blob: d01f7a8135f5d008246633e4391eb48df9b6cb9a [file] [log] [blame]
/*
* Copyright (c) 2006-2020 Douglas Gilbert.
* All rights reserved.
* Use of this source code is governed by a BSD-style
* license that can be found in the BSD_LICENSE file.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
/* sg_pt_win32 version 1.31 20200723 */
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <ctype.h>
#include <fcntl.h>
#define __STDC_FORMAT_MACROS 1
#include <inttypes.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sg_lib.h"
#include "sg_unaligned.h"
#include "sg_pt.h"
#include "sg_pt_win32.h"
#include "sg_pt_nvme.h"
#include "sg_pr2serr.h"
/* Comment the following line out to use the pre-W10 NVMe pass-through */
#define W10_NVME_NON_PASSTHRU 1
#ifndef O_EXCL
// #define O_EXCL 0x80 // cygwin ??
// #define O_EXCL 0x80 // Linux
#define O_EXCL 0x400 // mingw
#warning "O_EXCL not defined"
#endif
#define SCSI_INQUIRY_OPC 0x12
#define SCSI_REPORT_LUNS_OPC 0xa0
#define SCSI_TEST_UNIT_READY_OPC 0x0
#define SCSI_REQUEST_SENSE_OPC 0x3
#define SCSI_SEND_DIAGNOSTIC_OPC 0x1d
#define SCSI_RECEIVE_DIAGNOSTIC_OPC 0x1c
#define SCSI_MAINT_IN_OPC 0xa3
#define SCSI_REP_SUP_OPCS_OPC 0xc
#define SCSI_REP_SUP_TMFS_OPC 0xd
#define SCSI_MODE_SENSE10_OPC 0x5a
#define SCSI_MODE_SELECT10_OPC 0x55
/* Additional Sense Code (ASC) */
#define NO_ADDITIONAL_SENSE 0x0
#define LOGICAL_UNIT_NOT_READY 0x4
#define LOGICAL_UNIT_COMMUNICATION_FAILURE 0x8
#define UNRECOVERED_READ_ERR 0x11
#define PARAMETER_LIST_LENGTH_ERR 0x1a
#define INVALID_OPCODE 0x20
#define LBA_OUT_OF_RANGE 0x21
#define INVALID_FIELD_IN_CDB 0x24
#define INVALID_FIELD_IN_PARAM_LIST 0x26
#define UA_RESET_ASC 0x29
#define UA_CHANGED_ASC 0x2a
#define TARGET_CHANGED_ASC 0x3f
#define LUNS_CHANGED_ASCQ 0x0e
#define INSUFF_RES_ASC 0x55
#define INSUFF_RES_ASCQ 0x3
#define LOW_POWER_COND_ON_ASC 0x5e /* ASCQ=0 */
#define POWER_ON_RESET_ASCQ 0x0
#define BUS_RESET_ASCQ 0x2 /* scsi bus reset occurred */
#define MODE_CHANGED_ASCQ 0x1 /* mode parameters changed */
#define CAPACITY_CHANGED_ASCQ 0x9
#define SAVING_PARAMS_UNSUP 0x39
#define TRANSPORT_PROBLEM 0x4b
#define THRESHOLD_EXCEEDED 0x5d
#define LOW_POWER_COND_ON 0x5e
#define MISCOMPARE_VERIFY_ASC 0x1d
#define MICROCODE_CHANGED_ASCQ 0x1 /* with TARGET_CHANGED_ASC */
#define MICROCODE_CHANGED_WO_RESET_ASCQ 0x16
/* Use the Microsoft SCSI Pass Through (SPT) interface. It has two
* variants: "SPT" where data is double buffered; and "SPTD" where data
* pointers to the user space are passed to the OS. Only Windows
* 2000 and later (i.e. not 95,98 or ME).
* There is no ASPI interface which relies on a dll from adaptec.
* This code uses cygwin facilities and is built in a cygwin
* shell. It can be run in a normal DOS shell if the cygwin1.dll
* file is put in an appropriate place.
* This code can build in a MinGW environment.
*
* N.B. MSDN says that the "SPT" interface (i.e. double buffered)
* should be used for small amounts of data (it says "< 16 KB").
* The direct variant (i.e. IOCTL_SCSI_PASS_THROUGH_DIRECT) should
* be used for larger amounts of data but the buffer needs to be
* "cache aligned". Is that 16 byte alignment or greater?
*
* This code will default to indirect (i.e. double buffered) access
* unless the WIN32_SPT_DIRECT preprocessor constant is defined in
* config.h . In version 1.12 runtime selection of direct and indirect
* access was added; the default is still determined by the
* WIN32_SPT_DIRECT preprocessor constant.
*/
#define DEF_TIMEOUT 60 /* 60 seconds */
#define MAX_OPEN_SIMULT 8
#define WIN32_FDOFFSET 32
union STORAGE_DEVICE_DESCRIPTOR_DATA {
STORAGE_DEVICE_DESCRIPTOR desc;
char raw[256];
};
union STORAGE_DEVICE_UID_DATA {
STORAGE_DEVICE_UNIQUE_IDENTIFIER desc;
char raw[1060];
};
struct sg_pt_handle {
bool in_use;
bool not_claimed;
bool checked_handle;
bool bus_type_failed;
bool is_nvme;
bool got_physical_drive;
HANDLE fh;
char adapter[32]; /* for example: '\\.\scsi3' */
int bus; /* a.k.a. PathId in MS docs */
int target;
int lun;
int scsi_pdt; /* Peripheral Device Type, -1 if not known */
// uint32_t nvme_nsid; /* how do we find this given file handle ?? */
int verbose; /* tunnel verbose through to scsi_pt_close_device */
char dname[20];
struct sg_sntl_dev_state_t dev_stat; // owner
};
/* Start zeroed but need to zeroed before use because could be re-use */
static struct sg_pt_handle handle_arr[MAX_OPEN_SIMULT];
struct sg_pt_win32_scsi {
bool is_nvme;
bool nvme_direct; /* false: our SNTL; true: received NVMe command */
bool mdxfer_out; /* direction of metadata xfer, true->data-out */
bool have_nvme_cmd;
bool is_read;
int sense_len;
int scsi_status;
int resid;
int sense_resid;
int in_err;
int os_err; /* pseudo unix error */
int transport_err; /* windows error number */
int dev_fd; /* -1 for no "file descriptor" given */
uint32_t nvme_nsid; /* 1 to 0xfffffffe are possibly valid, 0
* implies dev_fd is not a NVMe device
* (is_nvme=false) or has no storage (e.g.
* enclosure rather than disk) */
uint32_t nvme_result; /* DW0 from completion queue */
uint32_t nvme_status; /* SCT|SC: DW3 27:17 from completion queue,
* note: the DNR+More bit are not there.
* The whole 16 byte completion q entry is
* sent back as sense data */
uint32_t dxfer_len;
uint32_t mdxfer_len;
uint8_t * dxferp;
uint8_t * mdxferp; /* NVMe has metadata buffer */
uint8_t * sensep;
uint8_t * nvme_id_ctlp;
uint8_t * free_nvme_id_ctlp;
struct sg_sntl_dev_state_t * dev_statp; /* points to handle's dev_stat */
uint8_t nvme_cmd[64];
union {
SCSI_PASS_THROUGH_DIRECT_WITH_BUFFER swb_d;
/* Last entry in structure so data buffer can be extended */
SCSI_PASS_THROUGH_WITH_BUFFERS swb_i;
};
};
/* embed pointer so can change on fly if (non-direct) data buffer
* is not big enough */
struct sg_pt_base {
struct sg_pt_win32_scsi * implp;
};
#ifdef WIN32_SPT_DIRECT
static int spt_direct = 1;
#else
static int spt_direct = 0;
#endif
static int nvme_pt(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
int time_secs, int vb);
/* Request SPT direct interface when state_direct is 1, state_direct set
* to 0 for the SPT indirect interface. */
void
scsi_pt_win32_direct(int state_direct)
{
spt_direct = state_direct;
}
/* Returns current SPT interface state, 1 for direct, 0 for indirect */
int
scsi_pt_win32_spt_state(void)
{
return spt_direct;
}
static const char *
bus_type_str(int bt)
{
switch (bt)
{
case BusTypeUnknown:
return "Unknown";
case BusTypeScsi:
return "Scsi";
case BusTypeAtapi:
return "Atapi";
case BusTypeAta:
return "Ata";
case BusType1394:
return "1394";
case BusTypeSsa:
return "Ssa";
case BusTypeFibre:
return "Fibre";
case BusTypeUsb:
return "Usb";
case BusTypeRAID:
return "RAID";
case BusTypeiScsi:
return "iScsi";
case BusTypeSas:
return "Sas";
case BusTypeSata:
return "Sata";
case BusTypeSd:
return "Sd";
case BusTypeMmc:
return "Mmc";
case BusTypeVirtual:
return "Virt";
case BusTypeFileBackedVirtual:
return "FBVir";
#ifdef BusTypeSpaces
case BusTypeSpaces:
#else
case 0x10:
#endif
return "Spaces";
#ifdef BusTypeNvme
case BusTypeNvme:
#else
case 0x11:
#endif
return "NVMe";
#ifdef BusTypeSCM
case BusTypeSCM:
#else
case 0x12:
#endif
return "SCM";
#ifdef BusTypeUfs
case BusTypeUfs:
#else
case 0x13:
#endif
return "Ufs";
case 0x14:
return "Max";
case 0x7f:
return "Max Reserved";
default:
return "_unknown";
}
}
static char *
get_err_str(DWORD err, int max_b_len, char * b)
{
LPVOID lpMsgBuf;
int k, num, ch;
memset(b, 0, max_b_len);
FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
err,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR) &lpMsgBuf,
0, NULL );
num = lstrlen((LPCTSTR)lpMsgBuf);
if (num < 1)
return b;
num = (num < max_b_len) ? num : (max_b_len - 1);
for (k = 0; k < num; ++k) {
ch = *((LPCTSTR)lpMsgBuf + k);
if ((ch >= 0x0) && (ch < 0x7f))
b[k] = ch & 0x7f;
else
b[k] = '?';
}
return b;
}
/* Returns pointer to sg_pt_handle object given Unix like device_fd. If
* device_fd is invalid or not open returns NULL. If psp is non-NULL and
* NULL is returned then ENODEV is placed in psp->os_err. */
static struct sg_pt_handle *
get_open_pt_handle(struct sg_pt_win32_scsi * psp, int device_fd, bool vbb)
{
int index = device_fd - WIN32_FDOFFSET;
struct sg_pt_handle * shp;
if ((index < 0) || (index >= WIN32_FDOFFSET)) {
if (vbb)
pr2ws("Bad file descriptor\n");
if (psp)
psp->os_err = EBADF;
return NULL;
}
shp = handle_arr + index;
if (! shp->in_use) {
if (vbb)
pr2ws("File descriptor closed??\n");
if (psp)
psp->os_err = ENODEV;
return NULL;
}
return shp;
}
/* Returns >= 0 if successful. If error in Unix returns negated errno. */
int
scsi_pt_open_device(const char * device_name, bool read_only, int vb)
{
int oflags = 0 /* O_NONBLOCK*/ ;
oflags |= (read_only ? 0 : 0); /* was ... ? O_RDONLY : O_RDWR) */
return scsi_pt_open_flags(device_name, oflags, vb);
}
/*
* Similar to scsi_pt_open_device() but takes Unix style open flags OR-ed
* together. The 'flags' argument is ignored in Windows.
* Returns >= 0 if successful, otherwise returns negated errno.
* Optionally accept leading "\\.\". If given something of the form
* "SCSI<num>:<bus>,<target>,<lun>" where the values in angle brackets
* are integers, then will attempt to open "\\.\SCSI<num>:" and save the
* other three values for the DeviceIoControl call. The trailing ".<lun>"
* is optionally and if not given 0 is assumed. Since "PhysicalDrive"
* is a lot of keystrokes, "PD" is accepted and converted to the longer
* form.
