[0];
SkVector b = p[2] - p[1];
if ((a.cross(b) == 0 && a.dot(b) < 0)) {
SkConic conic(p, w);
SkPoint cusp = conic.evalAt(conic.findMidTangent());
this->lineTo(cusp, prevJoinType);
this->lineTo(p[2], JoinType::kBowtie);
return;
}
// Convert to a patch.
SkPoint asPatch[4];
if (w == 1) {
GrPathUtils::convertQuadToCubic(p, asPatch);
} else {
GrPathShader::WriteConicPatch(p, w, asPatch);
}
// Ensure our hardware supports enough tessellation segments to render the curve. This early out
// assumes a worst-case quadratic rotation of 180 degrees and a worst-case number of segments in
// the join.
//
// An informal survey of skottie animations and gms revealed that even with a bare minimum of 64
// tessellation segments, 99.9%+ of quadratics take this early out.
float numParametricSegments_pow4 =
GrWangsFormula::quadratic_pow4(fTolerances.fParametricIntolerance, p);
if (numParametricSegments_pow4 <= fMaxParametricSegments180_pow4_withJoin) {
this->emitPatch(prevJoinType, asPatch, p[2]);
return;
}
if (numParametricSegments_pow4 <= fMaxParametricSegments180_pow4 || maxDepth == 0) {
if (numParametricSegments_pow4 > fMaxParametricSegments180_pow4_withJoin) {
// There aren't enough guaranteed segments to include the join. Emit a standalone patch
// for the join.
this->joinTo(prevJoinType, asPatch);
prevJoinType = JoinType::kNone;
}
this->emitPatch(prevJoinType, asPatch, p[2]);
return;
}
// We still might have enough tessellation segments to render the curve. Check again with the
// actual rotation.
float numRadialSegments = SkMeasureQuadRotation(p) * fTolerances.fNumRadialSegmentsPerRadian;
numRadialSegments = std::max(std::ceil(numRadialSegments), 1.f);
float numParametricSegments = GrWangsFormula::root4(numParametricSegments_pow4);
numParametricSegments = std::max(std::ceil(numParametricSegments), 1.f);
float numCombinedSegments = num_combined_segments(numParametricSegments, numRadialSegments);
if (numCombinedSegments > fMaxTessellationSegments) {
// The hardware doesn't support enough segments for this curve. Chop and recurse.
if (maxDepth < 0) {
// Decide on an extremely conservative upper bound for when to quit chopping. This
// is solely to protect us from infinite recursion in instances where FP error
// prevents us from chopping at the correct midtangent.
maxDepth = sk_float_nextlog2(numParametricSegments) +
sk_float_nextlog2(numRadialSegments) + 1;
maxDepth = std::max(maxDepth, 1);
}
if (w == 1) {
SkPoint chops[5];
if (numParametricSegments >= numRadialSegments) {
SkChopQuadAtHalf(p, chops);
} else {
SkChopQuadAtMidTangent(p, chops);
}
this->conicTo(chops, 1, prevJoinType, maxDepth - 1);
this->conicTo(chops + 2, 1, JoinType::kBowtie, maxDepth - 1);
} else {
SkConic conic(p, w);
float chopT = (numParametricSegments >= numRadialSegments) ? .5f
: conic.findMidTangent();
SkConic chops[2];
if (conic.chopAt(chopT, chops)) {
this->conicTo(chops[0].fPts, chops[0].fW, prevJoinType, maxDepth - 1);
this->conicTo(chops[1].fPts, chops[1].fW, JoinType::kBowtie, maxDepth - 1);
}
}
return;
}
if (numCombinedSegments > fMaxCombinedSegments_withJoin) {
// There aren't enough guaranteed segments to include the join. Emit a standalone patch for
// the join.
this->joinTo(prevJoinType, asPatch);
prevJoinType = JoinType::kNone;
}
this->emitPatch(prevJoinType, asPatch, p[2]);
}
void GrStrokeHardwareTessellator::cubicTo(const SkPoint p[4], JoinType prevJoinType,
Convex180Status convex180Status, int maxDepth) {
SkASSERT(fHasCurrentPoint);
SkASSERT(p[0] == fCurrentPoint);
// The stroke tessellation shader assigns special meaning to p0==p1==p2 and p1==p2==p3. If this
// is the case then we need to rewrite the cubic.
if (p[1] == p[2] && (p[1] == p[0] || p[1] == p[3])) {
this->lineTo(p[3], prevJoinType);
return;
}
// Ensure our hardware supports enough tessellation segments to render the curve. This early out
// assumes a worst-case cubic rotation of 360 degrees and a worst-case number of segments in the
// join.
