blob: 3a7fcfb1d296d730491792a707c0f043c3e5be27 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTextureCompressor.h"
#include "SkBitmap.h"
#include "SkData.h"
#include "SkEndian.h"
////////////////////////////////////////////////////////////////////////////////
//
// Utility Functions
//
////////////////////////////////////////////////////////////////////////////////
// Absolute difference between two values. More correct than SkTAbs(a - b)
// because it works on unsigned values.
template <typename T> inline T abs_diff(const T &a, const T &b) {
return (a > b) ? (a - b) : (b - a);
}
////////////////////////////////////////////////////////////////////////////////
//
// LATC compressor
//
////////////////////////////////////////////////////////////////////////////////
// LATC compressed texels down into square 4x4 blocks
static const int kPaletteSize = 8;
static const int kLATCBlockSize = 4;
static const int kPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
// Generates an LATC palette. LATC constructs
// a palette of eight colors from LUM0 and LUM1 using the algorithm:
//
// LUM0, if lum0 > lum1 and code(x,y) == 0
// LUM1, if lum0 > lum1 and code(x,y) == 1
// (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2
// (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3
// (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4
// (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5
// (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6
// ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7
//
// LUM0, if lum0 <= lum1 and code(x,y) == 0
// LUM1, if lum0 <= lum1 and code(x,y) == 1
// (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2
// (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3
// (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4
// ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5
// 0, if lum0 <= lum1 and code(x,y) == 6
// 255, if lum0 <= lum1 and code(x,y) == 7
static void generate_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
palette[0] = lum0;
palette[1] = lum1;
if (lum0 > lum1) {
for (int i = 1; i < 7; i++) {
palette[i+1] = ((7-i)*lum0 + i*lum1) / 7;
}
} else {
for (int i = 1; i < 5; i++) {
palette[i+1] = ((5-i)*lum0 + i*lum1) / 5;
}
palette[6] = 0;
palette[7] = 255;
}
}
static bool is_extremal(uint8_t pixel) {
return 0 == pixel || 255 == pixel;
}
// Compress a block by using the bounding box of the pixels. It is assumed that
// there are no extremal pixels in this block otherwise we would have used
// compressBlockBBIgnoreExtremal.
static uint64_t compress_block_bb(const uint8_t pixels[]) {
uint8_t minVal = 255;
uint8_t maxVal = 0;
for (int i = 0; i < kPixelsPerBlock; ++i) {
minVal = SkTMin(pixels[i], minVal);
maxVal = SkTMax(pixels[i], maxVal);
}
SkASSERT(!is_extremal(minVal));
SkASSERT(!is_extremal(maxVal));
uint8_t palette[kPaletteSize];
generate_palette(palette, maxVal, minVal);
uint64_t indices = 0;
for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
// Find the best palette index
uint8_t bestError = abs_diff(pixels[i], palette[0]);
uint8_t idx = 0;
for (int j = 1; j < kPaletteSize; ++j) {
uint8_t error = abs_diff(pixels[i], palette[j]);
if (error < bestError) {
bestError = error;
idx = j;
}
}
indices <<= 3;
indices |= idx;
}
return
SkEndian_SwapLE64(
static_cast<uint64_t>(maxVal) |
(static_cast<uint64_t>(minVal) << 8) |
(indices << 16));
}
// Compress a block by using the bounding box of the pixels without taking into
// account the extremal values. The generated palette will contain extremal values
// and fewer points along the line segment to interpolate.
static uint64_t compress_block_bb_ignore_extremal(const uint8_t pixels[]) {
uint8_t minVal = 255;
uint8_t maxVal = 0;
for (int i = 0; i < kPixelsPerBlock; ++i) {
if (is_extremal(pixels[i])) {
continue;
}
minVal = SkTMin(pixels[i], minVal);
maxVal = SkTMax(pixels[i], maxVal);
}
SkASSERT(!is_extremal(minVal));
SkASSERT(!is_extremal(maxVal));
uint8_t palette[kPaletteSize];
generate_palette(palette, minVal, maxVal);
uint64_t indices = 0;
for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
// Find the best palette index
uint8_t idx = 0;
if (is_extremal(pixels[i])) {
if (0xFF == pixels[i]) {
idx = 7;
} else if (0 == pixels[i]) {
idx = 6;
} else {
SkFAIL("Pixel is extremal but not really?!");
}
} else {
uint8_t bestError = abs_diff(pixels[i], palette[0]);
for (int j = 1; j < kPaletteSize - 2; ++j) {
uint8_t error = abs_diff(pixels[i], palette[j]);
if (error < bestError) {
bestError = error;
idx = j;
}
}
}
indices <<= 3;
indices |= idx;
}
return
SkEndian_SwapLE64(
static_cast<uint64_t>(minVal) |
(static_cast<uint64_t>(maxVal) << 8) |
(indices << 16));
}
// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two
// values LUM0 and LUM1, and an index into the generated palette. Details of how
// the palette is generated can be found in the comments of generatePalette above.