*/
int
scsi_pt_open_flags(const char * device_name, int flags, int vb)
{
bool got_scsi_name = false;
int len, k, adapter_num, bus, target, lun, off, index, num, pd_num;
int share_mode;
struct sg_pt_handle * shp;
char buff[8];
share_mode = (O_EXCL & flags) ? 0 : (FILE_SHARE_READ | FILE_SHARE_WRITE);
/* lock */
for (k = 0; k < MAX_OPEN_SIMULT; k++)
if (! handle_arr[k].in_use)
break;
if (k == MAX_OPEN_SIMULT) {
if (vb)
pr2ws("too many open handles (%d)\n", MAX_OPEN_SIMULT);
return -EMFILE;
} else {
/* clear any previous contents */
memset(handle_arr + k, 0, sizeof(struct sg_pt_handle));
handle_arr[k].in_use = true;
}
/* unlock */
index = k;
shp = handle_arr + index;
#if (HAVE_NVME && (! IGNORE_NVME))
sntl_init_dev_stat(&shp->dev_stat);
#endif
adapter_num = 0;
bus = 0; /* also known as 'PathId' in MS docs */
target = 0;
lun = 0;
len = (int)strlen(device_name);
k = (int)sizeof(shp->dname);
if (len < k)
strcpy(shp->dname, device_name);
else if (len == k)
memcpy(shp->dname, device_name, k - 1);
else /* trim on left */
memcpy(shp->dname, device_name + (len - k), k - 1);
shp->dname[k - 1] = '\0';
if ((len > 4) && (0 == strncmp("\\\\.\\", device_name, 4)))
off = 4;
else
off = 0;
if (len > (off + 2)) {
buff[0] = toupper((int)device_name[off + 0]);
buff[1] = toupper((int)device_name[off + 1]);
if (0 == strncmp("PD", buff, 2)) {
num = sscanf(device_name + off + 2, "%d", &pd_num);
if (1 == num)
shp->got_physical_drive = true;
}
if (! shp->got_physical_drive) {
buff[2] = toupper((int)device_name[off + 2]);
buff[3] = toupper((int)device_name[off + 3]);
if (0 == strncmp("SCSI", buff, 4)) {
num = sscanf(device_name + off + 4, "%d:%d,%d,%d",
&adapter_num, &bus, &target, &lun);
if (num < 3) {
if (vb)
pr2ws("expected format like: "
"'SCSI<port>:<bus>,<target>[,<lun>]'\n");
shp->in_use = false;
return -EINVAL;
}
got_scsi_name = true;
}
}
}
shp->bus = bus;
shp->target = target;
shp->lun = lun;
shp->scsi_pdt = -1;
shp->verbose = vb;
memset(shp->adapter, 0, sizeof(shp->adapter));
strncpy(shp->adapter, "\\\\.\\", 4);
if (shp->got_physical_drive)
snprintf(shp->adapter + 4, sizeof(shp->adapter) - 5,
"PhysicalDrive%d", pd_num);
else if (got_scsi_name)
snprintf(shp->adapter + 4, sizeof(shp->adapter) - 5, "SCSI%d:",
adapter_num);
else
snprintf(shp->adapter + 4, sizeof(shp->adapter) - 5, "%s",
device_name + off);
if (vb > 4)
pr2ws("%s: CreateFile('%s'), bus=%d, target=%d, lun=%d\n", __func__,
shp->adapter, bus, target, lun);
#if 1
shp->fh = CreateFile(shp->adapter, GENERIC_READ | GENERIC_WRITE,
share_mode, NULL, OPEN_EXISTING, 0, NULL);
#endif
#if 0
shp->fh = CreateFileA(shp->adapter, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE,
(SECURITY_ATTRIBUTES *)0, OPEN_EXISTING, 0, 0);
// No GENERIC_READ/WRITE access required, works without admin rights (W10)
shp->fh = CreateFileA(shp->adapter, 0, FILE_SHARE_READ | FILE_SHARE_WRITE,
(SECURITY_ATTRIBUTES *)0, OPEN_EXISTING, 0, (HANDLE)0);
#endif
if (shp->fh == INVALID_HANDLE_VALUE) {
if (vb) {
uint32_t err = (uint32_t)GetLastError();
char b[128];
pr2ws("%s: CreateFile error: %s [%u]\n", __func__,
get_err_str(err, sizeof(b), b), err);
}
shp->in_use = false;
return -ENODEV;
}
return index + WIN32_FDOFFSET;
}
/* Returns 0 if successful. If device_id seems wild returns -ENODEV,
* other errors return 0. If CloseHandle() fails and verbose > 0 then
* outputs warning with value from GetLastError(). The verbose value
* defaults to zero and is potentially set from the most recent call
* to scsi_pt_open_device() or do_scsi_pt(). */
int
scsi_pt_close_device(int device_fd)
{
struct sg_pt_handle * shp = get_open_pt_handle(NULL, device_fd, false);
if (NULL == shp)
return -ENODEV;
if ((! CloseHandle(shp->fh)) && shp->verbose)
pr2ws("Windows CloseHandle error=%u\n", (unsigned int)GetLastError());
shp->bus = 0;
shp->target = 0;
shp->lun = 0;
memset(shp->adapter, 0, sizeof(shp->adapter));
shp->in_use = false;
shp->verbose = 0;
shp->dname[0] = '\0';
return 0;
}
/* Attempt to return device's SCSI peripheral device type (pdt), a number
* between 0 (disks) and 31 (not given) by calling IOCTL_SCSI_GET_INQUIRY_DATA
* on the adapter. Returns -EIO on error and -999 if not found. */
static int
get_scsi_pdt(struct sg_pt_handle *shp, int vb)
{
const int alloc_sz = 8192;
int j;
int ret = -999;
BOOL ok;
ULONG dummy;
DWORD err;
BYTE wbus;
uint8_t * inqBuf;
uint8_t * free_inqBuf;
char b[128];
if (vb > 2)
pr2ws("%s: enter, adapter: %s\n", __func__, shp->adapter);
inqBuf = sg_memalign(alloc_sz, 0 /* page size */, &free_inqBuf, false);
if (NULL == inqBuf) {
pr2ws("%s: unable to allocate %d bytes\n", __func__, alloc_sz);
return -ENOMEM;
}
ok = DeviceIoControl(shp->fh, IOCTL_SCSI_GET_INQUIRY_DATA,
NULL, 0, inqBuf, alloc_sz, &dummy, NULL);
if (ok) {
PSCSI_ADAPTER_BUS_INFO ai;
PSCSI_BUS_DATA pbd;
PSCSI_INQUIRY_DATA pid;
int num_lus, off;
ai = (PSCSI_ADAPTER_BUS_INFO)inqBuf;
for (wbus = 0; wbus < ai->NumberOfBusses; ++wbus) {
pbd = ai->BusData + wbus;
num_lus = pbd->NumberOfLogicalUnits;
off = pbd->InquiryDataOffset;
for (j = 0; j < num_lus; ++j) {
if ((off < (int)sizeof(SCSI_ADAPTER_BUS_INFO)) ||
(off > (alloc_sz - (int)sizeof(SCSI_INQUIRY_DATA))))
break;
pid = (PSCSI_INQUIRY_DATA)(inqBuf + off);
if ((shp->bus == pid->PathId) &&
(shp->target == pid->TargetId) &&
(shp->lun == pid->Lun)) { /* got match */
shp->scsi_pdt = pid->InquiryData[0] & 0x3f;
shp->not_claimed = ! pid->DeviceClaimed;
shp->checked_handle = true;
shp->bus_type_failed = false;
if (vb > 3)
pr2ws("%s: found, scsi_pdt=%d, claimed=%d, "
"target=%d, lun=%d\n", __func__, shp->scsi_pdt,
pid->DeviceClaimed, shp->target, shp->lun);
ret = shp->scsi_pdt;
goto fini;
}
off = pid->NextInquiryDataOffset;
}
}
} else {
err = GetLastError();
if (vb > 1)
pr2ws("%s: IOCTL_SCSI_GET_INQUIRY_DATA failed err=%u\n\t%s",
shp->adapter, (unsigned int)err,
get_err_str(err, sizeof(b), b));
ret = -EIO;
}
fini:
if (free_inqBuf)
free(free_inqBuf);
return ret; /* no match after checking all PathIds, Targets and LUs */
}
/* Returns 0 on success, negated errno if error */
static int
get_bus_type(struct sg_pt_handle *shp, const char *dname,
STORAGE_BUS_TYPE * btp, int vb)
{
DWORD num_out, err;
STORAGE_BUS_TYPE bt;
union STORAGE_DEVICE_DESCRIPTOR_DATA sddd;
STORAGE_PROPERTY_QUERY query = {StorageDeviceProperty,
PropertyStandardQuery, {0} };
char b[256];
memset(&sddd, 0, sizeof(sddd));
if (! DeviceIoControl(shp->fh, IOCTL_STORAGE_QUERY_PROPERTY,
&query, sizeof(query), &sddd, sizeof(sddd),
&num_out, NULL)) {
if (vb > 2) {
err = GetLastError();
pr2ws("%s IOCTL_STORAGE_QUERY_PROPERTY(Devprop) failed, "
"Error: %s [%u]\n", dname, get_err_str(err, sizeof(b), b),
(uint32_t)err);
}
shp->bus_type_failed = true;
return -EIO;
}
bt = sddd.desc.BusType;
if (vb > 2) {
pr2ws("%s: Bus type: %s\n", __func__, bus_type_str((int)bt));
if (vb > 3) {
pr2ws("Storage Device Descriptor Data:\n");
hex2stderr((const uint8_t *)&sddd, num_out, 0);
}
}
if (shp) {
shp->checked_handle = true;
shp->bus_type_failed = false;
shp->is_nvme = (BusTypeNvme == bt);
}
if (btp)
*btp = bt;
return 0;
}
/* Assumes dev_fd is an "open" file handle associated with device_name. If
* the implementation (possibly for one OS) cannot determine from dev_fd if
* a SCSI or NVMe pass-through is referenced, then it might guess based on
* device_name. Returns 1 if SCSI generic pass-though device, returns 2 if
* secondary SCSI pass-through device (in Linux a bsg device); returns 3 is
* char NVMe device (i.e. no NSID); returns 4 if block NVMe device (includes
* NSID), or 0 if something else (e.g. ATA block device) or dev_fd < 0.
* If error, returns negated errno (operating system) value. */
int
check_pt_file_handle(int device_fd, const char * device_name, int vb)
{
int res;
STORAGE_BUS_TYPE bt;
const char * dnp = device_name;
struct sg_pt_handle * shp;
if (vb > 3)
pr2ws("%s: device_name: %s\n", __func__, dnp);
shp = get_open_pt_handle(NULL, device_fd, vb > 1);
if (NULL == shp) {
pr2ws("%s: device_fd (%s) bad or not in_use ??\n", __func__,
dnp ? dnp : "");
return -ENODEV;
}
if (shp->bus_type_failed) {
if (vb > 2)
pr2ws("%s: skip because get_bus_type() has failed\n", __func__);
return 0;
}
dnp = dnp ? dnp : shp->dname;
res = get_bus_type(shp, dnp, &bt, vb);
if (res < 0) {
if (! shp->got_physical_drive) {
res = get_scsi_pdt(shp, vb);
if (res >= 0)
return 1;
}
return res;
}
return (BusTypeNvme == bt) ? 3 : 1;
/* NVMe "char" ?? device, could be enclosure: 3 */
/* SCSI generic pass-though device: 1 */
}
#if (HAVE_NVME && (! IGNORE_NVME))
static bool checked_ev_dsense = false;
static bool ev_dsense = false;
#endif
struct sg_pt_base *
construct_scsi_pt_obj_with_fd(int dev_fd, int vb)
{
int res;
struct sg_pt_win32_scsi * psp;
struct sg_pt_base * vp = NULL;
struct sg_pt_handle * shp = NULL;
if (dev_fd >= 0) {
shp = get_open_pt_handle(NULL, dev_fd, vb > 1);
if (NULL == shp) {
if (vb)
pr2ws("%s: dev_fd is not open\n", __func__);
return NULL;
}
if (! (shp->bus_type_failed || shp->checked_handle)) {
res = get_bus_type(shp, shp->dname, NULL, vb);
if (res < 0) {
if (! shp->got_physical_drive)
res = get_scsi_pdt(shp, vb);
if ((res < 0) && (vb > 1))
pr2ws("%s: get_bus_type() errno=%d, continue\n", __func__,
-res);
}
}
}
psp = (struct sg_pt_win32_scsi *)calloc(sizeof(struct sg_pt_win32_scsi),
1);
if (psp) {
psp->dev_fd = (dev_fd < 0) ? -1 : dev_fd;
if (shp) {
psp->is_nvme = shp->is_nvme;
psp->dev_statp = &shp->dev_stat;
#if (HAVE_NVME && (! IGNORE_NVME))
sntl_init_dev_stat(psp->dev_statp);
if (! checked_ev_dsense) {
ev_dsense = sg_get_initial_dsense();
checked_ev_dsense = true;
}
shp->dev_stat.scsi_dsense = ev_dsense;
#endif
}
if (psp->is_nvme) {
; /* should be 'psp->nvme_nsid = shp->nvme_nsid' */
} else if (spt_direct) {
psp->swb_d.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED;
psp->swb_d.spt.SenseInfoLength = SCSI_MAX_SENSE_LEN;
psp->swb_d.spt.SenseInfoOffset =
offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucSenseBuf);
psp->swb_d.spt.TimeOutValue = DEF_TIMEOUT;
} else {
psp->swb_i.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED;
psp->swb_i.spt.SenseInfoLength = SCSI_MAX_SENSE_LEN;
psp->swb_i.spt.SenseInfoOffset =
offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucSenseBuf);
psp->swb_i.spt.TimeOutValue = DEF_TIMEOUT;
}
vp = (struct sg_pt_base *)malloc(sizeof(struct sg_pt_win32_scsi *));
/* yes, allocating the size of a pointer (4 or 8 bytes) */
if (vp)
vp->implp = psp;
else
free(psp);
}
if ((NULL == vp) && vb)
pr2ws("%s: about to return NULL, space problem\n", __func__);
return vp;
}
struct sg_pt_base *
construct_scsi_pt_obj(void)
{
return construct_scsi_pt_obj_with_fd(-1, 0);
}
void
destruct_scsi_pt_obj(struct sg_pt_base * vp)
{
if (vp) {
struct sg_pt_win32_scsi * psp = vp->implp;
if (psp) {
free(psp);
}
free(vp);
}
}
/* Forget any previous dev_han and install the one given. May attempt to
* find file type (e.g. if pass-though) from OS so there could be an error.