//
// An informal survey of skottie animations revealed that with a bare minimum of 64 tessellation
// segments, 95% of cubics take this early out.
float numParametricSegments_pow4 =
GrWangsFormula::cubic_pow4(fTolerances.fParametricIntolerance, p);
if (numParametricSegments_pow4 <= fMaxParametricSegments360_pow4_withJoin) {
this->emitPatch(prevJoinType, p, p[3]);
return;
}
float maxParametricSegments_pow4 = (convex180Status == Convex180Status::kYes) ?
fMaxParametricSegments180_pow4 : fMaxParametricSegments360_pow4;
if (numParametricSegments_pow4 <= maxParametricSegments_pow4 || maxDepth == 0) {
float maxParametricSegments_pow4_withJoin = (convex180Status == Convex180Status::kYes) ?
fMaxParametricSegments180_pow4_withJoin : fMaxParametricSegments360_pow4_withJoin;
if (numParametricSegments_pow4 > maxParametricSegments_pow4_withJoin) {
// There aren't enough guaranteed segments to include the join. Emit a standalone patch
// for the join.
this->joinTo(prevJoinType, p);
prevJoinType = JoinType::kNone;
}
this->emitPatch(prevJoinType, p, p[3]);
return;
}
// Ensure the curve does not inflect or rotate >180 degrees before we start subdividing and
// measuring rotation.
SkPoint chops[10];
if (convex180Status == Convex180Status::kUnknown) {
float chopT[2];
bool areCusps = false;
int numChops = GrPathUtils::findCubicConvex180Chops(p, chopT, &areCusps);
if (numChops == 0) {
// Don't decrement maxDepth since we didn't actually chop the curve.
this->cubicTo(p, prevJoinType, Convex180Status::kYes);
} else if (numChops == 1) {
SkChopCubicAt(p, chops, chopT[0]);
if (areCusps) {
// When chopping on a perfect cusp, these 3 points will be equal.
chops[2] = chops[4] = chops[3];
}
this->cubicTo(chops, prevJoinType, Convex180Status::kYes, maxDepth - 1);
this->cubicTo(chops + 3, JoinType::kBowtie, Convex180Status::kYes, maxDepth - 1);
} else {
SkASSERT(numChops == 2);
SkChopCubicAt(p, chops, chopT[0], chopT[1]);
if (areCusps) {
this->lineTo(chops[3], prevJoinType);
this->lineTo(chops[6], JoinType::kBowtie);
this->lineTo(chops[9], JoinType::kBowtie);
} else {
this->cubicTo(chops, prevJoinType, Convex180Status::kYes, maxDepth - 1);
this->cubicTo(chops + 3, JoinType::kBowtie, Convex180Status::kYes, maxDepth - 1);
this->cubicTo(chops + 6, JoinType::kBowtie, Convex180Status::kYes, maxDepth - 1);
}
}
return;
}
// We still might have enough tessellation segments to render the curve. Check again with
// its actual rotation.
float numRadialSegments =
SkMeasureNonInflectCubicRotation(p) * fTolerances.fNumRadialSegmentsPerRadian;
numRadialSegments = std::max(std::ceil(numRadialSegments), 1.f);
float numParametricSegments = GrWangsFormula::root4(numParametricSegments_pow4);
numParametricSegments = std::max(std::ceil(numParametricSegments), 1.f);
float numCombinedSegments = num_combined_segments(numParametricSegments, numRadialSegments);
if (numCombinedSegments > fMaxTessellationSegments) {
// The hardware doesn't support enough segments for this curve. Chop and recurse.