//
// We choose which palette type to use based on whether or not 'pixels' contains
// any extremal values (0 or 255). If there are extremal values, then we use the
// palette that has the extremal values built in. Otherwise, we use the full bounding
// box.
static uint64_t compress_block(const uint8_t pixels[]) {
// Collect unique pixels
int nUniquePixels = 0;
uint8_t uniquePixels[kPixelsPerBlock];
for (int i = 0; i < kPixelsPerBlock; ++i) {
bool foundPixel = false;
for (int j = 0; j < nUniquePixels; ++j) {
foundPixel = foundPixel || uniquePixels[j] == pixels[i];
}
if (!foundPixel) {
uniquePixels[nUniquePixels] = pixels[i];
++nUniquePixels;
}
}
// If there's only one unique pixel, then our compression is easy.
if (1 == nUniquePixels) {
return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8));
// Similarly, if there are only two unique pixels, then our compression is
// easy again: place the pixels in the block header, and assign the indices
// with one or zero depending on which pixel they belong to.
} else if (2 == nUniquePixels) {
uint64_t outBlock = 0;
for (int i = kPixelsPerBlock - 1; i >= 0; --i) {
int idx = 0;
if (pixels[i] == uniquePixels[1]) {
idx = 1;
}
outBlock <<= 3;
outBlock |= idx;
}
outBlock <<= 16;
outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8));
return SkEndian_SwapLE64(outBlock);
}
// Count non-maximal pixel values
int nonExtremalPixels = 0;
for (int i = 0; i < nUniquePixels; ++i) {
if (!is_extremal(uniquePixels[i])) {
++nonExtremalPixels;
}
}
// If all the pixels are nonmaximal then compute the palette using
// the bounding box of all the pixels.
if (nonExtremalPixels == nUniquePixels) {
// This is really just for correctness, in all of my tests we
// never take this step. We don't lose too much perf here because
// most of the processing in this function is worth it for the
// 1 == nUniquePixels optimization.
return compress_block_bb(pixels);
} else {
return compress_block_bb_ignore_extremal(pixels);
}
}
static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
// Make sure that our data is well-formed enough to be
// considered for LATC compression
if (0 == width || 0 == height ||
(width % kLATCBlockSize) != 0 || (height % kLATCBlockSize) != 0) {
return false;
}
int blocksX = width / kLATCBlockSize;
int blocksY = height / kLATCBlockSize;
uint8_t block[16];
uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
for (int y = 0; y < blocksY; ++y) {
for (int x = 0; x < blocksX; ++x) {
// Load block
static const int kBS = kLATCBlockSize;
for (int k = 0; k < kBS; ++k) {
memcpy(block + k*kBS, src + k*rowBytes + (kBS * x), kBS);
}
// Compress it
*encPtr = compress_block(block);
++encPtr;
}
src += kLATCBlockSize * rowBytes;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
namespace SkTextureCompressor {
static size_t get_compressed_data_size(Format fmt, int width, int height) {
switch (fmt) {
case kLATC_Format:
{
// The LATC format is 64 bits per 4x4 block.
static const int kLATCEncodedBlockSize = 8;
int blocksX = width / kLATCBlockSize;
int blocksY = height / kLATCBlockSize;
return blocksX * blocksY * kLATCEncodedBlockSize;
}
default:
SkFAIL("Unknown compressed format!");
return 0;
}
}
typedef bool (*CompressBitmapProc)(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes);
bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcColorType,
int width, int height, int rowBytes, Format format) {
CompressBitmapProc kProcMap[kFormatCnt][kLastEnum_SkColorType + 1];
memset(kProcMap, 0, sizeof(kProcMap));
kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc;
CompressBitmapProc proc = kProcMap[format][srcColorType];
if (NULL != proc) {
return proc(dst, src, width, height, rowBytes);
}
return false;
}
SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) {
SkAutoLockPixels alp(bitmap);
int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bitmap.height());
const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels());
uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize));
if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bitmap.height(),
bitmap.rowBytes(), format)) {
return SkData::NewFromMalloc(dst, compressedDataSize);
}
sk_free(dst);
return NULL;
}
} // namespace SkTextureCompressor