* Returns 0 for success or the same value as get_scsi_pt_os_err()
* will return. dev_han should be >= 0 for a valid file handle or -1 . */
int
set_pt_file_handle(struct sg_pt_base * vp, int dev_han, int vb)
{
int res;
struct sg_pt_win32_scsi * psp;
if (NULL == vp) {
if (vb)
pr2ws(">>>> %s: pointer to object is NULL\n", __func__);
return EINVAL;
}
if ((psp = vp->implp)) {
struct sg_pt_handle * shp;
if (dev_han < 0) {
psp->dev_fd = -1;
psp->is_nvme = false;
psp->nvme_nsid = 0;
return 0;
}
shp = get_open_pt_handle(psp, dev_han, vb > 1);
if (NULL == shp) {
if (vb)
pr2ws("%s: dev_han (%d) is invalid\n", __func__, dev_han);
psp->os_err = EINVAL;
return psp->os_err;
}
psp->os_err = 0;
psp->transport_err = 0;
psp->in_err = 0;
psp->scsi_status = 0;
psp->dev_fd = dev_han;
if (! (shp->bus_type_failed || shp->checked_handle)) {
res = get_bus_type(shp, shp->dname, NULL, vb);
if (res < 0) {
res = get_scsi_pdt(shp, vb);
if (res >= 0) /* clears shp->bus_type_failed on success */
psp->os_err = 0;
}
if ((res < 0) && (vb > 2))
pr2ws("%s: get_bus_type() errno=%d\n", __func__, -res);
}
if (shp->bus_type_failed)
psp->os_err = EIO;
if (psp->os_err)
return psp->os_err;
psp->is_nvme = shp->is_nvme;
psp->nvme_nsid = 0; /* should be 'psp->nvme_nsid = shp->nvme_nsid' */
psp->dev_statp = &shp->dev_stat;
}
return 0;
}
/* Valid file handles (which is the return value) are >= 0 . Returns -1
* if there is no valid file handle. */
int
get_pt_file_handle(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp;
if (vp) {
psp = vp->implp;
return psp ? psp->dev_fd : -1;
}
return -1;
}
/* Keep state information such as dev_fd and nvme_nsid */
void
clear_scsi_pt_obj(struct sg_pt_base * vp)
{
bool is_nvme;
int dev_fd;
uint32_t nvme_nsid;
struct sg_pt_win32_scsi * psp = vp->implp;
struct sg_sntl_dev_state_t * dsp;
if (psp) {
dev_fd = psp->dev_fd;
is_nvme = psp->is_nvme;
nvme_nsid = psp->nvme_nsid;
dsp = psp->dev_statp;
memset(psp, 0, sizeof(struct sg_pt_win32_scsi));
if (spt_direct) {
psp->swb_d.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED;
psp->swb_d.spt.SenseInfoLength = SCSI_MAX_SENSE_LEN;
psp->swb_d.spt.SenseInfoOffset =
offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucSenseBuf);
psp->swb_d.spt.TimeOutValue = DEF_TIMEOUT;
} else {
psp->swb_i.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED;
psp->swb_i.spt.SenseInfoLength = SCSI_MAX_SENSE_LEN;
psp->swb_i.spt.SenseInfoOffset =
offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucSenseBuf);
psp->swb_i.spt.TimeOutValue = DEF_TIMEOUT;
}
psp->dev_fd = dev_fd;
psp->is_nvme = is_nvme;
psp->nvme_nsid = nvme_nsid;
psp->dev_statp = dsp;
}
}
void
partial_clear_scsi_pt_obj(struct sg_pt_base * vp)
{
struct sg_pt_win32_scsi * psp = &vp->impl;
if (NULL == psp)
return;
psp->in_err = 0;
psp->os_err = 0;
psp->transport_err = 0;
psp->scsi_status = 0;
if (spt_direct) {
psp->swb_d.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED;
psp->swb_d.spt.SenseInfoLength = SCSI_MAX_SENSE_LEN;
psp->swb_d.spt.SenseInfoOffset =
offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucSenseBuf);
psp->swb_d.spt.TimeOutValue = DEF_TIMEOUT;
} else {
psp->swb_i.spt.DataIn = SCSI_IOCTL_DATA_UNSPECIFIED;
psp->swb_i.spt.SenseInfoLength = SCSI_MAX_SENSE_LEN;
psp->swb_i.spt.SenseInfoOffset =
offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucSenseBuf);
psp->swb_i.spt.TimeOutValue = DEF_TIMEOUT;
}
}
void
set_scsi_pt_cdb(struct sg_pt_base * vp, const uint8_t * cdb,
int cdb_len)
{
bool scsi_cdb = sg_is_scsi_cdb(cdb, cdb_len);
struct sg_pt_win32_scsi * psp = vp->implp;
if (! scsi_cdb) {
psp->have_nvme_cmd = true;
memcpy(psp->nvme_cmd, cdb, cdb_len);
} else if (spt_direct) {
if (cdb_len > (int)sizeof(psp->swb_d.spt.Cdb)) {
++psp->in_err;
return;
}
memcpy(psp->swb_d.spt.Cdb, cdb, cdb_len);
psp->swb_d.spt.CdbLength = cdb_len;
} else {
if (cdb_len > (int)sizeof(psp->swb_i.spt.Cdb)) {
++psp->in_err;
return;
}
memcpy(psp->swb_i.spt.Cdb, cdb, cdb_len);
psp->swb_i.spt.CdbLength = cdb_len;
}
}
int
get_scsi_pt_cdb_len(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = &vp->impl;
return spt_direct ? psp->swb_d.spt.CdbLength : psp->swb_i.spt.CdbLength;
}
uint8_t *
get_scsi_pt_cdb_buf(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = &vp->impl;
return (uint8_t *)(spt_direct ? psp->swb_d.spt.Cdb : psp->swb_i.spt.Cdb);
}
void
set_scsi_pt_sense(struct sg_pt_base * vp, uint8_t * sense, int sense_len)
{
struct sg_pt_win32_scsi * psp = vp->implp;
if (sense && (sense_len > 0))
memset(sense, 0, sense_len);
psp->sensep = sense;
psp->sense_len = sense_len;
}
/* from device */
void
set_scsi_pt_data_in(struct sg_pt_base * vp, uint8_t * dxferp,
int dxfer_len)
{
struct sg_pt_win32_scsi * psp = vp->implp;
if (psp->dxferp)
++psp->in_err;
if (dxfer_len > 0) {
psp->dxferp = dxferp;
psp->dxfer_len = (uint32_t)dxfer_len;
psp->is_read = true;
if (spt_direct)
psp->swb_d.spt.DataIn = SCSI_IOCTL_DATA_IN;
else
psp->swb_i.spt.DataIn = SCSI_IOCTL_DATA_IN;
}
}
/* to device */
void
set_scsi_pt_data_out(struct sg_pt_base * vp, const uint8_t * dxferp,
int dxfer_len)
{
struct sg_pt_win32_scsi * psp = vp->implp;
if (psp->dxferp)
++psp->in_err;
if (dxfer_len > 0) {
psp->dxferp = (uint8_t *)dxferp;
psp->dxfer_len = (uint32_t)dxfer_len;
if (spt_direct)
psp->swb_d.spt.DataIn = SCSI_IOCTL_DATA_OUT;
else
psp->swb_i.spt.DataIn = SCSI_IOCTL_DATA_OUT;
}
}
void
set_pt_metadata_xfer(struct sg_pt_base * vp, uint8_t * mdxferp,
uint32_t mdxfer_len, bool out_true)
{
struct sg_pt_win32_scsi * psp = vp->implp;
if (psp->mdxferp)
++psp->in_err;
if (mdxfer_len > 0) {
psp->mdxferp = mdxferp;
psp->mdxfer_len = mdxfer_len;
psp->mdxfer_out = out_true;
}
}
void
set_scsi_pt_packet_id(struct sg_pt_base * vp __attribute__ ((unused)),
int pack_id __attribute__ ((unused)))
{
}
void
set_scsi_pt_tag(struct sg_pt_base * vp, uint64_t tag __attribute__ ((unused)))
{
struct sg_pt_win32_scsi * psp = vp->implp;
++psp->in_err;
}
void
set_scsi_pt_task_management(struct sg_pt_base * vp,
int tmf_code __attribute__ ((unused)))
{
struct sg_pt_win32_scsi * psp = vp->implp;
++psp->in_err;
}
void
set_scsi_pt_task_attr(struct sg_pt_base * vp,
int attrib __attribute__ ((unused)),
int priority __attribute__ ((unused)))
{
struct sg_pt_win32_scsi * psp = vp->implp;
++psp->in_err;
}
void
set_scsi_pt_flags(struct sg_pt_base * objp, int flags)
{
/* do nothing, suppress warnings */
objp = objp;
flags = flags;
}
/* Executes SCSI command (or at least forwards it to lower layers)
* using direct interface. Clears os_err field prior to active call (whose
* result may set it again). */
static int
scsi_pt_direct(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
int time_secs, int vb)
{
BOOL status;
DWORD returned;
psp->os_err = 0;
if (0 == psp->swb_d.spt.CdbLength) {
if (vb)
pr2ws("No command (cdb) given\n");
return SCSI_PT_DO_BAD_PARAMS;
}
psp->swb_d.spt.Length = sizeof (SCSI_PASS_THROUGH_DIRECT);
psp->swb_d.spt.PathId = shp->bus;
psp->swb_d.spt.TargetId = shp->target;
psp->swb_d.spt.Lun = shp->lun;
psp->swb_d.spt.TimeOutValue = time_secs;
psp->swb_d.spt.DataTransferLength = psp->dxfer_len;
if (vb > 4) {
pr2ws(" spt_direct, adapter: %s Length=%d ScsiStatus=%d PathId=%d "
"TargetId=%d Lun=%d\n", shp->adapter,
(int)psp->swb_d.spt.Length, (int)psp->swb_d.spt.ScsiStatus,
(int)psp->swb_d.spt.PathId, (int)psp->swb_d.spt.TargetId,
(int)psp->swb_d.spt.Lun);
pr2ws(" CdbLength=%d SenseInfoLength=%d DataIn=%d "
"DataTransferLength=%u\n",
(int)psp->swb_d.spt.CdbLength,
(int)psp->swb_d.spt.SenseInfoLength,
(int)psp->swb_d.spt.DataIn,
(unsigned int)psp->swb_d.spt.DataTransferLength);
pr2ws(" TimeOutValue=%u SenseInfoOffset=%u\n",
(unsigned int)psp->swb_d.spt.TimeOutValue,
(unsigned int)psp->swb_d.spt.SenseInfoOffset);
}
psp->swb_d.spt.DataBuffer = psp->dxferp;
status = DeviceIoControl(shp->fh, IOCTL_SCSI_PASS_THROUGH_DIRECT,
&psp->swb_d,
sizeof(psp->swb_d),
&psp->swb_d,
sizeof(psp->swb_d),
&returned,
NULL);
if (! status) {
unsigned int u;
u = (unsigned int)GetLastError();
if (vb) {
char b[128];
pr2ws("%s: DeviceIoControl: %s [%u]\n", __func__,
get_err_str(u, sizeof(b), b), u);
}
psp->transport_err = (int)u;
psp->os_err = EIO;
return 0; /* let app find transport error */
}
psp->scsi_status = psp->swb_d.spt.ScsiStatus;
if ((SAM_STAT_CHECK_CONDITION == psp->scsi_status) ||
(SAM_STAT_COMMAND_TERMINATED == psp->scsi_status))
memcpy(psp->sensep, psp->swb_d.ucSenseBuf, psp->sense_len);
else
psp->sense_len = 0;
psp->sense_resid = 0;
if ((psp->dxfer_len > 0) && (psp->swb_d.spt.DataTransferLength > 0))
psp->resid = psp->dxfer_len - psp->swb_d.spt.DataTransferLength;
else
psp->resid = 0;
return 0;
}
/* Executes SCSI command (or at least forwards it to lower layers) using
* indirect interface. Clears os_err field prior to active call (whose
* result may set it again). */
static int
scsi_pt_indirect(struct sg_pt_base * vp, struct sg_pt_handle * shp,
int time_secs, int vb)
{
BOOL status;
DWORD returned;
struct sg_pt_win32_scsi * psp = vp->implp;
if (0 == psp->swb_i.spt.CdbLength) {
if (vb)
pr2ws("No command (cdb) given\n");
return SCSI_PT_DO_BAD_PARAMS;
}
if (psp->dxfer_len > (int)sizeof(psp->swb_i.ucDataBuf)) {
int extra = psp->dxfer_len - (int)sizeof(psp->swb_i.ucDataBuf);
struct sg_pt_win32_scsi * epsp;
if (vb > 4)
pr2ws("spt_indirect: dxfer_len (%d) too large for initial data\n"
" buffer (%d bytes), try enlarging\n", psp->dxfer_len,
(int)sizeof(psp->swb_i.ucDataBuf));
epsp = (struct sg_pt_win32_scsi *)
calloc(sizeof(struct sg_pt_win32_scsi) + extra, 1);
if (NULL == epsp) {
pr2ws("%s: failed to enlarge data buffer to %d bytes\n", __func__,
psp->dxfer_len);
psp->os_err = ENOMEM;
return -psp->os_err;
}
memcpy(epsp, psp, sizeof(struct sg_pt_win32_scsi));
free(psp);
vp->implp = epsp;
psp = epsp;
}
psp->swb_i.spt.Length = sizeof (SCSI_PASS_THROUGH);
psp->swb_i.spt.DataBufferOffset =
offsetof(SCSI_PASS_THROUGH_WITH_BUFFERS, ucDataBuf);
psp->swb_i.spt.PathId = shp->bus;
psp->swb_i.spt.TargetId = shp->target;
psp->swb_i.spt.Lun = shp->lun;
psp->swb_i.spt.TimeOutValue = time_secs;
psp->swb_i.spt.DataTransferLength = psp->dxfer_len;
if (vb > 4) {
pr2ws(" spt_indirect, adapter: %s Length=%d ScsiStatus=%d PathId=%d "
"TargetId=%d Lun=%d\n", shp->adapter,
(int)psp->swb_i.spt.Length, (int)psp->swb_i.spt.ScsiStatus,
(int)psp->swb_i.spt.PathId, (int)psp->swb_i.spt.TargetId,
(int)psp->swb_i.spt.Lun);
pr2ws(" CdbLength=%d SenseInfoLength=%d DataIn=%d "
"DataTransferLength=%u\n",
(int)psp->swb_i.spt.CdbLength,
(int)psp->swb_i.spt.SenseInfoLength,
(int)psp->swb_i.spt.DataIn,
(unsigned int)psp->swb_i.spt.DataTransferLength);
pr2ws(" TimeOutValue=%u DataBufferOffset=%u "
"SenseInfoOffset=%u\n",
(unsigned int)psp->swb_i.spt.TimeOutValue,
(unsigned int)psp->swb_i.spt.DataBufferOffset,
(unsigned int)psp->swb_i.spt.SenseInfoOffset);
}
if ((psp->dxfer_len > 0) &&
(SCSI_IOCTL_DATA_OUT == psp->swb_i.spt.DataIn))
memcpy(psp->swb_i.ucDataBuf, psp->dxferp, psp->dxfer_len);
status = DeviceIoControl(shp->fh, IOCTL_SCSI_PASS_THROUGH,
&psp->swb_i,
sizeof(psp->swb_i),
&psp->swb_i,
sizeof(psp->swb_i),
&returned,
NULL);
if (! status) {
uint32_t u = (uint32_t)GetLastError();
if (vb) {
char b[128];
pr2ws("%s: DeviceIoControl: %s [%u]\n", __func__,
get_err_str(u, sizeof(b), b), u);
}
psp->transport_err = (int)u;
psp->os_err = EIO;
return 0; /* let app find transport error */
}
if ((psp->dxfer_len > 0) && (SCSI_IOCTL_DATA_IN == psp->swb_i.spt.DataIn))
memcpy(psp->dxferp, psp->swb_i.ucDataBuf, psp->dxfer_len);
psp->scsi_status = psp->swb_i.spt.ScsiStatus;
if ((SAM_STAT_CHECK_CONDITION == psp->scsi_status) ||
(SAM_STAT_COMMAND_TERMINATED == psp->scsi_status))
memcpy(psp->sensep, psp->swb_i.ucSenseBuf, psp->sense_len);
else
psp->sense_len = 0;
psp->sense_resid = 0;
if ((psp->dxfer_len > 0) && (psp->swb_i.spt.DataTransferLength > 0))
psp->resid = psp->dxfer_len - psp->swb_i.spt.DataTransferLength;
else
psp->resid = 0;
return 0;
}
/* Executes SCSI or NVME command (or at least forwards it to lower layers).