if (maxDepth < 0) {
// Decide on an extremely conservative upper bound for when to quit chopping. This
// is solely to protect us from infinite recursion in instances where FP error
// prevents us from chopping at the correct midtangent.
maxDepth = sk_float_nextlog2(numParametricSegments) +
sk_float_nextlog2(numRadialSegments) + 1;
maxDepth = std::max(maxDepth, 1);
}
if (numParametricSegments >= numRadialSegments) {
SkChopCubicAtHalf(p, chops);
} else {
SkChopCubicAtMidTangent(p, chops);
}
this->cubicTo(chops, prevJoinType, Convex180Status::kYes, maxDepth - 1);
this->cubicTo(chops + 3, JoinType::kBowtie, Convex180Status::kYes, maxDepth - 1);
return;
}
if (numCombinedSegments > fMaxCombinedSegments_withJoin) {
// There aren't enough guaranteed segments to include the join. Emit a standalone patch for
// the join.
this->joinTo(prevJoinType, p);
prevJoinType = JoinType::kNone;
}
this->emitPatch(prevJoinType, p, p[3]);
}
void GrStrokeHardwareTessellator::joinTo(JoinType joinType, SkPoint nextControlPoint,
int maxDepth) {
SkASSERT(fHasCurrentPoint);
if (!fHasLastControlPoint) {
// The first stroke doesn't have a previous join.
return;
}
if (!fSoloRoundJoinAlwaysFitsInPatch && maxDepth != 0 &&
(fStroke.getJoin() == SkPaint::kRound_Join || joinType == JoinType::kBowtie)) {
SkVector tan0 = fCurrentPoint - fLastControlPoint;
SkVector tan1 = nextControlPoint - fCurrentPoint;
float rotation = SkMeasureAngleBetweenVectors(tan0, tan1);
float numRadialSegments = rotation * fTolerances.fNumRadialSegmentsPerRadian;
if (numRadialSegments > fMaxTessellationSegments) {
// This is a round join that requires more segments than the tessellator supports.
// Split it and recurse.
if (maxDepth < 0) {
// Decide on an upper bound for when to quit chopping. This is solely to protect
// us from infinite recursion due to FP precision issues.
maxDepth = sk_float_nextlog2(numRadialSegments / fMaxTessellationSegments);
maxDepth = std::max(maxDepth, 1);
}
// Find the bisector so we can split the join in half.
SkPoint bisector = SkFindBisector(tan0, tan1);
// c0 will be the "next" control point for the first join half, and c1 will be the
// "previous" control point for the second join half.
SkPoint c0, c1;
// FIXME: This hack ensures "c0 - fCurrentPoint" gives the exact same ieee fp32 vector
// as "-(c1 - fCurrentPoint)". If our current strategy of join chopping sticks, we may
// want to think of a cleaner method to avoid T-junctions when we chop joins.
int maxAttempts = 10;
do {
bisector = (fCurrentPoint + bisector) - (fCurrentPoint - bisector);
c0 = fCurrentPoint + bisector;
c1 = fCurrentPoint - bisector;
} while (c0 - fCurrentPoint != -(c1 - fCurrentPoint) && --maxAttempts);
this->joinTo(joinType, c0, maxDepth - 1); // First join half.
fLastControlPoint = c1;
this->joinTo(joinType, nextControlPoint, maxDepth - 1); // Second join half.
return;
}
}
this->emitJoinPatch(joinType, nextControlPoint);
}
void GrStrokeHardwareTessellator::close() {
SkASSERT(fHasCurrentPoint);
if (!fHasLastControlPoint) {
// Draw caps instead of closing if the subpath is zero length:
//
// "Any zero length subpath ... shall be stroked if the 'stroke-linecap' property has a
// value of round or square producing respectively a circle or a square."
//
// (https://www.w3.org/TR/SVG11/painting.html#StrokeProperties)
//
this->cap();
return;
}
// Draw a line back to the beginning. (This will be discarded if
// fCurrentPoint == fCurrContourStartPoint.)
this->lineTo(fCurrContourStartPoint);
this->joinTo(JoinType::kFromStroke, fCurrContourFirstControlPoint);
fHasLastControlPoint = false;
SkDEBUGCODE(fHasCurrentPoint = false;)
}
void GrStrokeHardwareTessellator::cap() {
SkASSERT(fViewMatrix);
SkASSERT(fHasCurrentPoint);
if (!fHasLastControlPoint) {
// We don't have any control points to orient the caps. In this case, square and round caps
// are specified to be drawn as an axis-aligned square or circle respectively. Assign
// default control points that achieve this.
SkVector outset;
if (!fStroke.isHairlineStyle()) {
outset = {1, 0};
} else {
// If the stroke is hairline, orient the square on the post-transform x-axis instead.
// We don't need to worry about the vector length since it will be normalized later.
// Since the matrix cannot have perspective, the below is equivalent to:
//
// outset = inverse(|a b|) * |1| * arbitrary_scale
// |c d| |0|
//
// == 1/det * | d -b| * |1| * arbitrary_scale
// |-c a| |0|
//
// == 1/det * | d| * arbitrary_scale
// |-c|
//
// == | d|
// |-c|
//
SkASSERT(!fViewMatrix->hasPerspective());
float c=fViewMatrix->getSkewY(), d=fViewMatrix->getScaleY();
outset = {d, -c};
}
fCurrContourFirstControlPoint = fCurrContourStartPoint - outset;
fLastControlPoint = fCurrContourStartPoint + outset;
fCurrentPoint = fCurrContourStartPoint;
fHasLastControlPoint = true;
}
switch (fStroke.getCap()) {
case SkPaint::kButt_Cap:
break;
case SkPaint::kRound_Cap: {
// A round cap is the same thing as a 180-degree round join.
// If our join type isn't round we can alternatively use a bowtie.
JoinType roundCapJoinType = (fStroke.getJoin() == SkPaint::kRound_Join)
? JoinType::kFromStroke : JoinType::kBowtie;
this->joinTo(roundCapJoinType, fLastControlPoint);
this->moveTo(fCurrContourStartPoint, fCurrContourFirstControlPoint);
this->joinTo(roundCapJoinType, fCurrContourFirstControlPoint);
break;
}
case SkPaint::kSquare_Cap: {
// A square cap is the same as appending lineTos.
SkVector lastTangent = fCurrentPoint - fLastControlPoint;
if (!fStroke.isHairlineStyle()) {
// Extend the cap by 1/2 stroke width.
lastTangent *= (.5f * fStroke.getWidth()) / lastTangent.length();
} else {
// Extend the cap by what will be 1/2 pixel after transformation.
lastTangent *=
.5f / fViewMatrix->mapVector(lastTangent.fX, lastTangent.fY).length();
}
this->lineTo(fCurrentPoint + lastTangent);
this->moveTo(fCurrContourStartPoint, fCurrContourFirstControlPoint);
SkVector firstTangent = fCurrContourFirstControlPoint - fCurrContourStartPoint;
if (!fStroke.isHairlineStyle()) {
// Set the the cap back by 1/2 stroke width.
firstTangent *= (-.5f * fStroke.getWidth()) / firstTangent.length();
} else {
// Set the cap back by what will be 1/2 pixel after transformation.
firstTangent *=
-.5f / fViewMatrix->mapVector(firstTangent.fX, firstTangent.fY).length();
}
this->lineTo(fCurrContourStartPoint + firstTangent);
break;
}
}
fHasLastControlPoint = false;
SkDEBUGCODE(fHasCurrentPoint = false;)
}
void GrStrokeHardwareTessellator::emitPatch(JoinType prevJoinType, const SkPoint p[4],
SkPoint endPt) {
SkPoint c1 = (p[1] == p[0]) ? p[2] : p[1];
SkPoint c2 = (p[2] == endPt) ? p[1] : p[2];
if (prevJoinType == JoinType::kBowtie) {
// Bowties need to go in their own patch if they will have >1 segment.