* Clears os_err field prior to active call (whose result may set it
* again). Returns 0 on success, positive SCSI_PT_DO_* errors for syntax
* like errors and negated errnos for OS errors. For Windows its errors
* are placed in psp->transport_err and a errno is simulated. */
int
do_scsi_pt(struct sg_pt_base * vp, int dev_fd, int time_secs, int vb)
{
int res;
struct sg_pt_win32_scsi * psp = vp->implp;
struct sg_pt_handle * shp;
if (! (vp && ((psp = vp->implp)))) {
if (vb)
pr2ws("%s: NULL 1st argument to this function\n", __func__);
return SCSI_PT_DO_BAD_PARAMS;
}
psp->os_err = 0;
if (dev_fd >= 0) {
if ((psp->dev_fd >= 0) && (dev_fd != psp->dev_fd)) {
if (vb)
pr2ws("%s: file descriptor given to create() and here "
"differ\n", __func__);
return SCSI_PT_DO_BAD_PARAMS;
}
psp->dev_fd = dev_fd;
} else if (psp->dev_fd < 0) { /* so no dev_fd in ctor */
if (vb)
pr2ws("%s: missing device file descriptor\n", __func__);
return SCSI_PT_DO_BAD_PARAMS;
} else
dev_fd = psp->dev_fd;
shp = get_open_pt_handle(psp, dev_fd, vb > 3);
if (NULL == shp)
return -psp->os_err;
if (! (shp->bus_type_failed || shp->checked_handle)) {
res = get_bus_type(shp, shp->dname, NULL, vb);
if (res < 0) {
res = get_scsi_pdt(shp, vb);
if (res >= 0) /* clears shp->bus_type_failed on success */
psp->os_err = 0;
}
if ((res < 0) && (vb > 2))
pr2ws("%s: get_bus_type() errno=%d\n", __func__, -res);
}
if (shp->bus_type_failed)
psp->os_err = EIO;
if (psp->os_err)
return -psp->os_err;
psp->is_nvme = shp->is_nvme;
psp->dev_statp = &shp->dev_stat;
if (psp->is_nvme)
return nvme_pt(psp, shp, time_secs, vb);
else if (spt_direct)
return scsi_pt_direct(psp, shp, time_secs, vb);
else
return scsi_pt_indirect(vp, shp, time_secs, vb);
}
int
get_scsi_pt_result_category(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
if (psp->transport_err) /* give transport error highest priority */
return SCSI_PT_RESULT_TRANSPORT_ERR;
else if (psp->os_err)
return SCSI_PT_RESULT_OS_ERR;
else if ((SAM_STAT_CHECK_CONDITION == psp->scsi_status) ||
(SAM_STAT_COMMAND_TERMINATED == psp->scsi_status))
return SCSI_PT_RESULT_SENSE;
else if (psp->scsi_status)
return SCSI_PT_RESULT_STATUS;
else
return SCSI_PT_RESULT_GOOD;
}
int
get_scsi_pt_resid(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
return psp->resid;
}
void
get_pt_req_lengths(const struct sg_pt_base * vp, int * req_dinp,
int * req_doutp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
if (req_dinp) {
if (psp->is_read && (psp->dxfer_len > 0))
*req_dinp = psp->dxfer_len;
else
*req_dinp = 0;
}
if (req_doutp) {
if ((! psp->is_read) && (psp->dxfer_len > 0))
*req_doutp = psp->dxfer_len;
else
*req_doutp = 0;
}
}
void
get_pt_actual_lengths(const struct sg_pt_base * vp, int * act_dinp,
int * act_doutp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
if (act_dinp) {
if (psp->is_read && (psp->dxfer_len > 0))
*act_dinp = psp->dxfer_len - psp->resid;
else
*act_dinp = 0;
}
if (act_doutp) {
if ((! psp->is_read) && (psp->dxfer_len > 0))
*act_doutp = psp->dxfer_len - psp->resid;
else
*act_doutp = 0;
}
}
int
get_scsi_pt_status_response(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
if (NULL == psp)
return 0;
return psp->nvme_direct ? (int)psp->nvme_status : psp->scsi_status;
}
uint32_t
get_pt_result(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
if (NULL == psp)
return 0;
return psp->nvme_direct ? psp->nvme_result : (uint32_t)psp->scsi_status;
}
int
get_scsi_pt_sense_len(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
int len;
len = psp->sense_len - psp->sense_resid;
return (len > 0) ? len : 0;
}
uint8_t *
get_scsi_pt_sense_buf(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
return psp->sensep;
}
int
get_scsi_pt_duration_ms(const struct sg_pt_base * vp __attribute__ ((unused)))
{
// const struct sg_pt_win32_scsi * psp = vp->implp;
return -1;
}
/* If not available return 0 otherwise return number of nanoseconds that the
* lower layers (and hardware) took to execute the command just completed. */
uint64_t
get_pt_duration_ns(const struct sg_pt_base * vp __attribute__ ((unused)))
{
return 0;
}
int
get_scsi_pt_transport_err(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
return psp->transport_err;
}
void
set_scsi_pt_transport_err(struct sg_pt_base * vp, int err)
{
struct sg_pt_win32_scsi * psp = vp->implp;
psp->transport_err = err;
}
int
get_scsi_pt_os_err(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
return psp->os_err;
}
bool
pt_device_is_nvme(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
return psp ? psp->is_nvme : false;
}
/* If a NVMe block device (which includes the NSID) handle is associated
* * with 'vp', then its NSID is returned (values range from 0x1 to
* * 0xffffffe). Otherwise 0 is returned. */
uint32_t
get_pt_nvme_nsid(const struct sg_pt_base * vp)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
return psp->nvme_nsid;
}
/* Use the transport_err for Windows errors. */
char *
get_scsi_pt_transport_err_str(const struct sg_pt_base * vp, int max_b_len,
char * b)
{
struct sg_pt_win32_scsi * psp = (struct sg_pt_win32_scsi *)vp->implp;
if ((max_b_len < 2) || (NULL == psp) || (NULL == b)) {
if (b && (max_b_len > 0))
b[0] = '\0';
return b;
}
return get_err_str(psp->transport_err, max_b_len, b);
}
char *
get_scsi_pt_os_err_str(const struct sg_pt_base * vp, int max_b_len, char * b)
{
const struct sg_pt_win32_scsi * psp = vp->implp;
const char * cp;
cp = safe_strerror(psp->os_err);
strncpy(b, cp, max_b_len);
if ((int)strlen(cp) >= max_b_len)
b[max_b_len - 1] = '\0';
return b;
}
#if (HAVE_NVME && (! IGNORE_NVME))
static void
mk_sense_asc_ascq(struct sg_pt_win32_scsi * psp, int sk, int asc, int ascq,
int vb)
{
bool dsense = psp->dev_statp->scsi_dsense;
int slen = psp->sense_len;
int n;
uint8_t * sbp = (uint8_t *)psp->sensep;
psp->scsi_status = SAM_STAT_CHECK_CONDITION;
if ((slen < 8) || ((! dsense) && (slen < 14))) {
if (vb)
pr2ws("%s: sense_len=%d too short, want 14 or more\n",
__func__, slen);
return;
}
if (dsense)
n = (slen > 32) ? 32 : slen;
else
n = (slen < 18) ? slen : 18;
psp->sense_resid = (slen > n) ? (slen - n) : 0;
memset(sbp, 0, slen);
sg_build_sense_buffer(dsense, sbp, sk, asc, ascq);
if (vb > 3)
pr2ws("%s: [sense_key,asc,ascq]: [0x%x,0x%x,0x%x]\n", __func__, sk,
asc, ascq);
}
static void
mk_sense_from_nvme_status(struct sg_pt_win32_scsi * psp, int vb)
{
bool ok;
bool dsense = psp->dev_statp->scsi_dsense;
int n;
int slen = psp->sense_len;
uint8_t sstatus, sk, asc, ascq;
uint8_t * sbp = (uint8_t *)psp->sensep;
ok = sg_nvme_status2scsi(psp->nvme_status, &sstatus, &sk, &asc, &ascq);
if (! ok) { /* can't find a mapping to a SCSI error, so ... */
sstatus = SAM_STAT_CHECK_CONDITION;
sk = SPC_SK_ILLEGAL_REQUEST;
asc = 0xb;
ascq = 0x0; /* asc: "WARNING" purposely vague */
}
psp->scsi_status = sstatus;
if ((slen < 8) || ((! dsense) && (slen < 14))) {
if (vb)
pr2ws("%s: sense_len=%d too short, want 14 or more\n", __func__,
slen);
return;
}
if (dsense)
n = (slen > 32) ? 32 : slen;
else
n = (slen < 18) ? slen : 18;
psp->sense_resid = (slen > n) ? slen - n : 0;
memset(sbp, 0, slen);
sg_build_sense_buffer(dsense, sbp, sk, asc, ascq);
if (dsense && (psp->nvme_status > 0))
sg_nvme_desc2sense(sbp, false /* dnr */, false /* more */,
psp->nvme_status);
if (vb > 3)
pr2ws("%s: [status, sense_key,asc,ascq]: [0x%x, 0x%x,0x%x,0x%x]\n",
__func__, sstatus, sk, asc, ascq);
}
/* Set in_bit to -1 to indicate no bit position of invalid field */
static void
mk_sense_invalid_fld(struct sg_pt_win32_scsi * psp, bool in_cdb, int in_byte,
int in_bit, int vb)
{
bool dsense = psp->dev_statp->scsi_dsense;
int sl, asc, n;
int slen = psp->sense_len;
uint8_t * sbp = (uint8_t *)psp->sensep;
uint8_t sks[4];
psp->scsi_status = SAM_STAT_CHECK_CONDITION;
asc = in_cdb ? INVALID_FIELD_IN_CDB : INVALID_FIELD_IN_PARAM_LIST;
if ((slen < 8) || ((! dsense) && (slen < 14))) {
if (vb)
pr2ws("%s: max_response_len=%d too short, want 14 or more\n",
__func__, slen);
return;
}
if (dsense)
n = (slen > 32) ? 32 : slen;
else
n = (slen < 18) ? slen : 18;
psp->sense_resid = (slen > n) ? (slen - n) : 0;
memset(sbp, 0, slen);
sg_build_sense_buffer(dsense, sbp, SPC_SK_ILLEGAL_REQUEST, asc, 0);
memset(sks, 0, sizeof(sks));
sks[0] = 0x80;
if (in_cdb)
sks[0] |= 0x40;
if (in_bit >= 0) {
sks[0] |= 0x8;
sks[0] |= (0x7 & in_bit);
}
sg_put_unaligned_be16(in_byte, sks + 1);
if (dsense) {
sl = sbp[7] + 8;
sbp[7] = sl;
sbp[sl] = 0x2;
sbp[sl + 1] = 0x6;
memcpy(sbp + sl + 4, sks, 3);
} else
memcpy(sbp + 15, sks, 3);
if (vb > 3)
pr2ws("%s: [sense_key,asc,ascq]: [0x5,0x%x,0x0] %c byte=%d, bit=%d\n",
__func__, asc, in_cdb ? 'C' : 'D', in_byte,
((in_bit > 0) ? (0x7 & in_bit) : 0));
}
#if W10_NVME_NON_PASSTHRU /* W10 and later, no real pass-through ?? */
#ifndef NVME_MAX_LOG_SIZE
#define NVME_MAX_LOG_SIZE 4096
#endif
static int
nvme_identify(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cmdp, uint8_t * dp, uint32_t dlen, int vb)
{
bool id_ctrl;
int res = 0;
const uint32_t pg_sz = sg_get_page_size();
uint32_t cdw10, nsid, n;
const uint8_t * bp;
BOOL result;
PVOID buffer = NULL;
uint8_t * free_buffer = NULL;
ULONG bufferLength = 0;
ULONG returnedLength = 0;
STORAGE_PROPERTY_QUERY * query = NULL;
STORAGE_PROTOCOL_SPECIFIC_DATA * protocolData = NULL;
STORAGE_PROTOCOL_DATA_DESCRIPTOR * protocolDataDescr = NULL;
nsid = sg_get_unaligned_le32(cmdp + SG_NVME_PT_NSID);
cdw10 = sg_get_unaligned_le32(cmdp + SG_NVME_PT_CDW10);
id_ctrl = (0x1 == cdw10);
n = dlen < NVME_MAX_LOG_SIZE ? NVME_MAX_LOG_SIZE : dlen;
bufferLength = offsetof(STORAGE_PROPERTY_QUERY, AdditionalParameters) +
sizeof(STORAGE_PROTOCOL_SPECIFIC_DATA) + n;
buffer = sg_memalign(bufferLength, pg_sz, &free_buffer, false);
if (buffer == NULL) {
res = sg_convert_errno(ENOMEM);
if (vb > 1)
pr2ws("%s: unable to allocate memory\n", __func__);
psp->os_err = res;
return -res;
}
query = (STORAGE_PROPERTY_QUERY *)buffer;
query->PropertyId = id_ctrl ? StorageAdapterProtocolSpecificProperty :
StorageDeviceProtocolSpecificProperty;
query->QueryType = PropertyStandardQuery;
protocolDataDescr = (STORAGE_PROTOCOL_DATA_DESCRIPTOR *)buffer;
protocolData = (STORAGE_PROTOCOL_SPECIFIC_DATA *)
query->AdditionalParameters;
protocolData->ProtocolType = ProtocolTypeNvme;
protocolData->DataType = NVMeDataTypeIdentify;
protocolData->ProtocolDataRequestValue = cdw10;
if (! id_ctrl)
protocolData->ProtocolDataRequestSubValue = nsid;
protocolData->ProtocolDataOffset = sizeof(STORAGE_PROTOCOL_SPECIFIC_DATA);
protocolData->ProtocolDataLength = dlen;
result = DeviceIoControl(shp->fh, IOCTL_STORAGE_QUERY_PROPERTY,
buffer, bufferLength, buffer, bufferLength,
&returnedLength, (OVERLAPPED*)0);
if ((! result) || (0 == returnedLength)) {
n = (uint32_t)GetLastError();
psp->transport_err = n;
psp->os_err = EIO; /* simulate Unix error, */
if (vb > 2) {
char b[128];
pr2ws("%s: IOCTL_STORAGE_QUERY_PROPERTY(id_%s) failed: %s "
"[%u]\n", __func__, (id_ctrl ? "ctrl" : "ns"),
get_err_str(n, sizeof(b), b), n);
}
res = -psp->os_err;
goto err_out;
}
if (dlen > 0) {
protocolData = &protocolDataDescr->ProtocolSpecificData;
bp = (const uint8_t *)protocolData + protocolData->ProtocolDataOffset;
memcpy(dp, bp, dlen);
if (0 == psp->nvme_nsid) {
uint32_t nn = sg_get_unaligned_le32(bp + 516);
if (1 == nn) /* if physical drive has only 1 namespace */
psp->nvme_nsid = 1; /* then its nsid must be 1 */
/* N.B. Need better get_nsid_from _handle technique when 2 or
* more namespaces. Suggestions? */
}
}
psp->nvme_status = 0;
psp->nvme_result =
protocolDataDescr->ProtocolSpecificData.FixedProtocolReturnData;
if (vb > 3)
pr2ws("%s: IOCTL_STORAGE_QUERY_PROPERTY(id_ctrl) success, "
"returnedLength=%u\n", __func__, (uint32_t)returnedLength);
res = 0;
err_out:
if (free_buffer)
free(free_buffer);
return res;
}
static int
nvme_get_features(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cmdp, uint8_t * dp, uint32_t dlen, int vb)
{
int res = 0;
const uint32_t pg_sz = sg_get_page_size();
uint32_t cdw10, nsid, n;
const uint8_t * bp;
BOOL result;
PVOID buffer = NULL;
uint8_t * free_buffer = NULL;
ULONG bufferLength = 0;
ULONG returnedLength = 0;
STORAGE_PROPERTY_QUERY * query = NULL;
STORAGE_PROTOCOL_SPECIFIC_DATA * protocolData = NULL;
STORAGE_PROTOCOL_DATA_DESCRIPTOR * protocolDataDescr = NULL;
nsid = sg_get_unaligned_le32(cmdp + SG_NVME_PT_NSID);
cdw10 = sg_get_unaligned_le32(cmdp + SG_NVME_PT_CDW10);
n = dlen < NVME_MAX_LOG_SIZE ? NVME_MAX_LOG_SIZE : dlen;
bufferLength = offsetof(STORAGE_PROPERTY_QUERY, AdditionalParameters) +
sizeof(STORAGE_PROTOCOL_SPECIFIC_DATA) + n;
buffer = sg_memalign(bufferLength, pg_sz, &free_buffer, false);
if (buffer == NULL) {
res = sg_convert_errno(ENOMEM);
if (vb > 1)
pr2ws("%s: unable to allocate memory\n", __func__);
psp->os_err = res;
return -res;
}
query = (STORAGE_PROPERTY_QUERY *)buffer;
query->PropertyId = StorageDeviceProtocolSpecificProperty;
query->QueryType = PropertyStandardQuery;
protocolDataDescr = (STORAGE_PROTOCOL_DATA_DESCRIPTOR *)buffer;
protocolData = (STORAGE_PROTOCOL_SPECIFIC_DATA *)
query->AdditionalParameters;
protocolData->ProtocolType = ProtocolTypeNvme;
protocolData->DataType = NVMeDataTypeFeature; /* Get Features */
protocolData->ProtocolDataRequestValue = cdw10;
protocolData->ProtocolDataRequestSubValue = nsid;
protocolData->ProtocolDataOffset = sizeof(STORAGE_PROTOCOL_SPECIFIC_DATA);
protocolData->ProtocolDataLength = dlen;
result = DeviceIoControl(shp->fh, IOCTL_STORAGE_QUERY_PROPERTY,
buffer, bufferLength, buffer, bufferLength,
&returnedLength, (OVERLAPPED*)0);
if ((! result) || (0 == returnedLength)) {
n = (uint32_t)GetLastError();
psp->transport_err = n;
psp->os_err = EIO; /* simulate Unix error, */
if (vb > 2) {
char b[128];
pr2ws("%s: IOCTL_STORAGE_QUERY_PROPERTY(id_ctrl) failed: %s "
"[%u]\n", __func__, get_err_str(n, sizeof(b), b), n);
}
res = -psp->os_err;
goto err_out;
}
if (dlen > 0) {
protocolData = &protocolDataDescr->ProtocolSpecificData;
bp = (const uint8_t *)protocolData + protocolData->ProtocolDataOffset;
memcpy(dp, bp, dlen);
}
psp->nvme_status = 0;
psp->nvme_result =
protocolDataDescr->ProtocolSpecificData.FixedProtocolReturnData;
if (vb > 3)
pr2ws("%s: IOCTL_STORAGE_QUERY_PROPERTY(id_ctrl) success, "
"returnedLength=%u\n", __func__, (uint32_t)returnedLength);
res = 0;
err_out:
if (free_buffer)
free(free_buffer);
return res;
}
static int
nvme_get_log_page(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cmdp, uint8_t * dp, uint32_t dlen, int vb)
{
int res = 0;
const uint32_t pg_sz = sg_get_page_size();
uint32_t cdw10, nsid, n;
const uint8_t * bp;
BOOL result;
PVOID buffer = NULL;
uint8_t * free_buffer = NULL;
ULONG bufferLength = 0;
ULONG returnedLength = 0;
STORAGE_PROPERTY_QUERY * query = NULL;
STORAGE_PROTOCOL_SPECIFIC_DATA * protocolData = NULL;
STORAGE_PROTOCOL_DATA_DESCRIPTOR * protocolDataDescr = NULL;
nsid = sg_get_unaligned_le32(cmdp + SG_NVME_PT_NSID);
cdw10 = sg_get_unaligned_le32(cmdp + SG_NVME_PT_CDW10);
n = dlen < NVME_MAX_LOG_SIZE ? NVME_MAX_LOG_SIZE : dlen;
bufferLength = offsetof(STORAGE_PROPERTY_QUERY, AdditionalParameters) +
sizeof(STORAGE_PROTOCOL_SPECIFIC_DATA) + n;
buffer = sg_memalign(bufferLength, pg_sz, &free_buffer, false);
if (buffer == NULL) {
res = sg_convert_errno(ENOMEM);
if (vb > 1)
pr2ws("%s: unable to allocate memory\n", __func__);
psp->os_err = res;
return -res;
}
query = (STORAGE_PROPERTY_QUERY *)buffer;
query->PropertyId = StorageDeviceProtocolSpecificProperty;
query->QueryType = PropertyStandardQuery;
protocolDataDescr = (STORAGE_PROTOCOL_DATA_DESCRIPTOR *)buffer;
protocolData = (STORAGE_PROTOCOL_SPECIFIC_DATA *)
query->AdditionalParameters;
protocolData->ProtocolType = ProtocolTypeNvme;
protocolData->DataType = NVMeDataTypeLogPage; /* Get Log Page */
protocolData->ProtocolDataRequestValue = cdw10;
protocolData->ProtocolDataRequestSubValue = nsid;
protocolData->ProtocolDataOffset = sizeof(STORAGE_PROTOCOL_SPECIFIC_DATA);
protocolData->ProtocolDataLength = dlen;
result = DeviceIoControl(shp->fh, IOCTL_STORAGE_QUERY_PROPERTY,
buffer, bufferLength, buffer, bufferLength,
&returnedLength, (OVERLAPPED*)0);
if ((! result) || (0 == returnedLength)) {
n = (uint32_t)GetLastError();
psp->transport_err = n;
psp->os_err = EIO; /* simulate Unix error, */
if (vb > 2) {
char b[128];
pr2ws("%s: IOCTL_STORAGE_QUERY_PROPERTY(id_ctrl) failed: %s "
"[%u]\n", __func__, get_err_str(n, sizeof(b), b), n);
}
res = -psp->os_err;
goto err_out;
}
if (dlen > 0) {
protocolData = &protocolDataDescr->ProtocolSpecificData;
bp = (const uint8_t *)protocolData + protocolData->ProtocolDataOffset;
memcpy(dp, bp, dlen);
}
psp->nvme_status = 0;
psp->nvme_result =
protocolDataDescr->ProtocolSpecificData.FixedProtocolReturnData;
if (vb > 3)
pr2ws("%s: IOCTL_STORAGE_QUERY_PROPERTY(id_ctrl) success, "
"returnedLength=%u\n", __func__, (uint32_t)returnedLength);
res = 0;
err_out:
if (free_buffer)
free(free_buffer);
return res;
}
static int
nvme_real_pt(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cmdp, uint8_t * dp, uint32_t dlen, bool is_read,
int time_secs, int vb)
{
int res = 0;
const uint32_t cmd_len = 64;
const uint32_t pg_sz = sg_get_page_size();
uint32_t n, k;
uint32_t rd_off = 0;
uint32_t slen = psp->sense_len;
uint8_t * bp;
uint8_t * sbp = psp->sensep;
BOOL ok;
PVOID buffer = NULL;
uint8_t * free_buffer = NULL;
ULONG bufferLength = 0;
ULONG returnLength = 0;
STORAGE_PROTOCOL_COMMAND * protoCmdp;
const NVME_ERROR_INFO_LOG * neilp;
n = dlen < NVME_MAX_LOG_SIZE ? NVME_MAX_LOG_SIZE : dlen;
bufferLength = offsetof(STORAGE_PROTOCOL_COMMAND, Command) +
cmd_len +
sizeof(NVME_ERROR_INFO_LOG) + n;
buffer = sg_memalign(bufferLength, pg_sz, &free_buffer, false);
if (buffer == NULL) {
res = sg_convert_errno(ENOMEM);
if (vb > 1)
pr2ws("%s: unable to allocate memory\n", __func__);
psp->os_err = res;
return -res;
}
protoCmdp = (STORAGE_PROTOCOL_COMMAND *)buffer;
protoCmdp->Version = STORAGE_PROTOCOL_STRUCTURE_VERSION;
protoCmdp->Length = sizeof(STORAGE_PROTOCOL_COMMAND);
protoCmdp->ProtocolType = ProtocolTypeNvme;
/* without *_ADAPTER_REQUEST flag, goes to device */
protoCmdp->Flags = STORAGE_PROTOCOL_COMMAND_FLAG_ADAPTER_REQUEST;
/* protoCmdp->Flags = 0; */
protoCmdp->CommandLength = cmd_len;
protoCmdp->ErrorInfoLength = sizeof(NVME_ERROR_INFO_LOG);
if (dlen > 0) {
if (is_read)
protoCmdp->DataFromDeviceTransferLength = dlen;
else
protoCmdp->DataToDeviceTransferLength = dlen;
}
protoCmdp->TimeOutValue = (time_secs > 0) ? time_secs : DEF_TIMEOUT;
protoCmdp->ErrorInfoOffset =
offsetof(STORAGE_PROTOCOL_COMMAND, Command) + cmd_len;
n = protoCmdp->ErrorInfoOffset + protoCmdp->ErrorInfoLength;
if (is_read) {
protoCmdp->DataFromDeviceBufferOffset = n;
rd_off = n;
} else
protoCmdp->DataToDeviceBufferOffset = n;
protoCmdp->CommandSpecific =
STORAGE_PROTOCOL_SPECIFIC_NVME_ADMIN_COMMAND;
memcpy(protoCmdp->Command, cmdp, cmd_len);
if ((dlen > 0) && (! is_read)) {
bp = (uint8_t *)protoCmdp + n;
memcpy(bp, dp, dlen);
}
ok = DeviceIoControl(shp->fh, IOCTL_STORAGE_PROTOCOL_COMMAND,
buffer, bufferLength, buffer, bufferLength,
&returnLength, (OVERLAPPED*)0);
if (! ok) {
n = (uint32_t)GetLastError();
psp->transport_err = n;
psp->os_err = EIO; /* simulate Unix error, */
if (vb > 2) {
char b[128];
pr2ws("%s: IOCTL_STORAGE_PROTOCOL_COMMAND failed: %s "
"[%u]\n", __func__, get_err_str(n, sizeof(b), b), n);
pr2ws(" ... ReturnStatus=0x%x, ReturnLength=%u\n",
(uint32_t)protoCmdp->ReturnStatus, (uint32_t)returnLength);
}
res = -psp->os_err;
goto err_out;
}
bp = (uint8_t *)protoCmdp + protoCmdp->ErrorInfoOffset;
neilp = (const NVME_ERROR_INFO_LOG *)bp;
/* Shift over top of Phase tag bit */
psp->nvme_status = 0x3ff & (neilp->Status.AsUshort >> 1);
if ((dlen > 0) && is_read) {
bp = (uint8_t *)protoCmdp + rd_off;
memcpy(dp, bp, dlen);
}
psp->nvme_result = protoCmdp->FixedProtocolReturnData;
if (psp->nvme_direct && sbp && (slen > 3)) {
/* build 16 byte "sense" buffer from completion queue entry */
n = (slen < 16) ? slen : 16;
memset(sbp, 0 , n);
psp->sense_resid = (slen > 16) ? (slen - 16) : 0;
sg_put_unaligned_le32(psp->nvme_result, sbp + SG_NVME_PT_CQ_DW0);
if (n > 11) {
k = neilp->SQID;
sg_put_unaligned_le32((k << 16), sbp + SG_NVME_PT_CQ_DW2);
if (n > 15) {
k = ((uint32_t)neilp->Status.AsUshort << 16) | neilp->CMDID;
sg_put_unaligned_le32(k, sbp + SG_NVME_PT_CQ_DW3);
}
}
}
if (vb > 3)
pr2ws("%s: opcode=0x%x, status=0x%x, result=0x%x\n",
__func__, cmdp[0], psp->nvme_status, psp->nvme_result);
res = psp->nvme_status ? SG_LIB_NVME_STATUS : 0;
err_out:
if (free_buffer)
free(free_buffer);
return res;
}
static int
do_nvme_admin_cmd(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cmdp, uint8_t * dp, uint32_t dlen,
bool is_read, int time_secs, int vb)
{
const uint32_t cmd_len = 64;
int res;
uint32_t n;
uint8_t opcode;
psp->os_err = 0;
psp->transport_err = 0;
if (NULL == cmdp) {
if (! psp->have_nvme_cmd)
return SCSI_PT_DO_BAD_PARAMS;
cmdp = psp->nvme_cmd;
is_read = psp->is_read;
dlen = psp->dxfer_len;
dp = psp->dxferp;
}
if (vb > 2) {
pr2ws("NVMe is_read=%s, dlen=%u, command:\n",
(is_read ? "true" : "false"), dlen);
hex2stderr((const uint8_t *)cmdp, cmd_len, 1);
if ((vb > 3) && (! is_read) && dp) {
if (dlen > 0) {
n = dlen;
if ((dlen < 512) || (vb > 5))
pr2ws("\nData-out buffer (%u bytes):\n", n);
else {
pr2ws("\nData-out buffer (first 512 of %u bytes):\n", n);
n = 512;
}
hex2stderr((const uint8_t *)dp, n, 0);
}
}
}
opcode = cmdp[0];
switch (opcode) { /* The matches below are cached by W10 */
case 0x6: /* Identify (controller + namespace */
res = nvme_identify(psp, shp, cmdp, dp, dlen, vb);
if (res)
goto err_out;
break;
case 0xa: /* Get features */
res = nvme_get_features(psp, shp, cmdp, dp, dlen, vb);
if (res)
goto err_out;
break;
case 0x2: /* Get Log Page */
res = nvme_get_log_page(psp, shp, cmdp, dp, dlen, vb);
if (res)
goto err_out;
break;
default:
res = nvme_real_pt(psp, shp, cmdp, dp, dlen, is_read, time_secs, vb);
if (res)
goto err_out;
break;
/* IOCTL_STORAGE_PROTOCOL_COMMAND base pass-through goes here */
res = -EINVAL;
goto err_out;
}
if ((vb > 3) && is_read && dp && (dlen > 0)) {
n = dlen;
if ((dlen < 1024) || (vb > 5))
pr2ws("\nData-in buffer (%u bytes):\n", n);
else {
pr2ws("\nData-in buffer (first 1024 of %u bytes):\n", n);
n = 1024;
}
hex2stderr((const uint8_t *)dp, n, 0);
}
err_out:
return res;
}
#else /* W10_NVME_NON_PASSTHRU */
/* If cmdp is NULL then dp, dlen and is_read are ignored, those values are
* obtained from psp. Returns 0 for success. Returns SG_LIB_NVME_STATUS if
* there is non-zero NVMe status (SCT|SC from the completion queue) with the
* value placed in psp->nvme_status. If Unix error from ioctl then return
* negated value (equivalent -errno from basic Unix system functions like
* open()). CDW0 from the completion queue is placed in psp->nvme_result in
* the absence of an error.