// TODO: Investigate if an optimization like "x < fCosRadiansPerSegment" would be worth it.
float rotation = SkMeasureAngleBetweenVectors(p[0] - fLastControlPoint, c1 - p[0]);
if (rotation * fTolerances.fNumRadialSegmentsPerRadian > 1) {
this->joinTo(prevJoinType, c1);
prevJoinType = JoinType::kNone;
}
}
if (!fHasLastControlPoint) {
// The first stroke doesn't have a previous join (yet). If the current contour ends up
// closing itself, we will add that join as its own patch.
// TODO: Consider deferring the first stroke until we know whether the contour will close.
// This will allow us to use the closing join as the first patch's previous join.
prevJoinType = JoinType::kNone;
fCurrContourFirstControlPoint = c1;
fHasLastControlPoint = true;
} else {
// By using JoinType::kNone, the caller promises to have written out their own join that
// seams exactly with this curve.
SkASSERT((prevJoinType != JoinType::kNone) || fLastControlPoint == c1);
}
if (Patch* patch = this->reservePatch()) {
// Disable the join section of this patch if prevJoinType is kNone by setting the previous
// control point equal to p0.
patch->fPrevControlPoint = (prevJoinType == JoinType::kNone) ? p[0] : fLastControlPoint;
patch->fPts = {p[0], p[1], p[2], p[3]};
}
fLastControlPoint = c2;
fCurrentPoint = endPt;
}
void GrStrokeHardwareTessellator::emitJoinPatch(JoinType joinType, SkPoint nextControlPoint) {
// We should never write out joins before the first curve.
SkASSERT(fHasLastControlPoint);
SkASSERT(fHasCurrentPoint);
if (Patch* joinPatch = this->reservePatch()) {
joinPatch->fPrevControlPoint = fLastControlPoint;
joinPatch->fPts[0] = fCurrentPoint;
if (joinType == JoinType::kFromStroke) {
// [p0, p3, p3, p3] is a reserved pattern that means this patch is a join only (no cubic
// sections in the patch).
joinPatch->fPts[1] = joinPatch->fPts[2] = nextControlPoint;
} else {
SkASSERT(joinType == JoinType::kBowtie);
// [p0, p0, p0, p3] is a reserved pattern that means this patch is a bowtie.
joinPatch->fPts[1] = joinPatch->fPts[2] = fCurrentPoint;
}
joinPatch->fPts[3] = nextControlPoint;
}
fLastControlPoint = nextControlPoint;
}
Patch* GrStrokeHardwareTessellator::reservePatch() {
if (fPatchChunks.back().fPatchCount >= fCurrChunkPatchCapacity) {
// The current chunk is full. Time to allocate a new one. (And no need to put back vertices;
// the buffer is full.)
this->allocPatchChunkAtLeast(fCurrChunkMinPatchAllocCount * 2);
}
if (!fCurrChunkPatchData) {
SkDebugf("WARNING: Failed to allocate vertex buffer for tessellated stroke.");
return nullptr;
}
SkASSERT(fPatchChunks.back().fPatchCount <= fCurrChunkPatchCapacity);
Patch* patch = fCurrChunkPatchData + fPatchChunks.back().fPatchCount;
++fPatchChunks.back().fPatchCount;
return patch;
}
void GrStrokeHardwareTessellator::allocPatchChunkAtLeast(int minPatchAllocCount) {
SkASSERT(fTarget);
PatchChunk* chunk = &fPatchChunks.push_back();
fCurrChunkPatchData = (Patch*)fTarget->makeVertexSpaceAtLeast(sizeof(Patch), minPatchAllocCount,
minPatchAllocCount,
&chunk->fPatchBuffer,
&chunk->fBasePatch,
&fCurrChunkPatchCapacity);
fCurrChunkMinPatchAllocCount = minPatchAllocCount;
}
void GrStrokeHardwareTessellator::draw(GrOpFlushState* flushState) const {
for (const auto& chunk : fPatchChunks) {
if (chunk.fPatchBuffer) {
flushState->bindBuffers(nullptr, nullptr, std::move(chunk.fPatchBuffer));
flushState->draw(chunk.fPatchCount, chunk.fBasePatch);
}
}
}