* The following code is based on os_win32.cpp in smartmontools:
* Copyright (C) 2004-17 Christian Franke
* The code is licensed with a GPL-2. */
static int
do_nvme_admin_cmd(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cmdp, uint8_t * dp, uint32_t dlen,
bool is_read, int time_secs, int vb)
{
const uint32_t cmd_len = 64;
int res;
uint32_t n, alloc_len;
const uint32_t pg_sz = sg_get_page_size();
uint32_t slen = psp->sense_len;
uint8_t * sbp = psp->sensep;
NVME_PASS_THROUGH_IOCTL * pthru;
uint8_t * free_pthru;
DWORD num_out = 0;
BOOL ok;
psp->os_err = 0;
psp->transport_err = 0;
if (NULL == cmdp) {
if (! psp->have_nvme_cmd)
return SCSI_PT_DO_BAD_PARAMS;
cmdp = psp->nvme_cmd;
is_read = psp->is_read;
dlen = psp->dxfer_len;
dp = psp->dxferp;
}
if (vb > 2) {
pr2ws("NVMe is_read=%s, dlen=%u, command:\n",
(is_read ? "true" : "false"), dlen);
hex2stderr((const uint8_t *)cmdp, cmd_len, 1);
if ((vb > 3) && (! is_read) && dp) {
if (dlen > 0) {
n = dlen;
if ((dlen < 512) || (vb > 5))
pr2ws("\nData-out buffer (%u bytes):\n", n);
else {
pr2ws("\nData-out buffer (first 512 of %u bytes):\n", n);
n = 512;
}
hex2stderr((const uint8_t *)dp, n, 0);
}
}
}
alloc_len = sizeof(NVME_PASS_THROUGH_IOCTL) + dlen;
pthru = (NVME_PASS_THROUGH_IOCTL *)sg_memalign(alloc_len, pg_sz,
&free_pthru, false);
if (NULL == pthru) {
res = sg_convert_errno(ENOMEM);
if (vb > 1)
pr2ws("%s: unable to allocate memory\n", __func__);
psp->os_err = res;
return -res;
}
if (dp && (dlen > 0) && (! is_read))
memcpy(pthru->DataBuffer, dp, dlen); /* dout-out buffer */
/* Set NVMe command */
pthru->SrbIoCtrl.HeaderLength = sizeof(SRB_IO_CONTROL);
memcpy(pthru->SrbIoCtrl.Signature, NVME_SIG_STR, sizeof(NVME_SIG_STR)-1);
pthru->SrbIoCtrl.Timeout = (time_secs > 0) ? time_secs : DEF_TIMEOUT;
pthru->SrbIoCtrl.ControlCode = NVME_PASS_THROUGH_SRB_IO_CODE;
pthru->SrbIoCtrl.ReturnCode = 0;
pthru->SrbIoCtrl.Length = alloc_len - sizeof(SRB_IO_CONTROL);
memcpy(pthru->NVMeCmd, cmdp, cmd_len);
if (dlen > 0)
pthru->Direction = is_read ? 2 : 1;
else
pthru->Direction = 0;
pthru->ReturnBufferLen = alloc_len;
shp = get_open_pt_handle(psp, psp->dev_fd, vb > 1);
if (NULL == shp) {
res = -psp->os_err; /* -ENODEV */
goto err_out;
}
ok = DeviceIoControl(shp->fh, IOCTL_SCSI_MINIPORT, pthru, alloc_len,
pthru, alloc_len, &num_out, (OVERLAPPED*)0);
if (! ok) {
n = (uint32_t)GetLastError();
psp->transport_err = n;
psp->os_err = EIO; /* simulate Unix error, */
if (vb > 2) {
char b[128];
pr2ws("%s: IOCTL_SCSI_MINIPORT failed: %s [%u]\n", __func__,
get_err_str(n, sizeof(b), b), n);
}
}
/* nvme_status is SCT|SC, therefor it excludes DNR+More */
psp->nvme_status = 0x3ff & (pthru->CplEntry[3] >> 17);
if (psp->nvme_status && (vb > 1)) {
uint16_t s = psp->nvme_status;
char b[80];
pr2ws("%s: opcode=0x%x failed: NVMe status: %s [0x%x]\n", __func__,
cmdp[0], sg_get_nvme_cmd_status_str(s, sizeof(b), b), s);
}
psp->nvme_result = sg_get_unaligned_le32(pthru->CplEntry + 0);
psp->sense_resid = 0;
if (psp->nvme_direct && sbp && (slen > 3)) {
/* build 16 byte "sense" buffer */
n = (slen < 16) ? slen : 16;
memset(sbp, 0 , n);
psp->sense_resid = (slen > 16) ? (slen - 16) : 0;
sg_put_unaligned_le32(pthru->CplEntry[0], sbp + SG_NVME_PT_CQ_DW0);
if (n > 7) {
sg_put_unaligned_le32(pthru->CplEntry[1],
sbp + SG_NVME_PT_CQ_DW1);
if (n > 11) {
sg_put_unaligned_le32(pthru->CplEntry[2],
sbp + SG_NVME_PT_CQ_DW2);
if (n > 15)
sg_put_unaligned_le32(pthru->CplEntry[3],
sbp + SG_NVME_PT_CQ_DW3);
}
}
}
if (! ok) {
res = -psp->os_err;
goto err_out;
} else if (psp->nvme_status) {
res = SG_LIB_NVME_STATUS;
goto err_out;
}
if (dp && (dlen > 0) && is_read) {
memcpy(dp, pthru->DataBuffer, dlen); /* data-in buffer */
if (vb > 3) {
n = dlen;
if ((dlen < 1024) || (vb > 5))
pr2ws("\nData-in buffer (%u bytes):\n", n);
else {
pr2ws("\nData-in buffer (first 1024 of %u bytes):\n", n);
n = 1024;
}
hex2stderr((const uint8_t *)dp, n, 0);
}
}
res = 0;
err_out:
if (free_pthru)
free(free_pthru);
return res;
}
#endif /* W10_NVME_NON_PASSTHRU */
static void
sntl_check_enclosure_override(struct sg_pt_win32_scsi * psp,
struct sg_pt_handle * shp, int vb)
{
uint8_t * up = psp->nvme_id_ctlp;
uint8_t nvmsr;
if (NULL == up)
return;
nvmsr = up[253];
if (vb > 3)
pr2ws("%s: enter, nvmsr=%u\n", __func__, nvmsr);
shp->dev_stat.id_ctl253 = nvmsr;
switch (shp->dev_stat.enclosure_override) {
case 0x0: /* no override */
if (0x3 & nvmsr) {
shp->dev_stat.pdt = PDT_DISK;
shp->dev_stat.enc_serv = 1;
} else if (0x2 & nvmsr) {
shp->dev_stat.pdt = PDT_SES;
shp->dev_stat.enc_serv = 1;
} else if (0x1 & nvmsr) {
shp->dev_stat.pdt = PDT_DISK;
shp->dev_stat.enc_serv = 0;
} else {
uint32_t nn = sg_get_unaligned_le32(up + 516);
shp->dev_stat.pdt = nn ? PDT_DISK : PDT_UNKNOWN;
shp->dev_stat.enc_serv = 0;
}
break;
case 0x1: /* override to SES device */
shp->dev_stat.pdt = PDT_SES;
shp->dev_stat.enc_serv = 1;
break;
case 0x2: /* override to disk with attached SES device */
shp->dev_stat.pdt = PDT_DISK;
shp->dev_stat.enc_serv = 1;
break;
case 0x3: /* override to SAFTE device (PDT_PROCESSOR) */
shp->dev_stat.pdt = PDT_PROCESSOR;
shp->dev_stat.enc_serv = 1;
break;
case 0xff: /* override to normal disk */
shp->dev_stat.pdt = PDT_DISK;
shp->dev_stat.enc_serv = 0;
break;
default:
pr2ws("%s: unknown enclosure_override value: %d\n", __func__,
shp->dev_stat.enclosure_override);
break;
}
}
/* Returns 0 on success; otherwise a positive value is returned */
static int
sntl_cache_identity(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
int time_secs, int vb)
{
static const bool is_read = true;
const uint32_t pg_sz = sg_get_page_size();
int ret;
uint8_t * up;
uint8_t * cmdp;
up = sg_memalign(((pg_sz < 4096) ? 4096 : pg_sz), pg_sz,
&psp->free_nvme_id_ctlp, false);
psp->nvme_id_ctlp = up;
if (NULL == up) {
pr2ws("%s: sg_memalign() failed to get memory\n", __func__);
return -ENOMEM;
}
cmdp = psp->nvme_cmd;
memset(cmdp, 0, sizeof(psp->nvme_cmd));
cmdp[0] = 0x6; /* Identify */
/* leave nsid as 0, should it be broadcast (0xffffffff) ? */
/* CNS=0x1 Identify controller: */
sg_put_unaligned_le32(0x1, cmdp + SG_NVME_PT_CDW10);
sg_put_unaligned_le64((uint64_t)(sg_uintptr_t)up, cmdp + SG_NVME_PT_ADDR);
sg_put_unaligned_le32(pg_sz, cmdp + SG_NVME_PT_DATA_LEN);
ret = do_nvme_admin_cmd(psp, shp, cmdp, up, 4096, is_read, time_secs,
vb);
if (0 == ret)
sntl_check_enclosure_override(psp, shp, vb);
return ret;
}
static const char * nvme_scsi_vendor_str = "NVMe ";
static const uint16_t inq_resp_len = 36;
static int
sntl_inq(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cdbp, int time_secs, int vb)
{
bool evpd;
bool cp_id_ctl = false;
int res;
uint16_t n, alloc_len, pg_cd;
const uint32_t pg_sz = sg_get_page_size();
uint8_t * nvme_id_ns = NULL;
uint8_t * free_nvme_id_ns = NULL;
uint8_t inq_dout[256];
uint8_t * cmdp;
if (vb > 3)
pr2ws("%s: time_secs=%d\n", __func__, time_secs);
if (0x2 & cdbp[1]) { /* Reject CmdDt=1 */
mk_sense_invalid_fld(psp, true, 1, 1, vb);
return 0;
}
if (NULL == psp->nvme_id_ctlp) {
res = sntl_cache_identity(psp, shp, time_secs, vb);
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else if (res) /* should be negative errno */
return res;
}
memset(inq_dout, 0, sizeof(inq_dout));
alloc_len = sg_get_unaligned_be16(cdbp + 3);
evpd = !!(0x1 & cdbp[1]);
pg_cd = cdbp[2];
if (evpd) { /* VPD page responses */
switch (pg_cd) {
case 0:
/* inq_dout[0] = (PQ=0)<<5 | (PDT=0); prefer pdt=0xd --> SES */
inq_dout[1] = pg_cd;
n = 11;
sg_put_unaligned_be16(n - 4, inq_dout + 2);
inq_dout[4] = 0x0;
inq_dout[5] = 0x80;
inq_dout[6] = 0x83;
inq_dout[7] = 0x86;
inq_dout[8] = 0x87;
inq_dout[9] = 0x92;
inq_dout[n - 1] = SG_NVME_VPD_NICR; /* last VPD number */
break;
case 0x80:
/* inq_dout[0] = (PQ=0)<<5 | (PDT=0); prefer pdt=0xd --> SES */
inq_dout[1] = pg_cd;
n = 24;
sg_put_unaligned_be16(n - 4, inq_dout + 2);
memcpy(inq_dout + 4, psp->nvme_id_ctlp + 4, 20); /* SN */
break;
case 0x83:
if ((psp->nvme_nsid > 0) &&
(psp->nvme_nsid < SG_NVME_BROADCAST_NSID)) {
nvme_id_ns = sg_memalign(pg_sz, pg_sz, &free_nvme_id_ns,
false);
if (nvme_id_ns) {
cmdp = psp->nvme_cmd;
memset(cmdp, 0, sizeof(psp->nvme_cmd));
cmdp[SG_NVME_PT_OPCODE] = 0x6; /* Identify */
sg_put_unaligned_le32(psp->nvme_nsid,
cmdp + SG_NVME_PT_NSID);
/* CNS=0x0 Identify controller: */
sg_put_unaligned_le32(0x0, cmdp + SG_NVME_PT_CDW10);
sg_put_unaligned_le64((uint64_t)(sg_uintptr_t)nvme_id_ns,
cmdp + SG_NVME_PT_ADDR);
sg_put_unaligned_le32(pg_sz, cmdp + SG_NVME_PT_DATA_LEN);
res = do_nvme_admin_cmd(psp, shp, cmdp, nvme_id_ns, pg_sz,
true, time_secs, vb > 3);
if (res) {
free(free_nvme_id_ns);
free_nvme_id_ns = NULL;
nvme_id_ns = NULL;
}
}
}
n = sg_make_vpd_devid_for_nvme(psp->nvme_id_ctlp, nvme_id_ns,
0 /* pdt */, -1 /*tproto */,
inq_dout, sizeof(inq_dout));
if (n > 3)
sg_put_unaligned_be16(n - 4, inq_dout + 2);
if (free_nvme_id_ns) {
free(free_nvme_id_ns);
free_nvme_id_ns = NULL;
nvme_id_ns = NULL;
}
break;
case 0x86: /* Extended INQUIRY (per SFS SPC Discovery 2016) */
inq_dout[1] = pg_cd;
n = 64;
sg_put_unaligned_be16(n - 4, inq_dout + 2);
inq_dout[5] = 0x1; /* SIMPSUP=1 */
inq_dout[7] = 0x1; /* LUICLR=1 */
inq_dout[13] = 0x40; /* max supported sense data length */
break;
case 0x87: /* Mode page policy (per SFS SPC Discovery 2016) */
inq_dout[1] = pg_cd;
n = 8;
sg_put_unaligned_be16(n - 4, inq_dout + 2);
inq_dout[4] = 0x3f; /* all mode pages */
inq_dout[5] = 0xff; /* and their sub-pages */
inq_dout[6] = 0x80; /* MLUS=1, policy=shared */
break;
case 0x92: /* SCSI Feature set: only SPC Discovery 2016 */
inq_dout[1] = pg_cd;
n = 10;
sg_put_unaligned_be16(n - 4, inq_dout + 2);
inq_dout[9] = 0x1; /* SFS SPC Discovery 2016 */
break;
case SG_NVME_VPD_NICR: /* 0xde */
inq_dout[1] = pg_cd;
sg_put_unaligned_be16((16 + 4096) - 4, inq_dout + 2);
n = 16 + 4096;
cp_id_ctl = true;
break;
default: /* Point to page_code field in cdb */
mk_sense_invalid_fld(psp, true, 2, 7, vb);
return 0;
}
if (alloc_len > 0) {
n = (alloc_len < n) ? alloc_len : n;
n = (n < psp->dxfer_len) ? n : psp->dxfer_len;
psp->resid = psp->dxfer_len - n;
if (n > 0) {
if (cp_id_ctl) {
memcpy(psp->dxferp, inq_dout, (n < 16 ? n : 16));
if (n > 16)
memcpy(psp->dxferp + 16,
psp->nvme_id_ctlp, n - 16);
} else
memcpy(psp->dxferp, inq_dout, n);
}
}
} else { /* Standard INQUIRY response */
/* pdt=0 --> disk; pdt=0xd --> SES; pdt=3 --> processor (safte) */
inq_dout[0] = (0x1f & shp->dev_stat.pdt); /* (PQ=0)<<5 */
/* inq_dout[1] = (RMD=0)<<7 | (LU_CONG=0)<<6; rest reserved */
inq_dout[2] = 6; /* version: SPC-4 */
inq_dout[3] = 2; /* NORMACA=0, HISUP=0, response data format: 2 */
inq_dout[4] = 31; /* so response length is (or could be) 36 bytes */
inq_dout[6] = shp->dev_stat.enc_serv ? 0x40 : 0;
inq_dout[7] = 0x2; /* CMDQUE=1 */
memcpy(inq_dout + 8, nvme_scsi_vendor_str, 8); /* NVMe not Intel */
memcpy(inq_dout + 16, psp->nvme_id_ctlp + 24, 16); /* Prod <-- MN */
memcpy(inq_dout + 32, psp->nvme_id_ctlp + 64, 4); /* Rev <-- FR */
if (alloc_len > 0) {
n = (alloc_len < inq_resp_len) ? alloc_len : inq_resp_len;
n = (n < psp->dxfer_len) ? n : psp->dxfer_len;
psp->resid = psp->dxfer_len - n;
if (n > 0)
memcpy(psp->dxferp, inq_dout, n);
}
}
return 0;
}
static int
sntl_rluns(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cdbp, int time_secs, int vb)
{
int res;
uint16_t sel_report;
uint32_t alloc_len, k, n, num, max_nsid;
uint8_t * rl_doutp;
uint8_t * up;
if (vb > 3)
pr2ws("%s: time_secs=%d\n", __func__, time_secs);
sel_report = cdbp[2];
alloc_len = sg_get_unaligned_be32(cdbp + 6);
if (NULL == psp->nvme_id_ctlp) {
res = sntl_cache_identity(psp, shp, time_secs, vb);
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else if (res)
return res;
}
max_nsid = sg_get_unaligned_le32(psp->nvme_id_ctlp + 516);
switch (sel_report) {
case 0:
case 2:
num = max_nsid;
break;
case 1:
case 0x10:
case 0x12:
num = 0;
break;
case 0x11:
num = (1 == psp->nvme_nsid) ? max_nsid : 0;
break;
default:
if (vb > 1)
pr2ws("%s: bad select_report value: 0x%x\n", __func__,
sel_report);
mk_sense_invalid_fld(psp, true, 2, 7, vb);
return 0;
}
rl_doutp = (uint8_t *)calloc(num + 1, 8);
if (NULL == rl_doutp) {
pr2ws("%s: calloc() failed to get memory\n", __func__);
return -ENOMEM;
}
for (k = 0, up = rl_doutp + 8; k < num; ++k, up += 8)
sg_put_unaligned_be16(k, up);
n = num * 8;
sg_put_unaligned_be32(n, rl_doutp);
n+= 8;
if (alloc_len > 0) {
n = (alloc_len < n) ? alloc_len : n;
n = (n < psp->dxfer_len) ? n : psp->dxfer_len;
psp->resid = psp->dxfer_len - n;
if (n > 0)
memcpy(psp->dxferp, rl_doutp, n);
}
res = 0;
free(rl_doutp);
return res;
}
static int
sntl_tur(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
int time_secs, int vb)
{
int res;
uint32_t pow_state;
uint8_t * cmdp;
if (vb > 4)
pr2ws("%s: enter\n", __func__);
if (NULL == psp->nvme_id_ctlp) {
res = sntl_cache_identity(psp, shp, time_secs, vb);
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else if (res)
return res;
}
cmdp = psp->nvme_cmd;
memset(cmdp, 0, sizeof(psp->nvme_cmd));
cmdp[SG_NVME_PT_OPCODE] = 0xa; /* Get features */
sg_put_unaligned_le32(SG_NVME_BROADCAST_NSID, cmdp + SG_NVME_PT_NSID);
/* SEL=0 (current), Feature=2 Power Management */
sg_put_unaligned_le32(0x2, cmdp + SG_NVME_PT_CDW10);
res = do_nvme_admin_cmd(psp, shp, cmdp, NULL, 0, false, time_secs, vb);
if (0 != res) {
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else
return res;
} else {
psp->os_err = 0;
psp->nvme_status = 0;
}
pow_state = (0x1f & psp->nvme_result);
if (vb > 3)
pr2ws("%s: pow_state=%u\n", __func__, pow_state);
#if 0 /* pow_state bounces around too much on laptop */
if (pow_state)
mk_sense_asc_ascq(psp, SPC_SK_NOT_READY, LOW_POWER_COND_ON_ASC, 0,
vb);
#endif
return 0;
}
static int
sntl_req_sense(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cdbp, int time_secs, int vb)
{
bool desc;
int res;
uint32_t pow_state, alloc_len, n;
uint8_t rs_dout[64];
uint8_t * cmdp;
if (vb > 3)
pr2ws("%s: time_secs=%d\n", __func__, time_secs);
if (NULL == psp->nvme_id_ctlp) {
res = sntl_cache_identity(psp, shp, time_secs, vb);
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else if (res)
return res;
}
desc = !!(0x1 & cdbp[1]);
alloc_len = cdbp[4];
cmdp = psp->nvme_cmd;
memset(cmdp, 0, sizeof(psp->nvme_cmd));
cmdp[SG_NVME_PT_OPCODE] = 0xa; /* Get features */
sg_put_unaligned_le32(SG_NVME_BROADCAST_NSID, cmdp + SG_NVME_PT_NSID);
/* SEL=0 (current), Feature=2 Power Management */
sg_put_unaligned_le32(0x2, cmdp + SG_NVME_PT_CDW10);
res = do_nvme_admin_cmd(psp, shp, cmdp, NULL, 0, false, time_secs, vb);
if (0 != res) {
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else
return res;
} else {
psp->os_err = 0;
psp->nvme_status = 0;
}
psp->sense_resid = psp->sense_len;
pow_state = (0x1f & psp->nvme_result);
if (vb > 3)
pr2ws("%s: pow_state=%u\n", __func__, pow_state);
memset(rs_dout, 0, sizeof(rs_dout));
if (pow_state)
sg_build_sense_buffer(desc, rs_dout, SPC_SK_NO_SENSE,
LOW_POWER_COND_ON_ASC, 0);
else
sg_build_sense_buffer(desc, rs_dout, SPC_SK_NO_SENSE,
NO_ADDITIONAL_SENSE, 0);
n = desc ? 8 : 18;
n = (n < alloc_len) ? n : alloc_len;
n = (n < psp->dxfer_len) ? n : psp->dxfer_len;
psp->resid = psp->dxfer_len - n;
if (n > 0)
memcpy(psp->dxferp, rs_dout, n);
return 0;
}
static int
sntl_mode_ss(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cdbp, int time_secs, int vb)
{
bool is_msense = (SCSI_MODE_SENSE10_OPC == cdbp[0]);
int res, n, len;
uint8_t * bp;
struct sg_sntl_result_t sntl_result;
if (vb > 3)
pr2ws("%s: mse%s, time_secs=%d\n", __func__,
(is_msense ? "nse" : "lect"), time_secs);
if (NULL == psp->nvme_id_ctlp) {
res = sntl_cache_identity(psp, shp, time_secs, vb);
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else if (res)
return res;
}
if (is_msense) { /* MODE SENSE(10) */
len = psp->dxfer_len;
bp = psp->dxferp;
n = sntl_resp_mode_sense10(&shp->dev_stat, cdbp, bp, len,
&sntl_result);
psp->resid = (n >= 0) ? len - n : len;
} else { /* MODE SELECT(10) */
uint8_t pre_enc_ov = shp->dev_stat.enclosure_override;
len = psp->dxfer_len;
bp = psp->dxferp;
n = sntl_resp_mode_select10(&shp->dev_stat, cdbp, bp, len,
&sntl_result);
if (pre_enc_ov != shp->dev_stat.enclosure_override)
sntl_check_enclosure_override(psp, shp, vb); /* ENC_OV changed */
}
if (n < 0) {
int in_bit = (255 == sntl_result.in_bit) ? (int)sntl_result.in_bit :
-1;
if ((SAM_STAT_CHECK_CONDITION == sntl_result.sstatus) &&
(SPC_SK_ILLEGAL_REQUEST == sntl_result.sk)) {
if (INVALID_FIELD_IN_CDB == sntl_result.asc)
mk_sense_invalid_fld(psp, true, sntl_result.in_byte, in_bit,
vb);
else if (INVALID_FIELD_IN_PARAM_LIST == sntl_result.asc)
mk_sense_invalid_fld(psp, false, sntl_result.in_byte, in_bit,
vb);
else
mk_sense_asc_ascq(psp, sntl_result.sk, sntl_result.asc,
sntl_result.ascq, vb);
} else
pr2ws("%s: error but no sense?? n=%d\n", __func__, n);
}
return 0;
}
/* This is not really a SNTL. For SCSI SEND DIAGNOSTIC(PF=1) NVMe-MI
* has a special command (SES Send) to tunnel through pages to an
* enclosure. The NVMe enclosure is meant to understand the SES
* (SCSI Enclosure Services) use of diagnostics pages that are
* related to SES. */
static int
sntl_senddiag(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cdbp, int time_secs, int vb)
{
bool pf, self_test;
int res;
uint8_t st_cd, dpg_cd;
uint32_t alloc_len, n, dout_len, dpg_len, nvme_dst;
uint8_t * dop;
uint8_t * cmdp;
st_cd = 0x7 & (cdbp[1] >> 5);
self_test = !! (0x4 & cdbp[1]);
pf = !! (0x10 & cdbp[1]);
if (vb > 3)
pr2ws("%s: pf=%d, self_test=%d (st_code=%d)\n", __func__, (int)pf,
(int)self_test, (int)st_cd);
cmdp = psp->nvme_cmd;
if (self_test || st_cd) {
memset(cmdp, 0, sizeof(psp->nvme_cmd));
cmdp[SG_NVME_PT_OPCODE] = 0x14; /* Device self-test */
/* just this namespace (if there is one) and controller */
sg_put_unaligned_le32(psp->nvme_nsid, cmdp + SG_NVME_PT_NSID);
switch (st_cd) {
case 0: /* Here if self_test is set, do short self-test */
case 1: /* Background short */
case 5: /* Foreground short */
nvme_dst = 1;
break;
case 2: /* Background extended */
case 6: /* Foreground extended */
nvme_dst = 2;
break;
case 4: /* Abort self-test */
nvme_dst = 0xf;
break;
default:
pr2ws("%s: bad self-test code [0x%x]\n", __func__, st_cd);
mk_sense_invalid_fld(psp, true, 1, 7, vb);
return 0;
}
sg_put_unaligned_le32(nvme_dst, cmdp + SG_NVME_PT_CDW10);
res = do_nvme_admin_cmd(psp, shp, cmdp, NULL, 0, false, time_secs,
vb);
if (0 != res) {
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else
return res;
}
}
alloc_len = sg_get_unaligned_be16(cdbp + 3); /* parameter list length */
dout_len = psp->dxfer_len;
if (pf) {
if (0 == alloc_len) {
mk_sense_invalid_fld(psp, true, 3, 7, vb);
if (vb)
pr2ws("%s: PF bit set bit param_list_len=0\n", __func__);
return 0;
}
} else { /* PF bit clear */
if (alloc_len) {
mk_sense_invalid_fld(psp, true, 3, 7, vb);
if (vb)
pr2ws("%s: param_list_len>0 but PF clear\n", __func__);
return 0;
} else
return 0; /* nothing to do */
if (dout_len > 0) {
if (vb)
pr2ws("%s: dout given but PF clear\n", __func__);
return SCSI_PT_DO_BAD_PARAMS;
}
}
if (dout_len < 4) {
if (vb)
pr2ws("%s: dout length (%u bytes) too short\n", __func__,
dout_len);
return SCSI_PT_DO_BAD_PARAMS;
}
n = dout_len;
n = (n < alloc_len) ? n : alloc_len;
dop = psp->dxferp;
if (! sg_is_aligned(dop, 0)) { /* page aligned ? */
if (vb)
pr2ws("%s: dout [0x%" PRIx64 "] not page aligned\n", __func__,
(uint64_t)(sg_uintptr_t)psp->dxferp);
return SCSI_PT_DO_BAD_PARAMS;
}
dpg_cd = dop[0];
dpg_len = sg_get_unaligned_be16(dop + 2) + 4;
/* should we allow for more than one D_PG is dout ?? */
n = (n < dpg_len) ? n : dpg_len; /* not yet ... */
if (vb)
pr2ws("%s: passing through d_pg=0x%x, len=%u to NVME_MI SES send\n",
__func__, dpg_cd, dpg_len);
memset(cmdp, 0, sizeof(psp->nvme_cmd));
cmdp[SG_NVME_PT_OPCODE] = 0x1d; /* MI Send */
/* And 0x1d is same opcode as the SCSI SEND DIAGNOSTIC command */
sg_put_unaligned_le64((uint64_t)(sg_uintptr_t)dop,
cmdp + SG_NVME_PT_ADDR);
/* NVMe 4k page size. Maybe determine this? */
/* N.B. Maybe n > 0x1000, is this a problem?? */
sg_put_unaligned_le32(0x1000, cmdp + SG_NVME_PT_DATA_LEN);
/* NVMe Message Header */
sg_put_unaligned_le32(0x0804, cmdp + SG_NVME_PT_CDW10);
/* NVME-MI SES Send; (0x8 -> NVME-MI SES Receive) */
sg_put_unaligned_le32(0x9, cmdp + SG_NVME_PT_CDW11);
/* 'n' is number of bytes SEND DIAGNOSTIC dpage */
sg_put_unaligned_le32(n, cmdp + SG_NVME_PT_CDW13);
res = do_nvme_admin_cmd(psp, shp, cmdp, dop, n, false, time_secs, vb);
if (0 != res) {
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
}
}
return res;
}
/* This is not really a SNTL. For SCSI RECEIVE DIAGNOSTIC RESULTS(PCV=1)
* NVMe-MI has a special command (SES Receive) to read pages through a
* tunnel from an enclosure. The NVMe enclosure is meant to understand the
* SES (SCSI Enclosure Services) use of diagnostics pages that are
* related to SES. */
static int
sntl_recvdiag(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cdbp, int time_secs, int vb)
{
bool pcv;
int res;
uint8_t dpg_cd;
uint32_t alloc_len, n, din_len;
uint8_t * dip;
uint8_t * cmdp;
pcv = !! (0x1 & cdbp[1]);
dpg_cd = cdbp[2];
alloc_len = sg_get_unaligned_be16(cdbp + 3); /* parameter list length */
if (vb > 3)
pr2ws("%s: dpg_cd=0x%x, pcv=%d, alloc_len=0x%x\n", __func__,
dpg_cd, (int)pcv, alloc_len);
din_len = psp->dxfer_len;
n = (din_len < alloc_len) ? din_len : alloc_len;
dip = psp->dxferp;
if (! sg_is_aligned(dip, 0)) { /* page aligned ? */
if (vb)
pr2ws("%s: din [0x%" PRIx64 "] not page aligned\n", __func__,
(uint64_t)(sg_uintptr_t)psp->dxferp);
return SCSI_PT_DO_BAD_PARAMS;
}
if (vb)
pr2ws("%s: expecting d_pg=0x%x from NVME_MI SES receive\n", __func__,
dpg_cd);
cmdp = psp->nvme_cmd;
memset(cmdp, 0, sizeof(psp->nvme_cmd));
cmdp[SG_NVME_PT_OPCODE] = 0x1e; /* MI Receive */
sg_put_unaligned_le64((uint64_t)(sg_uintptr_t)dip,
cmdp + SG_NVME_PT_ADDR);
/* NVMe 4k page size. Maybe determine this? */
/* N.B. Maybe n > 0x1000, is this a problem?? */
sg_put_unaligned_le32(0x1000, cmdp + SG_NVME_PT_DATA_LEN);
/* NVMe Message Header */
sg_put_unaligned_le32(0x0804, cmdp + SG_NVME_PT_CDW10);
/* NVME-MI SES Receive */
sg_put_unaligned_le32(0x8, cmdp + SG_NVME_PT_CDW11);
/* Diagnostic page code */
sg_put_unaligned_le32(dpg_cd, cmdp + SG_NVME_PT_CDW12);
/* 'n' is number of bytes expected in diagnostic page */
sg_put_unaligned_le32(n, cmdp + SG_NVME_PT_CDW13);
res = do_nvme_admin_cmd(psp, shp, cmdp, dip, n, true, time_secs, vb);
if (0 != res) {
if (SG_LIB_NVME_STATUS == res) {
mk_sense_from_nvme_status(psp, vb);
return 0;
} else
return res;
}
psp->resid = din_len - n;
return res;
}
#define F_SA_LOW 0x80 /* cdb byte 1, bits 4 to 0 */
#define F_SA_HIGH 0x100 /* as used by variable length cdbs */
#define FF_SA (F_SA_HIGH | F_SA_LOW)
#define F_INV_OP 0x200
static int
sntl_rep_opcodes(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cdbp, int time_secs, int vb)
{
bool rctd;
uint8_t reporting_opts, req_opcode, supp;
uint16_t req_sa, u;
uint32_t alloc_len, offset, a_len;
const uint32_t pg_sz = sg_get_page_size();
int k, len, count, bump;
const struct sg_opcode_info_t *oip;
uint8_t *arr;
uint8_t *free_arr;
if (vb > 3)
pr2ws("%s: time_secs=%d\n", __func__, time_secs);
if (shp) { ; } /* suppress warning */
rctd = !!(cdbp[2] & 0x80); /* report command timeout desc. */
reporting_opts = cdbp[2] & 0x7;
req_opcode = cdbp[3];
req_sa = sg_get_unaligned_be16(cdbp + 4);
alloc_len = sg_get_unaligned_be32(cdbp + 6);
if (alloc_len < 4 || alloc_len > 0xffff) {
mk_sense_invalid_fld(psp, true, 6, -1, vb);
return 0;
}
a_len = pg_sz - 72;
arr = sg_memalign(pg_sz, pg_sz, &free_arr, false);
if (NULL == arr) {
pr2ws("%s: sg_memalign() failed to get memory\n", __func__);
return -ENOMEM;
}
switch (reporting_opts) {
case 0: /* all commands */
count = 0;
bump = rctd ? 20 : 8;
for (offset = 4, oip = sg_get_opcode_translation();
(oip->flags != 0xffff) && (offset < a_len); ++oip) {
if (F_INV_OP & oip->flags)
continue;
++count;
arr[offset] = oip->opcode;
sg_put_unaligned_be16(oip->sa, arr + offset + 2);
if (rctd)
arr[offset + 5] |= 0x2;
if (FF_SA & oip->flags)
arr[offset + 5] |= 0x1;
sg_put_unaligned_be16(oip->len_mask[0], arr + offset + 6);
if (rctd)
sg_put_unaligned_be16(0xa, arr + offset + 8);
offset += bump;
}
sg_put_unaligned_be32(count * bump, arr + 0);
break;
case 1: /* one command: opcode only */
case 2: /* one command: opcode plus service action */
case 3: /* one command: if sa==0 then opcode only else opcode+sa */
for (oip = sg_get_opcode_translation(); oip->flags != 0xffff; ++oip) {
if ((req_opcode == oip->opcode) && (req_sa == oip->sa))
break;
}
if ((0xffff == oip->flags) || (F_INV_OP & oip->flags)) {
supp = 1;
offset = 4;
} else {
if (1 == reporting_opts) {
if (FF_SA & oip->flags) {
mk_sense_invalid_fld(psp, true, 2, 2, vb);
free(free_arr);
return 0;
}
req_sa = 0;
} else if ((2 == reporting_opts) && 0 == (FF_SA & oip->flags)) {
mk_sense_invalid_fld(psp, true, 4, -1, vb);
free(free_arr);
return 0;
}
if ((0 == (FF_SA & oip->flags)) && (req_opcode == oip->opcode))
supp = 3;
else if (0 == (FF_SA & oip->flags))
supp = 1;
else if (req_sa != oip->sa)
supp = 1;
else
supp = 3;
if (3 == supp) {
u = oip->len_mask[0];
sg_put_unaligned_be16(u, arr + 2);
arr[4] = oip->opcode;
for (k = 1; k < u; ++k)
arr[4 + k] = (k < 16) ?
oip->len_mask[k] : 0xff;
offset = 4 + u;
} else
offset = 4;
}
arr[1] = (rctd ? 0x80 : 0) | supp;
if (rctd) {
sg_put_unaligned_be16(0xa, arr + offset);
offset += 12;
}
break;
default:
mk_sense_invalid_fld(psp, true, 2, 2, vb);
free(free_arr);
return 0;
}
offset = (offset < a_len) ? offset : a_len;
len = (offset < alloc_len) ? offset : alloc_len;
psp->resid = psp->dxfer_len - len;
if (len > 0)
memcpy(psp->dxferp, arr, len);
free(free_arr);
return 0;
}
static int
sntl_rep_tmfs(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
const uint8_t * cdbp, int time_secs, int vb)
{
bool repd;
uint32_t alloc_len, len;
uint8_t arr[16];
if (vb > 3)
pr2ws("%s: time_secs=%d\n", __func__, time_secs);
if (shp) { ; } /* suppress warning */
memset(arr, 0, sizeof(arr));
repd = !!(cdbp[2] & 0x80);
alloc_len = sg_get_unaligned_be32(cdbp + 6);
if (alloc_len < 4) {
mk_sense_invalid_fld(psp, true, 6, -1, vb);
return 0;
}
arr[0] = 0xc8; /* ATS | ATSS | LURS */
arr[1] = 0x1; /* ITNRS */
if (repd) {
arr[3] = 0xc;
len = 16;
} else
len = 4;
len = (len < alloc_len) ? len : alloc_len;
psp->resid = psp->dxfer_len - len;
if (len > 0)
memcpy(psp->dxferp, arr, len);
return 0;
}
/* Executes NVMe Admin command (or at least forwards it to lower layers).
* Returns 0 for success, negative numbers are negated 'errno' values from
* OS system calls. Positive return values are errors from this package.
* When time_secs is 0 the Linux NVMe Admin command default of 60 seconds
* is used. */
static int
nvme_pt(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
int time_secs, int vb)
{
bool scsi_cdb = false;
uint32_t cmd_len = 0;
uint16_t sa;
const uint8_t * cdbp = NULL;
if (psp->have_nvme_cmd) {
cdbp = psp->nvme_cmd;
cmd_len = 64;
psp->nvme_direct = true;
} else if (spt_direct) {
if (psp->swb_d.spt.CdbLength > 0) {
cdbp = psp->swb_d.spt.Cdb;
cmd_len = psp->swb_d.spt.CdbLength;
scsi_cdb = true;
psp->nvme_direct = false;
}
} else {
if (psp->swb_i.spt.CdbLength > 0) {
cdbp = psp->swb_i.spt.Cdb;
cmd_len = psp->swb_i.spt.CdbLength;
scsi_cdb = true;
psp->nvme_direct = false;
}
}
if (NULL == cdbp) {
if (vb)
pr2ws("%s: Missing NVMe or SCSI command (set_scsi_pt_cdb())"
" cmd_len=%u\n", __func__, cmd_len);
return SCSI_PT_DO_BAD_PARAMS;
}
if (vb > 3)
pr2ws("%s: opcode=0x%x, cmd_len=%u, fdev_name: %s, dlen=%u\n",
__func__, cdbp[0], cmd_len, shp->dname, psp->dxfer_len);
/* direct NVMe command (i.e. 64 bytes long) or SNTL */
if (scsi_cdb) {
switch (cdbp[0]) {
case SCSI_INQUIRY_OPC:
return sntl_inq(psp, shp, cdbp, time_secs, vb);
case SCSI_REPORT_LUNS_OPC:
return sntl_rluns(psp, shp, cdbp, time_secs, vb);
case SCSI_TEST_UNIT_READY_OPC:
return sntl_tur(psp, shp, time_secs, vb);
case SCSI_REQUEST_SENSE_OPC:
return sntl_req_sense(psp, shp, cdbp, time_secs, vb);
case SCSI_SEND_DIAGNOSTIC_OPC:
return sntl_senddiag(psp, shp, cdbp, time_secs, vb);
case SCSI_RECEIVE_DIAGNOSTIC_OPC:
return sntl_recvdiag(psp, shp, cdbp, time_secs, vb);
case SCSI_MODE_SENSE10_OPC:
case SCSI_MODE_SELECT10_OPC:
return sntl_mode_ss(psp, shp, cdbp, time_secs, vb);
case SCSI_MAINT_IN_OPC:
sa = 0x1f & cdbp[1]; /* service action */
if (SCSI_REP_SUP_OPCS_OPC == sa)
return sntl_rep_opcodes(psp, shp, cdbp, time_secs,
vb);
else if (SCSI_REP_SUP_TMFS_OPC == sa)
return sntl_rep_tmfs(psp, shp, cdbp, time_secs, vb);
/* fall through */
default:
if (vb > 2) {
char b[64];
sg_get_command_name(cdbp, -1, sizeof(b), b);
pr2ws("%s: no translation to NVMe for SCSI %s command\n",
__func__, b);
}
mk_sense_asc_ascq(psp, SPC_SK_ILLEGAL_REQUEST, INVALID_OPCODE,
0, vb);
return 0;
}
}
if(psp->dxfer_len > 0) {
uint8_t * cmdp = psp->nvme_cmd;
sg_put_unaligned_le32(psp->dxfer_len, cmdp + SG_NVME_PT_DATA_LEN);
sg_put_unaligned_le64((uint64_t)(sg_uintptr_t)psp->dxferp,
cmdp + SG_NVME_PT_ADDR);
if (vb > 2)
pr2ws("%s: NVMe command, dlen=%u, dxferp=0x%p\n", __func__,
psp->dxfer_len, psp->dxferp);
}
return do_nvme_admin_cmd(psp, shp, NULL, NULL, 0, true, time_secs, vb);
}
#else /* (HAVE_NVME && (! IGNORE_NVME)) */
static int
nvme_pt(struct sg_pt_win32_scsi * psp, struct sg_pt_handle * shp,
int time_secs, int vb)
{
if (vb)
pr2ws("%s: not supported [time_secs=%d]\n", __func__, time_secs);
if (psp) { ; } /* suppress warning */
if (shp) { ; } /* suppress warning */
return -ENOTTY; /* inappropriate ioctl error */
}
#endif /* (HAVE_NVME && (! IGNORE_NVME)) */